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Abstract

Mammalian gene expression is a complex process regulated in part by CpG methylation.

The ability to target methylation for de novo gene regulation could have therapeutic and

research applications. We have previously developed a dCas9-MC/MN protein for targeting

CpG methylation. dCas9-MC/MN is composed of an artificially split M.SssI methyltransfer-

ase (MC/MN), with the MC fragment fused to a nuclease-null CRISPR/Cas9 (dCas9). Guide

RNAs directed dCas9-MC/MN to methylate target sites in E. coli and human cells but also

caused some low-level off-target methylation. Here, in E. coli, we show that shortening the

dCas9-MC linker increases methylation of CpG sites located at select distances from the

dCas9 binding site. Although a shortened linker decreased methylation of other CpGs proxi-

mal to the target site, it did not reduce off-target methylation of more distant CpG sites.

Instead, targeted mutagenesis of the methyltransferase’s DNA binding domain, designed to

reduce DNA affinity, significantly and preferentially reduced methylation of such sites.

Introduction

Cytosine methylation is important in facilitating many mammalian biological processes such

as chromosomal stability, genomic imprinting, X-chromosome inactivation and gene expres-

sion [1–3]. Methylation has been implicated in embryonic development and cell differentia-

tion [1, 3–5]. High levels of methylation in promoter regions often lead to transcriptional

silencing, but many questions remain about the mechanisms by which DNA methylation alters

gene expression. The ability to modulate methylation in a targeted way will facilitate the

understanding of CpG methylation and its functional role in the context of specific cis-
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regulatory elements. As a result, protein fusions have been engineered that link 5-methyl cyto-

sine methyltransferases to DNA binding domains (DBD) for the purpose of targeting

methylation.

The typical strategy for targeting DNA methylation, as pioneered by Xu and Bestor [6],

involves end-to-end fusion of a DNA binding motif and a cytosine DNA methyltransferase

(typically human DNMT3a or bacterial enzymes). The DNA binding motif is designed to bind

adjacent to the intended target region. The most commonly used DNA motif has been zinc fin-

gers (ZF) [7]. With the advent of the CRISPR-Cas9 genome engineering tool, several groups,

including ours, have recently reported on the targeting capabilities of fusions of catalytically

deactivated Cas9 (dCas9) to DNMT3a or M.SssI [8–16]. A key feature of dCas9 as a DNA-

binding motif is its ability to recognize a 20-nucleotide sequence defined by the single-

stranded guide RNA (sgRNA) sequence that matches the protospacer and protospacer adja-

cent motif (PAM) on the DNA, thus avoiding the need for protein design required for ZF- and

TALE-derived MTases. This affords greater flexibility in targeting different genomic regions;

sgRNA synthesis can be done either commercially through oligo providers or via transcription

from a synthesized DNA fragment/plasmid. Studies on dCas9-DNMT3a fusions demonstrate

the potential of dCas9 to target DNA methylation in mammalian cells—guide RNAs can target

methylation to different gene promoters; sgRNAs can be multiplexed to increase methylation

throughout an entire genomic region, covering more of the promoter; methylation has dem-

onstrated down regulation of target genes; and in some cases methylation has even been stably

maintained after removal of dCas9-MT expression [8–11]. Together, these studies demon-

strate proof of concept for gene regulation using Cas9 systems, and thus present the potential

for transcriptional silencing of oncogenes. In addition, Shayevitch et al [16] used

dCas9-DNMT3a-3l fusions to demonstrate that DNA methylation of exon-encoding regions is

involved in the regulation of alternative splicing. Their study illustrates how dCas9-MT’s can

be used to gain insight into the biological role of CpG methylation.

However, current tools demonstrate undesirable off-target activity [8–13, 15, 17, 18]. This

off-target activity includes methylation at non-target CpG sites within a region near the target

site (e.g. within a promoter) and at distal CpG sites in the genome. Two recent papers highlight

the extent of the problem. Galonska et al. [15] recently provided the clearest evidence that

dCas9-DNMT3a causes global increases in methylation by quantifying methylation in methyl-

ation-depleted but maintenance competent mouse ES cells, where a methylated genome is not

an impediment to assessing off-target activity. The widespread off-target activity they observed

was independent of guide RNA. Lin et al. [18] recently performed whole genome bisulfite

sequencing for HEK293T cells expressing a dCas9-DNMT3a fusion and found over a thousand

regions of off-target methylation, predominantly in promoters, 5’untranslated regions, and

CpG islands. These sites only weakly correlated with predicted dCas9 off-target binding sites,

suggesting that the problem primarily lies with the unregulated methyltransferase activity of

the methyltransferase domain of the fusion. These two studies suggest that, although improv-

ing the targeting of the dCas9 domain is warranted, this will only partially address the problem.

Approaches to improve selectivity for the target site over non-target sites are therefore needed.

In addition, highly-specific programmable DNA methyltransferase would help basic science

studies of the precise relationship between DNA methylation, its regulation and spread, and

changes in gene expression. Improvements in targeting methylation have been made by substi-

tuting DNA targeting domains with higher DNA affinity or reducing methyltransferase activ-

ity [19–21]. However, methylation at non-target sites still occurs, most likely because the

methyltransferase domain remains active even when the DBD is not bound at the target site.

