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Lipid bodies containing oxidatively truncated lipids
block antigen cross-presentation by dendritic cells
in cancer
Filippo Veglia1, Vladimir A. Tyurin2, Dariush Mohammadyani2,3, Maria Blasi4, Elizabeth K. Duperret1,5,

Laxminarasimha Donthireddy1, Ayumi Hashimoto1, Alexandr Kapralov2, Andrew Amoscato2, Roberto Angelini2,

Sima Patel1, Kevin Alicea-Torres1, David Weiner1,5, Maureen E. Murphy6, Judith Klein-Seetharaman 2,

Esteban Celis7, Valerian E. Kagan2 & Dmitry I. Gabrilovich1

Cross-presentation is a critical function of dendritic cells (DCs) required for induction of

antitumor immune responses and success of cancer immunotherapy. It is established that

tumor-associated DCs are defective in their ability to cross-present antigens. However, the

mechanisms driving these defects are still unknown. We find that impaired cross-

presentation in DCs is largely associated with defect in trafficking of peptide–MHC class I

(pMHC) complexes to the cell surface. DCs in tumor-bearing hosts accumulate lipid bodies

(LB) containing electrophilic oxidatively truncated (ox-tr) lipids. These ox-tr-LB, but not LB

present in control DCs, covalently bind to chaperone heat shock protein 70. This interaction

prevents the translocation of pMHC to cell surface by causing the accumulation of pMHC

inside late endosomes/lysosomes. As a result, tumor-associated DCs are no longer able to

stimulate adequate CD8 T cells responses. In conclusion, this study demonstrates a

mechanism regulating cross-presentation in cancer and suggests potential therapeutic

avenues.
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Cross-presentation of antigens is a major characteristic of
dendritic cells (DC) allowing these cells to induce immune
responses. Following uptake, exogenous antigens are

internalized into phagosomes (lysosomes) or endosomes1, 2 and
then follow two main processing pathways: cytosolic and
vacuolar. The cytosolic pathway involves the transfer of exogen-
ous antigens from the lysosomes into the cytosol for proteasomal
degradation. Similar to direct presentation, this pathway is
dependent on the transporter for antigen presentation (TAP), and
peptide loading on MHC class I molecules occurs either in the
endoplasmic reticulum (ER) or in the lumen of endosomes or

phagosomes. In contrast, the vacuolar pathway is largely TAP-
independent and includes direct loading of peptides onto MHC
class I molecules that recycle through the endocytic compart-
ments by peptide exchange. The use of each pathway depends on
the type of antigen and the mechanism of its uptake3.
Proteasome-dependent but TAP-independent mechanism of
cross-presentation was also described. It appears to be operational
when high doses of soluble antigens are used4. Peptide loading in
endocytic compartments requires the presence of MHC class I
molecules. Therefore it is suggested that MHC class I molecules
can be stored in recycling endosomes5.
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Fig. 1 Defective cross-presentation by DC in cancer. a–d Proliferation of CD8+ T cells measured at 72 h by CFSE dilution. DCs were obtained from dLNs
of naïve or TB mice 3 days after immunization with HPV DNA (a–c) or OVA-LV vaccines (d). CD8+ T cells were isolated from mice immunized with HPV
E6/E7 vaccine (a–c) or from OT1 transgenic mice (d). a Antigen-specific CD8+ T cells; b allogeneic T cells; c antigen-specific CD8+ T cell proliferation after
stimulation with DCs isolated from dLNs of naïve or TB mice and then loaded ex vivo with HPV-derived peptides. d proliferation of OT1 CD8+ T cells (left
panel) and allogenic T cells (right panel) after stimulation with DCs isolated from LN of mice immunized with OVA-LV. Each group included three mice. e
proliferation of OT1 CD8+ T cells after stimulation with DC generated with GM-CSF, treated with TES and loaded with OVA protein (left panel) or short
peptides (SIINFKEL) (right panel). Typical example of 7 experiments is shown. f, h Expression of pMHC and MHC class I (H2Kb) by DC generated with
GM-CSF (f) or FLT3 ligand (h) treated with TES for 48 h and then loaded with OVA-derived long or short peptides. Typical example of seven experiments
is shown. g, i Proliferation of OT1 CD8+ T cells after stimulation with DC generated with GM-CSF (g) or FLT3 ligand (i) (left panels: DCs loaded with long
peptide, right panels: DCs loaded with short peptide). Typical example of seven experiments is shown. j Proliferation of OT1 CD8+ T cells after stimulation
with DC treated with indicated supernatants for 48 h and loaded with OVA-derived long peptides. k, l DCs generated in vitro from BM progenitors with
GM-CSF and FLT3L were treated with TES for 48 h. k Typical phenotype of cells. l Proliferation of antigen-specific CD8+ T cells after stimulation with
sorted CD103+DCs. Cumulative results of three experiments are shown. e–l Proliferation was measured by 3[H]-thymidine uptake in triplicates. In all
experiments mean and SD are shown *p< 0.05, **p< 0.01 in unpaired two-tailed Student's t test between compared groups
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Cross-presentation is critically important for antitumor
immunity. Antitumor responses were abrogated in Batf3-deficient
mice lacking DCs with cross-presenting activity6. DCs are present
in tumor microenvironment7–10 and it is known that DC from
tumor-bearing (TB) mice are able to cross-present tumor antigen
to cytotoxic T lymphocytes (CTL)11–14. The clinical success of
cancer immunotherapy relies on effective cross-presentation of
tumor antigens by DCs15, 16. During tumor progression DC have
access to large amounts of tumor antigens17, 18. The tumor milieu
contains soluble mediators such as type I IFN, and endogenous
“danger signals” (DNA, HMGB1, S100), which are able to activate
DC. Taken together, all these factors induce DC differentiation
and activation. However, this does not result in the development
of potent antitumor immune responses. Moreover, the induction
of strong immune responses to cancer vaccines is a difficult task,
even in patients with a relatively small tumor burden. Tumor
microenvironment can inhibit immune responses via multiple
mechanisms. Among them is the defect in the ability of tumor-
associated DC to cross-present antigens19–22. However, the
mechanism of defective cross-presentation remained unknown.

