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Post-transplant lymphoproliferative disorders (PTLD) are diseases occurring in
immunocompromised patients after hematopoietic stem cell transplantation (HCT) or
solid organ transplantation (SOT). Although PTLD occurs rarely, it may be associated with
poor outcomes. In most cases, PTLD is driven by Epstein-Barr virus (EBV) infection. Few
studies have investigated the mutational landscape and gene expression profile of PTLD.
In our study, we performed targeted deep sequencing and RNA-sequencing (RNA-Seq)
on 16 cases of florid follicular hyperplasia (FFH) type PTLD and 15 cases of other PTLD
types that include: ten monomorphic (M-PTLD), three polymorphic (P-PTLD), and two
classic Hodgkin lymphoma type PTLDs (CHL-PTLD). Our study identified recurrent
mutations in JAK3 in five of 15 PTLD cases and one of 16 FFH-PTLD cases, as well as
16 other genes that were mutated in M-PTLD, P-PTLD, CHL-PTLD and FFH-PTLD. Digital
image analysis demonstrated significant differences in single cell area, major axis, and
diameter when comparing cases of M-PTLD and P-PTLD to FFH-PTLD. No
morphometric relationship was identified with regards to a specific genetic mutation.
Our findings suggest that immune regulatory pathways play an essential role in PTLD, with
the JAK/STAT pathway affected in many PTLDs.

Keywords: PTLD, Epstein-Barr Virus (EBV), florid follicular hyperplasia, targeted sequencing, next generation (deep)
sequencing (NGS), whole transcriptome sequencing
INTRODUCTION

Post-transplant lymphoproliferative disorders (PTLD) are abnormal lymphoid proliferations that
develop in immunosuppressed patients after hematopoietic stem cell transplantation (HCT) or solid
organ transplantation (SOT). The current 2017 revised World Health Organization (WHO)
classification of hematopoietic neoplasms describes four subtypes of PTLD based on histological
features: non-destructive, polymorphic, monomorphic and classic Hodgkin lymphoma type. These
four subtypes reflect the phenotypic heterogeneity of PTLD (1). An important driver of PTLD
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pathogenesis is thought to be Epstein-Barr virus (EBV). About
70% of PTLD cases are reported to be associated with an EBV
infection (2) and recent studies have investigated whether EBV
positive and EBV negative PTLDs are distinct entities.

Other studies discuss the progression of PTLD from more
benign subtypes, such as the early lesions (florid follicular
hyperplasia, FFH) or polymorphic subtypes to more malignant
subtypes of PTLD (i.e. monomorphic and classic Hodgkin
lymphoma types) (3) . Early lesions may be nearly
indistinguishable from a reactive inflammatory response.
However, next generation sequencing data may provide
information about the molecular landscape and genetic profiles
in PTLD, allowing for diagnostic subtyping, while also offering
insight into the molecular pathogenesis and development of
these diseases. To date, the published literature evaluating the
genetic landscape of PTLD has been limited. These studies have
shown distinct gene expression patterns and copy number
aberrations in EBV positive PTLD as compared to EBV
negative PTLD (3–5). Additional analyses have demonstrated
distinct genetic mutations in monomorphic PTLDs with diffuse
large B-cell lymphoma (DLBCL) (6, 7) or T-cell lymphoma
phenotypes (8) compared to the corresponding lymphomas
arising in immunocompetent patients.

Our study investigates the genetic DNA landscape and RNA
gene expression profiles of ten cases of monomorphic, three cases
of polymorphic and two cases of classic Hodgkin type PTLD. We
compare these cases to the genetic landscape and gene expression
profiles of 16 cases of early lesion FFH-PTLD using deep targeted
DNA sequencing and RNA-profiling. We additionally evaluate
nine cases of PTLD and FFH-PTLD by digital image analysis.
STUDY DESIGN

Patient Cohort
For our study, we selected ten cases of monomorphic, three cases
of polymorphic, and two cases of classic Hodgkin lymphoma
type PTLD, and 16 cases of FFH-PTLD from the archives (2003-
2018) of the Department of Pathology, University of California,
San Francisco, Department of Pathology, Stanford University,
and Department of Laboratories, Seattle Children’s Hospital. All
cases and slides were reviewed and diagnoses were confirmed.
Patient medical record charts, clinical and laboratory data as well
as treatment data were re-reviewed. This study was approved by
Institutional Review Boards at each site.