We reason such strategies might have better effects when used in combination with a methyl-

transferase whose methylation activity is dependent upon its assembly at the target site.

Improvements in the methylation selectivity of a dCas9-directed cytosine methyltransferase
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We have previously shown how naturally or artificially split methyltransferases is an

attractive strategy for improving targeting ability [13, 22, 23]. Most recently, we have demon-

strated the targeting abilities of dCas9 fused to a M.SssI split methyltransferase (sMTase)

[13]–a split M.SssI that had been used previously in the context of zinc finger instead of

dCas9 [19, 22]. In our dCas9-sMTase, dCas9 is fused to the N-terminus of the C-terminal

fragment encoding M.SssI [273–386] (MC). We chose to leave the N-terminal fragment

encoding M.SssI [1–272] (MN) untethered to a DBD, because this reduced the number of

PAMs that needed to be located at an appropriate distance from targeted CpG sites. We

hypothesized that when the dCas9 domain is not bound to DNA, the two M.SssI fragments

would lack sufficient stability or affinity for each other to efficiently methylate DNA. When

the dCas9 is bound to the sgRNA-determined DNA site, localization of the MC domain

would increase its stability via interactions with the CpG site or induce its folding in coopera-

tion with MN.

In previous work [13], we first characterized our constructs in E. coli, because these cells

lack native mechanisms for CpG methylation. These experiments showed how methylation

efficiency at the target site varies as a function of its distance from the PAM site and differs

for the cis and trans strands (the cis strand is defined as the strand containing the PAM site).

The resulting model for methylation efficiency as a function of the gap between the PAM

and the CpG site was reasonably predictive of the targeted methylation efficiency in genomic

DNA in HEK293T cells. Guide RNA-directed methylation efficiency at target sites was as

high as ~40% in E. coli and ~70% in HEK293T cells. Methylation at non-target CpG sites was

generally low (~1% in E. coli and 0–3% above background in HEK2393T). However, we

observed methylation frequencies as high as 13% at select non-target sites within a few hun-

dred nucleotides of the target site on plasmids in E. coli. Similarly, in HEK293T we had one

instance of methylation levels of 10–25% at a group of four non-target CpGs ~200 nucleo-

tides away from the target site. Our evidence suggested that this type of non-target methyla-

tion primarily occurs with dCas9 bound at its target protospacer site, as opposed to dCas9

bound at an unintended site or dCas9 not bound to DNA at all. Our evidence further sug-

gested that non-target sites with significant methylation are sites that are within reach of

dCas9-sTMase bound at its intended site due to DNA topology in the cells, such as plasmid

supercoiling in E. coli. dCas9-MC/MN may also cause non-target methylation due to inher-

ent issues with dCas9 specificity, but we did not observe such off-target activity. This is likely

due to the low probability of having a promiscuous dCas9 binding site given that our methyl-

ation analysis was limited to the ~4 kb of an E. coli plasmid and the several hundred bp in the

SALL2 and HBG promoters in HEK293T.

Here, we chose to improve methylation specificity of dCas9-MC/MN by reducing off-tar-

get methylation in the vicinity of the target site. We chose to test our hypothesis for improv-

ing specificity in E. coli, since its lack of native CpG methylation allows for unambiguous

attribution of the enzyme methylating the CpG site (i.e. endogenous methylation enzymes in

human cells complicate such analysis). By comparisons to our previous work [13], we show

that methylation of the target site can be increased by shortening the linker, and that bias for

methylation at the target site can be improved by mutations designed to reduce the interac-

tion of the MC fragment with the DNA. Both of these strategies reduced the number of

PAM-CpG distances at which effective targeting occurred in E.coli. We hypothesize that

these linker and mutational changes will cause similar effects for dCas9-MC/MN targeted

methylation in human cells based on our previous comparisons of dCas9-MC/MN’s perfor-

mance in E. coli and that in human cells. However, this hypothesis needs to be tested in

human cells.

Improvements in the methylation selectivity of a dCas9-directed cytosine methyltransferase
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Results and discussion

The effect of linker length between dCas9 and MC

In our previous work [13], we used a 15-amino acid linker between dCas9 and MC. We

hypothesized that shortening the linker might better restrict methylation to the target CpG site

in the sequence immediately downstream of the protospacer. We tested linkers ranging in

length between 0 and 25 amino acids. As in our previous work, we assayed methylation activity

in E. coli using a two-plasmid system expressing dCas9-MC and MN under inducible promot-

ers and the sgRNA under a constitutive promoter (Fig 1a and 1b). The pReporter plasmid con-

tains two FspI sites that have CpGs embedded within them, which upon methylation are

blocked from FspI endonuclease digestion. Guide RNA sgRNA1 targets one of the FspI sites

(site 1) containing a CpG site 12 nucleotides away from the PAM (Fig 1b). The FspI site within

the ampR gene (site 2) is naturally occurring and the surrounding DNA is not a match for

sgRNA1.

We isolated plasmids from cultures of ER2267 E. coli cells co-expressing dCas9-MC/MN

and sgRNA1, and methylation was assessed by restriction protection assay using FspI endonu-

clease (Fig 1c–1e). In this qualitative screen, we did not observe an obvious difference in the

pattern of protection at a gap length of 12 nucleotides when the linker was shortened to 10, 7,

5, or 4 amino acids (Fig 1c) or when the linker was lengthened to 20 or 25 amino acids and gap

lengths of 12 and 22 nucleotides were used (Fig 1d). Lengthening the linker from 15 to 20 and

25 amino acids appeared to offer progressively more protection at site 1 at a gap length of 31

nucleotides, a length at which dCas9-MC/MN with a 15-amino acid linker is ineffective at

methylation [13] (Fig 1d). This observation suggested the obvious possibility that a longer

linker length might be able to reach more distant sites. At gap lengths of 16 and 18 nucleotides,

lengths at which dCas9-MC/MN with a 15-amino acid linker is ineffective at methylation [13],

lengthening the linker from 15 to 20 and 25 amino acids appeared to offer progressively more

protection at site 1. This observation suggested that longer linker might be able to reach CpG

sites at gap lengths that our structural model (Fig 2) suggested would require the linker to

wrap around the DNA [13]. Based on these preliminary screens, we chose linker lengths of 4,

15, and 25 amino to quantitatively study the effect of linker length on CpG methylation by

dCas9-MC/MN.

We previously use bisulfite sequencing to quantify methylation at the target CpG site on a

plasmid in E. coli when the 15-amino acid linker was used [13]. Here, we do the same for 4-

and 25-amino acid linkers and compare this to our previous data to see how linker length

affects methylation frequency at the target CpG site (Fig 3a). We include data from a new

repeat of our experiments with the 15-amino acid linker to ensure a comparison to our previ-

ous experiments is justified (Fig 3a and 3b). Methylation of each cytosine in a CpG site

requires MN/MC to bind in different orientations (Fig 2), so we determined the frequency of

methylation on both strands of the target site. To unambiguously define the two strands in

relation to the PAM site, we designate “cis” as the PAM/protospacer-containing DNA strand

and “trans” as the sgRNA-complementary. For a 12-nucleotide gap between the PAM and the

CpG site, shortening the linker from 15 to 4 amino acids increased methylation 52% on the

trans strand but decreased methylation by 93% on the cis strand (Fig 3a).

Our bisulfite data also allowed us to measure methylation levels at the 241 non-target CpG

sites on pReporter. The levels of off-target methylation were consistent between replicate

experiments, including which off-target sites received the highest levels of methylation (Fig

3b). We found that neither shortening nor lengthening the linker appreciably changed the

level of methylation of non-target sites or altered which off-target sites received the highest lev-

els of methylation (Fig 3c and 3d). The median level of methylation at non-target sites for all 3

Improvements in the methylation selectivity of a dCas9-directed cytosine methyltransferase
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Fig 1. Effect of linker length on methylation targeting in ER2267 E. coli cells. (a) Schematic of protein constructs and linkers used in E. coli studies. (b)

Methylation was tested in a two plasmid ER2267 system with inducible dCas9-MC/MN genes and constitutively expressed sgRNA1. Each of site 1 and site 2

contains a CpG site imbedded in an FspI site to allow screening of methylation by FspI endonuclease. Plasmid DNA isolated from cells containing this plasmid pair

and expressing sgRNA1 were subjected to in vitro restriction enzyme protection assay to test (c) the effect of shortening the linker length on methylation at a fixed

gap distance (d) the effect of lengthening the linker on methylation at longer gap distances, and (e) the effect of lengthening the linker on methylation at gap

distances for which the dCas9-MC/MN enzyme with the 15 aa linker is ineffective at methylation. sgRNA1 is designed to target methylation to site 1. The sizes of

bands corresponding to methylation at the indicated sites are specified to the right of the gel images. The asterisk indicates that dCas9-MC/MN expression was not

induced. All plasmid DNA was digested with SacI (to linearize the plasmid) and FspI (to test for methylation at sites 1 and 2). Plasmid pEncode lacks FspI

restriction enzyme site and is the band at the top of the gel.

https://doi.org/10.1371/journal.pone.0209408.g001
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linkers was below 1% (0.60 ±0.10 for the 4-amino acid linker, 0.62 ±0.20 for the 15-amino acid

linker and 0.59 for the 25-amino acid linker).

To examine how linker length affected the ability of dCas9-MC/MN to methylate CpG sites

at different “gap lengths” (i.e. different distance in nucleotides between the PAM and the CpG

site), we determined the frequency of methylation on the cis and trans strand cytosines in tar-

get sites located at a gap length of 2 to 42 nucleotides from the PAM site. We used our previ-

ously described series of 40 pReporter plasmids in which the target CpG site was located at 40

different distances from the PAM site [13]. We co-cultured the 40 different cells carrying these

pReporter plasmids (and pEncode) and subjected these pReporter plasmids to high-through-

put bisulfite sequencing. In our previous study [13] with the 15-amino acid linker, methylation

required a gap length of at least 8 base pairs and no more than 26 base pairs distance and oscil-

lates as a function of distance with a periodicity of 11 base pairs (Fig 4b). This finding was in

accordance with structural models, as methylation was favored when the fusion sites of MC to

dCas9 are located on the same side of the double helix, presumably because the linker does not

have to wrap around the DNA [13]. Here, by comparison with our previous study [13] we find

that shortening the linker between the dCas9 and MC from 15 to 4 amino acids restricted the