Targeted Deep Sequencing
We extracted DNA from formalin fixed and paraffin embedded
(FFPE) tissue using the DNA Storm Kit (Cell Data Science, CA,
USA). For our DNA libraries, we developed a customized
SureSelectXT HS (Agilent Technologies, CA, USA) Heme
Malignancies Evaluation and Infectious Detection panel (HeME-
ID), which includes 354 genes that are important for lympho- or
leukemogenesis in addition to 13 viruses and bacteria associated
with hematolymphoid diseases (9, 10). 100 base-pair paired-end
targeted deep sequencing was performed at an average coverage
Frontiers in Oncology | www.frontiersin.org 2
depth of 1500-fold on a high-throughput sequencing platform
(HiSeq4000). We performed alignment using the Burrows-
Wheeler Aligner – maximum exact matches (BWA-MEM)
algorithm following the Genome Analysis Toolkit (GATK) best
practices for alignment, single-nucleotide variant, and structural
variant analysis. For variant calling, we used SureCall (version 4.1,
Agilent Technologies). Analysis was run at a variant allele
frequency (VAF) of 2%, which was justified by the high read
depth and the usage of molecular barcodes in the SureselectXT HS

kit. In order to call a mutation, a 20x read coverage per base and a
minimum coverage in forward and reverse direction were also
required. We applied the same filters for small insertion and
deletions (indel) analysis. Annotation of variants was performed
using SureCall and wAnnovar (11). For further curation we
applied filters of a maximum VAF of 40% and a minimum
Combined Annotation Dependent Depletion (CADD) score of
20. Synonymous mutations and mutations outside of exons where
excluded. We also used SureCall for analysis of structural variants.
For further downstream analysis, such as enrichment or depletion
analysis in the promoter region, promoter flanking regions and
transcription factor binding sites (CTCF), as well as the analysis of
the mutational signature, we used the MutationalPatterns (12)
Package from R. Pathway Analysis along with EnrichR (13), Gene
Set Enrichment Analysis (GSEA) (14, 15) and ConsensusPathDB-
human (CPDB) (16). Evaluation of microorganisms was
performed using the subtraction method as described for
shotgun metagenomic sequencing (17, 18). For viruses, we
interpreted the results based on percent coverage of the targeted
regions and average depth. Based on our previous studies, we
classified samples as: negative, equivocal, and positive. In order to
be interpreted as equivocal, all three viral targeted regions must
have a coverage of at least 10% up to 75% and the average read
depthmust be at least 1. For a sample to be classified as positive, all
three targeted regions of a sample required a coverage minimum
of 75% and an average read depth of at least 9.

RNA-Sequencing and Data Analysis
RNA was extracted from FFPE tissue blocks with the RNA Storm
FFPE DNA Extraction kit (Cell Data Science). The quality and
quantity of extracted nucleic acids was assessed by Qubit analysis
and 2100 Bioanalyzer (Agilent). We used 200ng of RNA to
prepare our RNA library with the SureSelectXT RNA Direct kit
(with SureSelect Exome V6 + UTR Capture Library) for strand-
specific sequencing libraries (Agilent Technologies). We
performed 150 base-pair paired-end whole transcriptome
sequencing on a high-throughput sequencing platform from
Illumina (HiSeq4000) for an average coverage of 300 million
reads per sample. For downstream processing of our output files,
we used Hisat2 (version 2.1.0) for alignment and HT-Seq
(version 0.11.1) for generation of the count files. Gene
expression analysis was performed in RStudio (version 3.5.3).
Primary analysis of expression data was performed with ClustVis
(19). We used the DeSeq2 package for differential gene
expression analysis (20). For fusion analysis, we used STAR-
Fusion (version 0.1.1) (21). The immunologic environment was
analyzed by CIBERSORT (22).
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Computational Digital Image Analysis
We performed digital imaging analysis of representative cases
from both the M-PTLD, P-PTLD (n=9) and FFH groups (n=9).
MATLAB (v2019B) was used to analyze the RGB images
acquired from an Aperio AT2 scanner at an optical
magnification of 40X. K-means clustering was used to
differentiate the different cellular components and segment the
images (23). The image processing toolbox from MATLAB was
used to extract eight parameters from the image datasets, which
include: area, circularity, major axis, minor axis, eccentricity,
equivalent diameter, solidity, and perimeter. Welch’s t-test was
used to perform a two-tailed test on these parameters.