Fig 2. Structural models of dCas9 and M.SssI bound to the same DNA. The model shows a gap length of 11

nucleotides between the PAM and the target CpG site. Models were built by superimposing the crystal structure of

DNA-bound S. pyogenes dCas9 (4UN3) [24] and the M.SssI homolog M.HhaI (2HR1) [25] onto the same molecule of

B-DNA. (a) Front view and (b) side view of M.HhaI bound on the trans strand 11 base pairs from the PAM. (c) Front

view and (d) side view of M.HhaI bound on the cis strand 11 base pairs from the PAM. A hand-drawn line represents

the linker between the C-terminus of dCas9 and the N-terminus of MC. Figure adapted from Xiong et al. [13].

https://doi.org/10.1371/journal.pone.0209408.g002

Improvements in the methylation selectivity of a dCas9-directed cytosine methyltransferase

PLOS ONE | https://doi.org/10.1371/journal.pone.0209408 December 18, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0209408.g002
https://doi.org/10.1371/journal.pone.0209408


set of distances between the PAM and the CpG that are compatible with methylation (Fig 4a).

As expected, shortening the linker decreased methylation at longer gap lengths. Additionally,

shortening the linker almost completely eliminated cis-strand methylation. High levels of

trans-strand methylation occurred only in a narrow range of gap lengths of 10 to 12 nucleo-

tides. Methylation levels in this optimal gap length range were higher for the 4-amino acid

linker (52.4 ± 2.9%) than for the 15-amino acid linker (36.7±1.2) (P< 0.0001, Student’s t-test).

We speculate that shortening the linker may increase DNA methylation at the most favorable

distance for methylation by decreasing conformational entropy.

We hypothesize that a longer linker between the dCas9 and the methyltransferase domain

might be used to target a wider set of CpG sites in a single region. By comparison with our pre-

vious study using the 15-amino acid linker [13], we find that lengthening the linker to 25

amino acids increased the number of distances between the CpG site and the protospacer that

are compatible with methylation (Fig 4c). The longer linker increased cis-strand methylation

(P<0.0001 by paired Wilcoxon rank-sum test) and resulted in methylation at the target CpG

site as high as 55% at the optimal gap length. Additionally, the use of a long linker caused

methylation at gap distances that were otherwise too far to reach when the 15-amino acid

linker was used.

Although shortening the linker increased methylation efficiency on the trans strand at CpG

sites 10–12 nucleotides away from the PAM, this came at the expense of methylation efficiency

at all other gap lengths. Furthermore, shortening the linker from 15 to 4 amino acids did not

decrease methylation levels at most non-target sites (Fig 3c) but reduced the ability to methyl-

ate CpG sites that were very close to the target site (Fig 4). Perhaps, more distant non-target

CpG sites that are brought near the target site due to DNA topology can adopt a wide array

of orientations relative to the MC domain (thus allowing methylation to occur) or the C-

Fig 3. Effect of linker length on methylation at the target site and at non-target sites. (a) Frequency of methylation caused by dCas9-MC/MN

with different linkers at the target CpG site at a gap length of 12 nucleotides from the PAM site. The P values are from Student’s t-tests (n = 4 for the

4-amino acid linker and n = 5 for the 15-amino acid linker). Four of the five measurements for the 15-amino acid linker are from [13] and one is

new. (b) Reproducibility of the frequency of methylation at 482 C’s in 241 non-target CpG sites on plasmid pReporter. Data is for the 15-amino acid

linker (repeat 1 is from our previous study [13]; repeat 2 is new). (c) Correlation of off-target methylation levels when using a 4-amino acid linker

and 15-amino acid linker. (d) Correlation of off-target methylation levels when using a 15-amino acid linker and 25-amino acid linker. Frequencies

were determined by high-throughput bisulfite sequencing.

https://doi.org/10.1371/journal.pone.0209408.g003
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terminus of the dCas9 may serve as a linker that enable MC access to these non-target sites. In

contrast, CpG sites proximal to the target site that are at non-optimal gap lengths from the

PAM cannot be reached due to their proximity to the dCas9 binding site and the persistence

length of DNA.

Fig 4. Effect of linker length on methylation in the target region as a function of gap length. Frequency of methylation for cis and trans strand are

presented as a function of distance from the PAM (center) and the angle between the dCas9 C-terminus and the MC N-terminus (right) in the structural

model for dCas9-MC/MN for a (a) 4-amino acid linker, (b) 15-amino acid linker, or (c) 25-amino acid linker. The angle is defined as that formed

between the C-terminus of Cas9 and N-terminus of MC when looking down the DNA axis from the CpG site towards the PAM (i.e. the angle formed in

the plane of the page in the view of Fig 2b and 2d). Full amino acid sequences of linkers can be found in Fig 1a. The dotted line indicates the fraction of

the target sites that are methylated on at least one strand assuming that cis and trans strand methylation is independent. For c, methylation frequency

data was not obtained for the trans strand for the gap lengths of 31 and 37 bp. Data in (b) is from Xiong et al. [13].