Statistical Analysis
All statistical analysis was done in RStudio (R version 3.6.0 and
RStudio Version 1.2.1335). Student’s t-test was performed to
evaluate differences between datasets. A p-value < 0.05 was
considered statistically significant.
RESULTS

Patient Cohort
Our study included 15 patients diagnosed with advanced PTLD
and 16 patients with FFH. The cases of advanced PTLD included
ten cases of monomorphic, three cases of polymorphic, and two
cases of classic Hodgkin lymphoma type PTLD. The diagnoses for
all cases were reconfirmed and classified by R.S.O., B.P., J.K. and
K.C. and A.B. based on the 2017 revised WHO classification of
lymphoid neoplasms. Our patient cohort consisted of 12 females
and 19 males. The average age of the non-FFH PTLD group was
40 years old (range 6 to 67 years) and the average age in the FFH
group, 8 years old (range 2 to 20 years). Twelve patients were
positive for EBV by in-situ hybridization (ISH) in the non-FFH
PTLD group, and six patients were positive for EBV by ISH in the
FFH group. The clinical characteristics of the non-FFH PTLD and
FFH groups are provided in Tables 1, 2, respectively.

Mutational Analysis Reveals Recurrent
JAK3 Mutations in Monomorphic,
Polymorphic, and Classic Hodgkin
Lymphoma PTLD Cases
We performed targeted deep sequencing to gain insight into the
mutational landscape of M-PTLD, P-PTLD, and CHL-PTLD in
comparison to FFH. The average number of mutations after
curation in our M-PTLD, P-PTLD and CHL-PTLD cases was
10.8 and in the FFH cases was 2.8 (with only 10 of 16 FFH cases
carrying mutations). The mutations found in the non-FFH
PTLD cases were significantly more deleterious than the
mutations found in FFH based on the CADD score (average
CADD score 28.52 vs. average CADD score 18, p-value 0.01).
Among the histological subtypes, the polymorphic subtype had
the smallest number of mutations, and the somatic mutations
were less damaging. In comparison, other histological subtypes,
including monomorphic (DLBCL histology), and classical
Frontiers in Oncology | www.frontiersin.org 3
Hodgkin lymphoma, had a higher number of mutations with
more damaging somatic mutations (Table 3). Variants for the
PTLD cases had a VAF ranging from 2 to 37% with an average of
4.7%, whereas the VAF for the alterations detected in the FFH
cases ranged from 2 to 6% with an average of 2.8%.

We also discovered JAK3 and BCL11B mutations in three M-
PTLD cases, two CHL-PTLD cases, and PIK3CD mutations in
four M-PTLD cases. Other genes found to be mutated in more
than one case are illustrated in Figure 1. Of the genes mutated in
greater than three patients, JAK3 mutations were classified as
deleterious based on CADD scores, whereas BCL11B mutations
had lower CADD scores. JAK3 mutations were seen in the SH2
and JH2 domains (Figure 2). Pathway analysis of the recurrently
mutated genes revealed that those genes are key in the JAK/STAT
pathway and cytokine signaling pathways. Genes affecting the
JAK/STAT pathway were marked in Figures 1, 3. These genes
were also involved in IL-2, IL-3, IL-5 and IL-7 and GM-CSF
signaling pathways and signaling events mediated by T-cell
Protein Tyrosine Phosphatase (TCPTP).