https://doi.org/10.1371/journal.pone.0209408.g004
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Mutations in the methyltransferase domain that improve methylation

targeting in E. coli.
The most effective mutation to improve the ratio of methylation at the target CpG site to meth-

ylation at the non-target site is one that preferentially reduces the catalytic rate at the non-tar-

get site. Based on previous studies [19, 21], we reasoned that mutations that reduce the

methyltransferase domain’s affinity for DNA would reduce the overall rate of methylation, but

with more pronounced effects at non-target sites thereby improving the specificity of our engi-

neered enzyme. This improvement in specificity arises from a combination of the increase in

the Km for DNA and the increase in the effective concentration of target CpG sites when the

methyltransferase is tethered to a DNA binding domain bound at an appropriate distance

from the target CpG site. In the absence of tethering (Fig 5a), target and non-target sites are

kinetically indistinguishable and a reduction of Km affects both equally. When the methyl-

transferase is tethered, the effective concentration of a target CpG sites increases, provided it is

at the appropriate distance away from the dCas9 binding site (Fig 5b and 5c). Such a method

in theory should be equally effective for dCas9 fused to full-length M.SssI or to MC—what

matters is whether the mutation increases the Km enough to observe the effect. Split methyl-

transferases might be poised to exhibit improvement due to their being catalytically compro-

mised by the act of splitting the enzyme (Fig 5b vs. Fig 5c). Note that in this model, the Km-

increasing mutation does not increase the inherent specificity of the enzyme. The mutation is

just a means to move the enzyme into a regime where in the context of the cell (with a given

concentration of DNA and enzyme) the preferential methylation of target site over non-target

site can be best achieved. This model explains why the Q147L mutation in dCas9-MQ1 (an

end-to-end fusion of dCas9 and M.SssI) helps its targeting [20], as the mutation is known to

reduce catalytic activity through disrupting interactions with DNA [26]. [20]

To improve the ratio of methylation at the target site to that at non-target sites, we chose

non-conservative mutations at positions in the MC domain based on a model of M.SssI/DNA

complex, sequence alignments of different C5-MTases, and previous mutational analysis of M.

SssI [26, 28, 29]. We chose to introduce mutations at five positions that interact with DNA:

S291, K297, Y305, T313 and S317. In addition, we introduced the K297P/N299C/E301Y triple

mutation (referred to as PFCSY in the original paper) identified in our previous study of muta-

tions that improved the specificity of a split M.SssI enzyme fused to zinc finger proteins [19].

We used the FspI restriction digest protection assay on pReporter [13] as a screen to identify

mutations that still had relatively high levels of methylation at the target site but no detectable

methylation at a non-target site. This assay suggested that all mutations reduced methylation

at the non-targeted FspI site, some mutations eliminated methylation altogether, and some

mutations might preferentially reduce methylation at the non-target FspI site (Fig 6).

Based on this preliminary screen, we chose five mutations for further screening: S209F,

Y305F, T313A, S317A, and PFCSY, as these appeared to be best at retaining digestion protec-

tion at site 1 and reducing protection at site 2. For these additional screens, we decreased the

amount of glucose in cultures, as we observed that this increased the level of methylation

observed for induced cultures allowed to grow overnight. This methylation level increase is

presumably due to glucose’s known catabolite repression of lac- and pBAD-derived promoters.

The decrease in glucose concentration allowed us to better assess the effect of the mutations on

methylation of specific non-target sites by restriction enzyme protection assays (Fig 7a). For a

further screen on these five mutants, we modified the nucleotides flanking an off-target CpG

site on pReporter observed to have high methylation. This modification created a SnaBI site,

which we refer to as site 3. SnaBI endonuclease is blocked by methylation at its internal CpG

site. We assessed methylation of this non-target site by SnaBI protection assay for select
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mutants (Fig 7b). In these two additional restriction enzyme protection assay screens, Y305F

and T313A appeared to perform the best. They appeared to exhibit a combination of compara-

ble levels of protection from digestion at site 1 (the target site) and reduced protection at sites

2 and 3 (Fig 7). Based on these preliminary, qualitative screens, we selected Y305F and T313A

for more careful quantitative analysis of their effect on methylation.

We next subjected Y305F and T313A to more in-depth characterization by high throughput

bisulfite sequencing of the entire pReporter plasmid. We placed the target site at a gap distance

of 12 nucleotides from the PAM in these experiments. We quantified the frequency of methyl-

ation on each strand at the target CpG site and the 241 other non-target CpG sites in the

Fig 5. Model for how affinity-weakening mutations improve methylation specificity. Schematic representation of

the effect on methylation activity of mutations that reduced a methyltransferase’s binding affinity to DNA for (a) M.

SssI (b) dCas9-M.SssI, and (c) dCas9-MC/MN. Methylation activity of the methyltransferase (black curve) and the

associated variants with reduced affinity for the DNA (red curve and blue curve) as a function of the effective CpG

concentration as calculated using the kinetic mechanism of homologue methyltransferase M.HhaI [27]. Effective

concentration is plotted in log scale. The three curves differ in the value of Km for DNA as indicated. The green dashed

lines indicate hypothetical effective concentrations of target and non-target sites, as indicated. These lines reflect the

fact that dCas9 directing dCas9-M.SssI and dCas9-MC/MN to the vicinity of the target CpG site will increase the

effective concentration of the target CpG site.

https://doi.org/10.1371/journal.pone.0209408.g005
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Fig 6. Methylation of dCas9-MC/MN and associated variants as assessed by FspI restriction protection assay.

sgRNA1 was used to target methylation to site 1. Methylation was assayed from plasmid DNA extracted from ER2267

cells expressing the dCas9-MC/MN (WT) or the indicated dCas9-MC/MN variant. The first row indicates the position

mutated, and the second row indicates the mutation made. The PFCSY set of mutations is in the final lane.

https://doi.org/10.1371/journal.pone.0209408.g006

Fig 7. Effect of expression level of dCas9-MC/MN and mutations in MC on methylation activity and specificity.