Overlapping Gene Mutations in M-PTLD,
P-PTLD, CHL-PTLD and FFH From
Post-Transplant Patients
We identified somatic mutations in 17 overlapping genes
between the M-PTLD, P-PTLD, CHL-PTLD and FFH groups
(Figure 3). The genes recurrently mutated in both groups
include NOTCH1 (four patients), CREBBP, and BCL11B. All
but one mutation in the NOTCH1 gene were deleterious. The
pathogenicity of the somatic mutations involving genes mutated
in more than three patients is shown in Figure 4.

More Mutations Than Expected in Non-
Coding Gene Regions in M-PTLD, P-PTLD,
CHL-PTLD and FFH
In order to better understand the overall mutational burden and
the distribution of somatic mutations within our samples and
groups, we also evaluated the non-coding gene regions, such as
promoter, promoter flanking and transcription factor binding
sites (CTCF). Here we noted an overall higher number of
mutations in M-PTLD, P-PTLD, and the CHL-PTLDs versus
FFH, in the promoter regions compared to three non-coding
regions (Figure 5).

The Mutational Landscape and Gene
Expression Profile in M-PTLD, P-PTLD,
and CHL-PTLD Is Unrelated
to EBV Infection
We performed mutational analysis and evaluated the EBV
infection status for M-PTLD, P-PTLD, CHL-PTLD and FFH
cases. EBV infection status was determined by ISH and NGS
using our targeted HeME-ID panel. By NGS, ten non-FFH PTLD
cases and eight FFH cases were positive for EBV infection in the
analyzed tissue (Table 2). There was no difference in the number
of mutations identified between the groups of EBV infected and
non-infected patients (Table 3). The somatic mutations found in
January 2022 | Volume 11 | Article 790481

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Butzmann et al. Genomic Analysis of PTLD
TABLE 2 | Clinical and histological characteristics of the patients with florid follicular hyperplasia included in study.

Case PTLD subtype EBV status (ISH) EBV Status (NGS) Sex Age HCT/SOT Indication

15 FFH – – M 20 ESRD
14 FFH – + M 5 CM
26 FFH – – M 8 ESRD
22 FFH – – F 4 ESRD
7 FFH – – F 2 Cirrhosis
16 FFH – – F 4 PCKD
3 FFH + + F 6 NEC
19 FFH + + M 4 Biphenotypic AML
2 FFH + + M 2 Cirrhosis
10 FFH Scattered + + F 13 CM
18 FFH – – F 20 ESRD
12 FFH + + M 9 Cirrhosis
5 FFH – – M 2 ESRD
31 FFH – equivocal M 14 ESRD
9 FFH + + M 18 CM
1 FFH – + F 3 CM
Frontiers in Oncolo
gy | www.frontiersin.org
 4
 Janu
ary 2022 | Volum
PTLD, post-transplant lymphoproliferative disorder; FFH, florid follicular hyperplasia; AML, acute myeloid leukemia; CM, cardiomyopathy; ESRD, end-stage renal disease; NEC, necrotizing
enterocolitis; PCKD, polycystic kidney disease.
TABLE 3 | Summary of average number of mutations identified and average CADD score for PTLD subtypes and EBV infection status.

CHL T-cell Monomorphic (DLBCL) polymorphic PTLD EBV+ PTLD EBV- FFH EBV+ FFH EBV-

Average number of mutations 31.5 9 8.4 5.3 10.73 10.8 3 2.57
Average CADD score 30.34 28.86 28.62 25.51 27.88 29.16 15.59 20.42
e 11 | Arti
CHL, classic Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; PTLD, post-transplant lymphoproliferative disorder; FFH, florid follicular hyperplasia; EBV, Epstein-Barr virus.
TABLE 1 | Clinical and histological characteristics of the PTLD patients included in study.