Methylation was assayed by (a) FspI restriction protection assay on sites 1 and 2 and (b) SnaBI restriction protection

assay on site 3. sgRNA1 targeted methylation to site 1. Methylation was assayed using isolated plasmid DNA from cells

grown in LB media containing (-) 0.2% glucose, (+) 0.2% glucose + 1mM IPTG + 0.0167 arabinose, (++) 0.02% glucose

+ 1mM IPTG+ 0.0167% arabinose. These supplemented compounds affect the expression of the two fragments of the

methyltransferase as explain in Fig 1b and the main text. The symbols (-, +, ++) also qualitatively indicate the expected

level of dCas9-MC/MN expression.

https://doi.org/10.1371/journal.pone.0209408.g007
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plasmid. We then compare this to our previous study [13] and new data with constructs lack-

ing a mutation. Both mutations decreased methylation at the target site, but the decrease was

much more pronounced for methylation of the cis strand (Fig 8a). The mutations reduced tar-

get site trans strand methylation only about 50% (Fig 8a), but reduced off-target methylation

at the 241 non-target sites many-fold, as desired (Fig 8b and 8c). For each mutant, only one of

the 482 C’s in off-target CpG sites had more than 1% methylation. In addition, we performed

single replica experiments of the same type of high-throughput bisulfite sequencing experi-

ments with the S291F and S317A mutants and observed similar results. The percent trans/cis

strand methylation was 21%/2.2% with S291F and 20.6%/3.5% with S317A.

We next asked how the Y305F and T313A mutations affected methylation of the target site

as a function of its distance from the PAM. We compare this data to our previous study [13]

with constructs lacking a mutation (Fig 9a). The pattern of methylation for the two mutations

was qualitatively similar (Fig 9b and 9c). They restricted the distances between the PAM and

the CpG sites that are compatible with methylation (Fig 9b and 9c). The mutations almost

eliminated methylation on the cis strand. The highest level of methylation (~30%) occurred on

the trans strand at gap of 11 nucleotides, and the methylation level dropped off precipitously at

gaps of 10 and 12 nucleotides. As observed when the linker was shortened (Fig 4a), the muta-

tions caused greater decrease in methylation at longer gap distances and at gap distances that

are less than optimal for methylation. We reasoned that CpG sites located at non-optimal dis-

tances from the PAM site have a lower effective concentration than those at gap distances that

are optimal for methylation. Therefore, the mutations’ differential effect at the target region as

a function of gap length is consistent with our model of how Km-increasing mutations can

improve the targeting of methylation (Fig 5).

Next, we tested whether the mutations could turn an end-to-end fusion of dCas9 and M.

SssI into an effective targeting enzyme for methylation. M.SssI is known to be highly active

even when fused to dCas9 [13, 20]. Lei et al characterized the effect of the Q147L mutation in

an end-to-end fusion of dCas9 and M.SssI, which they named dCas9-MQ1[20]. This mutation

Fig 8. Effect of select mutations on methylation at the target site and at non-target sites. (a) frequency of methylation the target CpG site at a gap length of 12

nucleotides from the PAM site. The P values are from Student’s t-tests (n = 5 for the no mutation and n = 2 for Y305F and T313A). Four of the five measurements

for no mutation are from [13] and one is new. Comparison of the effect of the (b) Y305F and (c) T313A mutations on the frequency of off-target methylation at 482

C’s in 241 non-target CpG sites on plasmid pReporter. Frequencies were determined by high-throughput bisulfite sequencing.

https://doi.org/10.1371/journal.pone.0209408.g008
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in M.SssI reduces activity through disrupting interactions with DNA [26] and helps methyla-

tion targeting of dCas9-MQ1 in mammalian cells[20]. Previously, we found that our end-to-

end fusion of dCas9 and M.SssI (dCas9-M.SssI) methylated 100% of both the target and non-

target sites in E. coli [13]. Here, we tested the T313A mutation in dCas9-M.SssI under a variety

of induction conditions and gap lengths, and do not find evidence of any methylation targeting

(Fig 10a). In all cases, the mutation reduced the level of methylation, but resulted in no

Fig 9. Effect of mutations on methylation in the target region as a function of gap length. Frequency of methylation for cis and trans strand are

presented as a function of distance from the PAM (center) and the angle between the dCas9 C-terminus and the MC N-terminus (right) in the structural

model for dCas9-MC/MN with a 15-amino acid linker and (a) no mutation, (b) the Y305F mutation in the MC domain, and (c) the T313A mutation in

the MC domain. The angle is defined as that formed between the C-terminus of Cas9 and N-terminus of MC when looking down the DNA axis from the