Case PTLD subtype EBV status
(ISH)

EBV Status
(NGS)

Sex Age HCT/SOT
Indication

Treatment

4 CHL + + F 48 Relapsed HL Rituximab
6 Monomorphic

(DLBCL)
+ + M 66 BPDCN Rituximab

28 Polymorphic + + M 24 Relapsed HL NA
30 T-cell + – M 67 High risk

CLL
Nilotinib

32 Monomorphic
(DLBCL)

Scattered + – M 18 CM POG 9219

27 Monomorphic
(DLBCL)

+ + M 52 Pre-B-ALL Rituximab

8 Monomorphic
(DLBCL)

– – M 56 Cirrhosis R-CHOP

25 CHL Scattered + + M 24 CM Stanford V chemotherapy followed by involved field radiotherapy 30 Gy in 20
fractions directed at the pre-chemotherapy disease

13 Polymorphic + + M 22 Relapsed HL Rituximab
11 Monomorphic

(DLBCL)
+ + F 58 PCKD R-CHOP

17 Monomorphic
(DLBCL)

+ + F 44 Cirrhosis Rituximab
29 +
21 Polymorphic + equivocal M 23 Aplastic

Anemia
NA

24 Monomorphic
(DLBCL)

– – F 40 ESRD R-CHOP

23 T-cell + + M 6 ESRD CHOP + high-dose cytarabine with asparaginase
20 Monomorphic

(DLBCL)
– – F 54 Cirrhosis Rituximab
PTLD, post-transplant lymphoproliferative disorder; pre-B-ALL, pre-B-cell acute lymphoblastic leukemia; BPDCN, blastic plasmacytoid dendritic cell neoplasm; CHL, classic Hodgkin
lymphoma; CLL, chronic lymphoblastic leukemia; CM, cardiomyopathy; HL, Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; ESRD, end-stage renal disease; PCKD, polycystic
kidney disease; R-CHOP, rituximab-cyclophosphamide, doxorubicin, vincristine, prednisone. N/A, not applicable.
cle 790481
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infected patients had similar CADD scores of pathogenicity, p-
value 0.69 (Table 3). Discrepancies between the ISH and NGS
findings can be explained by two primary factors. The layer of
tissue obtained from sectioning the block is variable and may
account for the differences between the ISH and NGS studies (i.e.
sampling variability). Secondly, interpretation of ISH is
subjective, whereas NGS uses predefined parameters with
less variation.

Hierarchical clustering of the gene expression profiles shows
primary clustering based on the diagnosis of mpc-PTLD and
FFH. We also looked for a distinct transcriptional profile based
on EBV infection status and noted that EBV negative cases had a
tendency to cluster together (Figure 6). However, there was no
clear separation between EBV positive and negative cases in the
gene expression profiles, which was further confirmed using
principal component analysis (PCA) (Supplementary
Figure 1). The different expression patterns did not appear to
Frontiers in Oncology | www.frontiersin.org 5
be associated with any of the other factors we investigated,
including batch, mean coverage, gender, race/ethnicity, age,
organ transplanted, SOT/HCT, PTLD subtype, or tissue type.

Genes Involved in Regulatory or Innate
and Adaptive Immune System Are
Upregulated in mpc-PTLD
We performed RNA-sequencing to understand the gene
expression profiles of mpc-PTLD compared to FFH. In our
exploratory analysis, we saw that mpc-PTLD patients have a
different gene expression profile as compared to FFH patients
with a subset of mpc-PTLD cases falling in between (cases 6, 8,
17 and 23), as demonstrated in Figure 6. We looked at the
differentially expressed genes by gene set enrichment analysis
and found that genes involved in regulatory or innate and
adaptive immune system are overexpressed in mpc-PTLD as
compared to FFH.
FIGURE 2 | Representation of the JAK3 domains and their encoding exons (24, 25) with JH2 (pseudokinase domain) and JH1 (kinase domain) being the most
important. Below the domains are the somatic mutations identified in both M-PTLD, P-PTLD, CHL-PTLD and FFH-PTLD patients. *nonsense mutation.
FIGURE 1 | Genes mutated in more than one PTLD sample. *Genes affecting the JAK/STAT pathway.
January 2022 | Volume 11 | Article 790481
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mpc-PTLD Cases Have More T-Cell
Involvement and Fewer B-Cell Involvement
Than FFH Cases
Using the gene expression profile of our samples, we looked at
the immune cell composition within the mpc-PTLD and FFH
group. As shown in Figure 7, there is a greater B-cell component
(naïve and memory) within the FFH group, whereas the mpc-
PTLD group has a stronger overall CD8 and CD4 T-cell
component. In general, the mpc-PTLD cases have a more
heterogenous immune cell infiltration with more T-follicular
helper cells and a greater mast cell component in some of the
cases. The mpc-PTLD cases diagnosed with a T-cell subtype
show strong signal for T-cells, while lacking a significant B-
cell component.