CpG site towards the PAM (i.e. the angle formed in the plane of the page in the view of Fig 2b and 2d). The dotted line indicates the fraction of the target

sites that are methylated on at least one strand assuming that cis and trans methylation is independent. For b and c, methylation frequency data was not

obtained for the trans strand for the gap lengths of 31 and 37 bp. Data in (a) is from Xiong et al. [13].

https://doi.org/10.1371/journal.pone.0209408.g009
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discernable targeting of methylation to the target site (Fig 10a). We further tested other

mutants in single replica experiments and also observed a reduction in methylation with a lack

of targeting (Fig 10b). This suggests that, to a large extent, the M.SssI domain in dCas9-M.SssI

is methylating independent of the dCas9 binding, since for an un-tethered M.SssI, we expect

that these mutations would decrease methylation efficiency at all CpG sites equally, which is

what we observe. We used a longer linker than Lei et al and designed it to be flexible. Our

fusion of dCas9 and M.SssI has a 15-amino acid, flexible (GSGGG)3 linker, whereas

dCas9-MQ1 with the Q147L mutation studied by Lei et al has a linker of about 9 amino acids,

most of which also serves as the nuclear localization sequence [20]. They posited that their

linker was optimal for reaching 20–30 bp away from the dCas9 binding site. Thus, our fusion

cannot be incapable of reaching the target CpG sites we tested due to it being too short or

inflexible. Altogether, our findings demonstrate that our mutations improved targeting in the

context of the split methyltransferase but not in the context dCas9 fusion protein fused end-

to-end with the full-length M.SssI as tested here in E. coli. The splitting of M.SssI renders the

methyltransferase ineffective at methylation, as intended in the design. dCas9 fusion to this

otherwise ineffective methyltransferase results in methylation targeted to a desired site, and

the addition of the mutations serves to enhance this targeting.

Fig 10. Methylation as caused by dCas9-M.SssI and associated mutants as assessed by the restriction enzyme protection assay. Methylation pattern as a

function of mutation and induction of expression (a) as a function of the distance away from the PAM (8–22 bp) with and without the T313A mutation and

(b) at a distance of 12 bp away from the PAM for several different mutations. Methylation was assayed from isolated plasmid DNA from ER2267 cells grown in

lysogenic broth with 0.2% glucose and either with (+) or without (–) 0.0167% arabinose for induction of expression of dCas9-M.SssI variants under the pBAD
promoter. Methylation was assayed as described in Fig 1. The size of diagnostic bands for methylation is different than in Fig 1 since MN has been deleted

from pReporter (dCas9-M.SssI is expressed from pEncode). sgRNA1 was used to target site 1.

https://doi.org/10.1371/journal.pone.0209408.g010
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We did not examine how the linker lengths or mutations affected the level of soluble, active

dCas9-MC/MN in the cell. Mutations that cause a reduction in the amount of soluble, active

enzyme would lower the level of methylation observed, but they cannot explain our results.

Changes in the level of the enzyme could not simultaneously increase methylation on the trans

strand but decrease methylation on the cis strand, as changing from a 15 aa linker to a 4 aa

linker does (Fig 3a), while leaving the levels of off-target methylation relatively unchanged (Fig

3c and 3d). Changes in expression could not change the pattern of methylation seen in Fig 4 or

how the mutations preferentially decrease methylation at non-target sites (Fig 8).

Conclusions

Our findings offer insights and design rules for improving methylation as targeted by

dCas9-MC/MN in E. coli. We demonstrated that shortening the linker length between the

dCas9 and the MC fragment increases methylation at the target site positioned at a select

range of gap lengths, but resulted in little to no reduction in non-target site methylation except

in the immediate vicinity of the target site. To preferentially reduce methylation at more dis-

tant non-target sites, we used mutations designed to reduce the catalytic activity of the methyl-

transferase domain by reducing DNA affinity. These mutations served to move the enzyme

into a regime where, in the context of the cell, the preferential methylation of target site over

non-target site can be best achieved.

Highly-selective methyltransferases will enable the further understanding of CpG methyla-

tion and its cellular role. We have previously shown how our methylation targeting design

rules for dCas9-MC/MN in E. coli are generalizable to mammalian systems. Based on these

previous findings, we hypothesize that the linkers/mutations we identify here will be beneficial

in mammalian cells; however, testing in mammalian cells will be required to evaluate this

hypothesis. If our hypothesis is confirmed, we anticipate that our mutant dCas9-MC/MN will

be especially useful in mammalian systems when very precise methylation is needed. For

example, interrogation of methylation’s connection with exon usage would benefit from such

precise control of methylation [16, 30]. In addition, precise targeting of methylation might be

useful to alter the expression of genes that are regulated by transcription factors whose affinity

for DNA is modulated by cytosine methylation [31]. Applying these linkers/mutations in

mammalian systems might be particularly important to reduce methylation at unintended

sites and could augment efforts to reduce undesired methylation due to off-target dCas9 bind-

ing. The linkers/mutations might be less useful at loci where complete methylation of an entire

CpG island is necessary to effect changes in expression.