Digital Imaging Analysis Demonstrates
That mpc-PTLD Cells Are Larger
Than FFH Cells
We performed digital imaging analysis of nine representative
cases of both the mpc-PTLD and FFH groups. In our analysis, we
found that mpc-PTLD cells have a significant larger area,
Frontiers in Oncology | www.frontiersin.org 6
diameter, and major axis (Figure 8) (p<0.0001). There was no
significant difference in the circularity, minor axis, eccentricity,
or perimeter. We were particularly interested in cases that seems
to have a molecular overlap. Cases 6, 8 and 23 were analyzed by
digital imaging and their transcriptional profile appears more
similar to the transcriptional profile of FFH (Figure 6). We were
unable to identify differentiating features among cases 6, 8, and
23 as well as the remaining cases of the mpc-PTLD group.
DISCUSSION

In our study, we investigated and compared the molecular
landscape of 15 cases of advanced PTLD and 16 cases of FFH.
Here we performed a high-throughput molecular comparison
and conducted digital imaging analysis of mpc-PTLD and
FFH cases.

Our mutational analysis showed a higher number of
mutations for the mpc-PTLD cases with somatic mutations
that were more deleterious than those in the FFH cases. We
identified somatic mutations in all of the mpc-PTLD cases but
FIGURE 3 | Genes mutated in the mpc-PTLD and FFH-PTLD groups. *Genes affecting the JAK/STAT pathway.
FIGURE 4 | Overview of somatic mutations in recurrently mutated genes in the mpc-PTLD and FFH-PTLD groups. Somatic mutations with a CADD score of >30
are shown in red, CADD score of 25-30 in orange, and CADD score of 20-25 indicated in green. *Genes affecting the JAK/STAT pathway.
January 2022 | Volume 11 | Article 790481
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only in 10 of 16 FFH cases. These findings were further
confirmed by evaluating the mutational burden of the specific
non-coding regions: promoter region, promoter flanking and
transcription factor binding sites (CTCF) region. Here we again
saw a higher number of mutations within the mpc-PTLD group.
Interestingly, we observed more promoter region mutations than
expected for both mpc-PTLD and FFH. Overall, we found both
groups to be very heterogenic with respect to the number of
mutations identified and the mutational landscapes.

Previous studies reported on PTLD arising from early lesions,
such as FFH (26, 27). Our analysis further corroborates these
findings and we identified 17 overlapping genes mutated in both
the PTLD and FFH groups. The majority of these genes were
mutated in more than one mpc-PTLD case. Among the
overlapping genes detected in both mpc-PTLD and FFH, JAK3,
BCL11B, and PIK3CD were recurrently mutated in mpc-PTLD in
four or more cases. Five of the six detected mutations in JAK3
were deleterious, all with very low VAF (3-10%). Although we
used FFPE tissue for targeted deep sequencing, we were able to
detect very low VAF based on a high read depth and the use of
molecular barcodes in our library chemistry. JAK3 is a cytokine
receptor and plays a critical role in the JAK/STAT pathway. The
JAK/STAT pathway plays an important role in the regulation of
cell proliferation and immune system response, especially by
involvement of cytokine and interleukin signaling (28). JAK3
mutations have been reported in mainly T-cell neoplasms (29,)
(30), immunodeficiency syndromes (31, 32), and B-cell
neoplasms (33). The mutations found in our PTLD and FFH
cases fall into the SH2 and JH2 domains of the JAK3 gene. The
JH2 pseudokinase domain is the most commonly affected
FIGURE 5 | Enrichment analysis for promoter region, promoter flanking
regions, and transcription binding sites (CTCF). The top part of the figure
shows the observed versus expected number of mutations. In the bottom
part of the figure, the mutational burden within the same non-coding gene
regions for both groups are demonstrated as the log2 ratio of the number
of observed and expected point mutations indicating the effect size of the
enrichment or depletion within each region. (*) = statistical significance
(p<0.05; two‐sided binomial test).
FIGURE 6 | Heatmap hierarchically clustered by Euclidean distance of gene
expression for all of the investigated groups (see legend).
FIGURE 7 | Analysis of the immune cell composition within (A) the FFH-
PTLD cases and (B) the monomorphic, polymorphic, and classic Hodgkin
(mpc)-PTLD cases based on gene expression profile. EBV positive cases
are circled in red.
January 2022 | Volume 11 | Article 790481
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domain within all the JAK mutated genes involved in
hematolymphoid diseases, with most mutations functioning as
activating mutations (34). The pseudokinase domain suppresses
the directly adjacent kinase domain JH1 (24). The SH2 domain is
located in the receptor binding domain where kinase activity is
initiated and the JAK receptor specificity is determined (35,)
(36). Given that current drugs, such as tofacitinib and peficitinib,
target the JAK3 signaling pathway, our findings support the
potential role of JAK3-targeted therapy to improve treatment
options for PTLD (37–39). However, more cases are necessary to
confirm the recurrence of JAK3 mutations in PTLD. Further,
functional studies are necessary to determine if the discovered
mutations are activating or inactivating mutations.

Within the FFH group, NOTCH1 was recurrently mutated.
NOTCH1 mutations often occur in T-cell acute lymphoblastic
leukemia/lymphoma (T-ALL) (40) and multiple studies have
demonstrated the importance of NOTCH1 signaling for the
induction of lymphomagenesis (41–43). A recent study by
Kimura et al. suggested that activating NOTCH1 mutations
play a role in the genetic evolution of pediatric T-ALL (44).
The mutation detected in our cases are mostly deleterious with
two of five cases involving the PEST domain of NOTCH1 (exon
34). This PEST domain is one of the two most frequently affected
domains, often a result of activating mutations (41). Our findings
of recurrent NOTCH1 and overlapping mutational landscapes
support the published literature suggesting possible progression
of FFH to monomorphic, polymorphic, and classic Hodgkin
lymphoma type PTLD. Our FFH study group was younger than
the mpc-PTLD group which may lead to differences in outcome
and genetic landscape between the two study groups (45).

We performed RNA-sequencing to compare the gene
expression profiles of our mpc-PTLD cases with FFH. We
found that the FFH cases show a distinct gene expression
Frontiers in Oncology | www.frontiersin.org 8
profile as compared to the mpc-PTLD cases. However, some
mpc-PTLD cases exhibited a hybrid expression profile relative to
the FFH cases, indicative of a possible relationship between the
two groups. Differential gene expression analysis showed an
overexpression of genes involved in the innate and adaptive
immune system as well as complement activating genes. These
results underline our mutational findings of recurrently mutated
JAK3 and NOTCH1, both of which are important in immune
system regulation.

Through our targeted deep sequencing analysis, we found that
the variants for the PTLD cases had a greater average VAF as
compared to the VAF for the alterations detected in the FFH cases.
These findings suggest that the lower average VAF in cases of FFH
may represent gene expression of a benign or reactive background
environment whereas the higher average VAF in the mpc-PTLD
group may indicate a gene expression pattern of neoplastic cells.
Although the majority of the mpc-PTLD group consisted of
monomorphic PTLDs, we also compared the number of
mutations of the other histological PTLD subtypes. We found
that the polymorphic subtype had the smallest number of
mutations with less damaging somatic mutations. In concordance
with the current literature, we noted that polymorphic PTLD may
be a precursor lesion to the other subtypes and we believe our data
supports these findings (3). However, given the small sample size
within this group, interpretation of these results is limited. In
addition, as mentioned before the FFH study group was younger
than the mpc-PTLD study group which may cause a difference in
genetic landscapes.