Materials and methods

Design of dCas9-sMTase proteins with different linker lengths

The pEncode plasmid containing dCas9-MC gene and sgRNA, along with its J23100 promoter

and terminators [13] served as the template for the construction of new dCas9-MC genes. The

insertion of different linkers between dCas9 and MC was created by designing primers with

sequence identity to the linkers on the 5’ end, to amplify and linearize the plasmid using

inverse PCR. Primers were obtained from IDT and phosphorylated with T4 Polynucleotide

Kinase (New England Biolabs, Ipswich, MA, USA). PCR amplification was done using Phu-

sion Master Mix (New England Biolabs, Ipswich, MA, USA), and the PCR product containing

the linearized plasmid was purified using PureLink Gel Extraction Kit (Thermo Fisher Scien-

tific, Waltham, MA, USA). The linearized plasmid was ligated using either T4 Ligation Kit

(New England Biolabs, Ipswich, MA, USA), or Gibson Assembly [32] prepared using Taq

Ligase from New England Biolabs (NEB). Ligation products were then used to transform
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chemically cells made from competent E. coli K12 ER2267 cells (F´ proA+B+ lacIq Δ(lacZ)M15
zzf::mini-Tn10 (KanR)/ Δ(argF-lacZ)U169 glnV44 e14-(McrA-) rfbD1? recA1 relA1? endA1
spoT1? thi-1 Δ(mcrC-mrr)114::IS10) from NEB. Plasmid DNA was isolated from the colonies

recovered from the transformation plate containing 50 μg/mL of chloramphenicol (Sigma,

St. Louis, MO, USA). Co-transformed ER2267 cells with this plasmid and either the pReporter

or the gap library, as previously described [13], were plated on plates containing 1% w/v glu-

cose, 100 μg/mL ampicillin, and 50 μg/mL chloramphenicol.

Design of dCas9-sMTase and dCas9-MTase proteins with single amino acid

substitution

The pEncode plasmid containing dCas9-MTase gene or the dCas9-MC served as the template

for the construction of genes encoding dCas9-MTase mutant or dCas9-MC, respectively. Site

mutagenesis in the dCas9-MC gene was created by designing primers containing the muta-

tions in the 5’ end that were used to amplify and linearize the plasmid using inverse PCR. The

linearized plasmid was purified as described above, and then phosphorylated and ligated with

T4 Polynucleotide Kinase and T4 Ligation Kit, respectively. Ligation products were trans-

formed into chemically competent ER2267 cells as aforementioned.

Restriction enzyme protection assay

A 5–10 mL lysogenic broth containing standard supplements (0.2% w/v glucose, 100 μg/mL

ampicillin, and 50 μg/mL chloramphenicol), 0.0167% w/v arabinose, and 1 mM IPTG was

inoculated from 1 μL of glycerol stock. Arabinose induced expression of dCas9-MC, and IPTG

induced expression of MN. The culture was shaken at 250 rpm at 37˚C for 16–18 hours. Cul-

tures were centrifuged at 2880 x g for 7 minutes, and plasmids were extracted from pelleted

cells using the Plasmid Miniprep Kit (Qiagen, Germantown, MD, USA). Plasmid DNA (180

ng) was incubated with 10 units FspI and 20 units SacI-HF in 10 μl Cutsmart Buffer (NEB) at

37˚C for 1.5 hours. SacI-HF was used for plasmid linearization. The digested DNA was loaded

into a 1.2% w/v TAE gel containing ethidium bromide, and electrophoresed at 110 Volts for

50 minutes. Ultrapure agarose was obtained from Thermofisher Scientific. Band patterns were

visualized under UV light and imaged with Carestream Gel Logic 112.

Analysis of methylation using high-throughput bisulfite sequencing

Glycerol stocks (1 μL) were used to inoculate 5 mL lysogenic broth containing the standard

supplements. Cultures were shaken at 250 rpm at 37 ˚C for 15 hours. From the overnight cul-

ture, 1 mL was transferred into a 500 mL shake flask containing 150 mL lysogenic broth with

the standard supplements and shaken at 250 rpm at 37˚C. The cultures were supplemented

with 0.0175% w/v arabinose and 1mM IPTG at an optical density of 0.3, and shaken for 4

hours at 250 rpm at 37˚C. A 5 mL aliquot of the culture was centrifuged, and plasmid DNA

was extracted from the pelleted cells using the Plasmid Miniprep Kit. Preparation of the puri-

fied DNA for high-throughput bisulfite sequencing was as described [13]. Briefly, DNA was

sheared to 300 bp (Diagenode Bioruptor Pico), then end repaired and methylated adaptors

ligated using NEBNext Ultra (NEB). Bisulfite treatment was performed with EZ Methylation

Lightning (Zymo) then amplified with Kapa Hifi Uracil+ ReadyMix from Kapa Biosystems

and NEBNext Multiplex Oligos for Illumina (Methylated Adaptor) from NEB for 8 cycles.

DNA concentration was determined using qPCR (Kapa Illumina Library Quantification Kit),

and size distribution was confirmed using the High Sensitivity Bioanalyzer. Libraries were sub-

sequently sequenced on an Illumina MiSeq using v3 chemistry. Data was deposited in SRA

under Bioproject PRJNA503938.
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Analysis of MiSeq data

MiSeq bisulfite sequencing data was aligned to a reference sequence for the plasmid using

bowtie2 via Bismark [33]. After alignment, methylation data averaged across all reads and

strand and context specific methylation information was extracted with custom R scripts

(https://github.com/timp0/xiong_splitcas9).
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