Using our HeME-ID panel that targets 13 viruses and
bacteria, we evaluated the EBV infection status of all 31
patients. EBV infection was seen in ten out of 15 mpc-PTLD
tissues and nine of 16 FFH tissues. Through mutational analysis,
we identified a similar number of mutations for EBV positive and
A B

FIGURE 8 | Violin plot of the digital imaging analysis of M-PTLD, P-PTLD, CHL-PTLD, and FFH-PTLD cases. (A) Violin plots of cellular parameters of equivalent
diameter, perimeter and eccentricity. (B) Violin plots of cellular parameters of area, circularity, major axis, and minor axis. Displayed are nine representative samples
of each group. Green represents M-PTLD and P-PTLD cases, blue indicates FFH-PTLD cases. (***) = statistical significance (p<0.0001).
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EBV negative cases. The pathogenicity of the mutations found in
the EBV positive cases was lower than in the EBV negative cases.
Our results support the findings of Menter et al., who found that
EBV positive monomorphic PTLD cases had a less pathogenic
mutational landscape as compared to EBV negative cases and
suggested that EBV induces lymphomagenesis through its
oncogenic properties, behaving as a substitute for deleterious
mutations (7). When comparing the gene expression profiles,
two studies found differences in the gene expression pattern of
EBV positive and EBV negative PTLD cases (4, 5), whereas
another study did not detect any differentially expressed genes
(27). We also noted that the EBV negative cases clustered in
between the positive cases in the hierarchical clustering analysis.
However, no genes were significantly differentially expressed
based on EBV infection status.

To study the immunologic environment of our mpc-PTLD
and FFH cases, we looked at the immune cell composition based
on the gene expression profiles of the two groups. We found that
B-cells were the predominant cell type within the FFH group,
whereas the mpc-PTLD group consisted of a large proportion of
CD4 and CD8 cells, T-follicular helper cells, and mast cells.
Overall, the immune cell composition of the mpc-PTLD cases
was more heterogenic and was also unrelated to the EBV
infection status, as noted in Figure 7. This finding is important
to note since the dominating CD4/CD8 T-cell component within
the mpc-PTLD group has been associated with EBV infection
status due to the naturally occurring T-cell immune response
seen in EBV positive immunocompetent patients (8, 46). Based
on our molecular findings, we hypothesize that a change of the
immune cell composition in PTLD may be due to the
dysregulated immune response. JAK/STAT and NOTCH1
pathway defects are often seen in T-cell malignancies (28) and
may explain the distinction in B-cell and T-cell composition
between the mpc-PTLD and FFH groups. Moreover, JAK/STAT
is a major regulator of cytokine pathways and dysregulation may
also lead to increased mast cells in the immunologic
environment. Overall, our immune cell composition findings
support our molecular findings. Future studies are also
warranted to determine whether the cell of origin in PTLD is
recipient- or donor-derived as this may provide further insight
into the immune-mediated pathways involved in PTLD.

To our knowledge, this is the first study to perform digital
analysis on whole slide images of PTLD samples. The histologic
presentation of PTLD is very heterogenic, and it can be difficult to
distinguish from other benign or malignant processes of the lymph
node (47). Thus, we utilized digital analysis of whole slide images to
determine if the cells from monomorphic, polymorphic, or classical
Hodgkin type PTLD can be distinguished from FFH cells. mpc-
PTLD cells were significantly larger in area, diameter, and major
axis as compared to the FFH lymphocytes (p<0.0001). These results
were expected as mpc-PTLD lymphocytes can be enlarged and can
be confused with other entities, such as a plasma cell neoplasm (48).
Surprisingly, mpc-PTLD and FFH lymphocytes showed no
significant differences in circularity, eccentricity, perimeter, and
minor axis since we anticipated mpc-PTLD and FFH
lymphocytes to be more distinguishable. Our findings support the
Frontiers in Oncology | www.frontiersin.org 9
molecular data and show similarities between m-PTLD, p-PTLD,
CHL-PTLD and FFH lesions. Of note, our imaging analysis was
limited by the number of cases and disease entities in this study.
Greater sample sizes are needed to perform an in-depth analysis of
the morphological hallmarks of PTLD pathology.
CONCLUSION

Our study is the first comprehensive analysis evaluating the
molecular landscapes of monomorphic, polymorphic, or classic
Hodgkin type PTLD and FFH. Limitations of this study are the
small sample size as well as the age difference between mpc-
PTLD and FFH group. However, our findings contribute to a
better understanding of the pathogenesis of PTLD and will help
guide future functional studies for these disease processes.
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