Lipid droplets or lipid bodies (LB) were implicated in cross-
presentation via their association with ER-resident 47 kDa
immune-related GTPase, Igtp (Irgm3)23. LBs are neutral lipid
storage organelles present in all eukaryotic cells. LBs were
implicated in the regulation of immune responses via pros-
taglandins and leukotrienes and, possibly, in interferon responses
(reviewed in ref. 24). Under physiological conditions in most cells,
LBs are relatively small with a diameter ranging from 0.1 to 0.2
μm25. In the tumor microenvironment, DCs accumulate larger
LB and these have been implicated in defective cross-
presentation22, 26. This concept was recently confirmed and
expanded by different groups27–31. Accumulation of lipids in
DCs, from TB hosts, is mediated via upregulation of the sca-
venger receptor (Msr1 or CD204)26. This receptor binds various
acetylated and oxidized (ox-)lipids32. Another mechanism may
involve accumulation of ox-lipids as a result of tumor-associated
ER stress response31. Our previous study showed that LBs do not
co-localize with any cellular compartment associated with cross-
presentation or with peptide–MHC-I complexes (pMHC) and
treatment of DC with IFN-γ did not rescue the defect of cross-
presentation, despite the substantial upregulation of MHC-I22.
Thus, the mechanism regulating cross-presentation by LB in
cancer has remained unknown.

Here, we report our unexpected findings demonstrating that
LBs accumulating in cancer associated DCs contain oxidatively
truncated (ox-tr) electrophilic lipids, which covalently interact
with major stress-induced peptide chaperone heat shock protein
70 (HSP70). This prevents trafficking of pMHC from the pha-
gosome/lysosome to the cell surface. As a result, DCs are not able
to effectively stimulate antigen-specific T cells.

Results
DC cross-presentation in cancer. It is widely accepted that the
efficacy of cancer immune therapy depends on the ability of DCs
to cross-present antigens. However, how strong DC cross-
presentation is in cancer remained unclear. To assess the effect
of tumors on DC cross-presentation in vivo we used HPV vaccine
that delivers protein via transcutaneous electroporation33. Similar
vaccine is currently in clinical trials34. Mice with relatively small
subcutaneous tumors (TC-1) were vaccinated with HPV DNA
vaccine. Three days after vaccination, draining lymph nodes
(dLN) were collected and two populations of DCs were sorted:
CD11c+CD11b−MHCclassII+CD103+ (CD103+DCs) and CD11c
+CD11b+MHCclassII+CD103− (CD103−DCs). These DCs were
used for stimulation of syngeneic E6/E7 HPV-specific CD8+

T cells (generated by vaccination of naïve mice with the same
vaccine) or allogeneic T cells obtained from Balb/c mice. As
expected, CD103+ DCs from tumor-free mice had potent ability
to cross-present antigens to CD8+ T cells. It was lower in DCs
from TB mice (Fig. 1a). CD103+ and CD103− DCs from control
and TB mice had similar activity in stimulation of allogeneic
T cells (Fig. 1b). This indicated that overall functional activity of
DCs was not compromised. In non-immunized mice, cross-
presentation was assessed by loading CD103+ DCs with
HPV-derived long peptides with subsequent stimulation of
antigen-specific CD8+ T cells. CD103+DCs from LN of TB mice
had reduced cross-presentation as compared to CD103+ DCs
from control mice (Fig. 1c).

In the other model, mice were immunized with a lentiviral
vector expressing full-length OVA. Three days after s.c.
vaccination two populations of DCs were sorted from dLNs
and used for stimulation of OVA-specific CD8+ T cells from OT1
transgenic mice and allogeneic T cells from Balb/c mice. CD103+

DCs in TB mice had dramatically reduced ability to cross-present
OVA antigens as compared to naïve mice. In contrast, the ability
to stimulate allogeneic T cells was not affected. No differences
were observed in CD103− DCs (Fig. 1d). Thus, DCs from TB
mice had substantial defect in cross-presentation.

To evaluate the mechanisms regulating DC cross-presentation
by tumor-derived factors (TDF), we generated DCs in vitro from
bone marrow (BM) progenitors using two methods allowing for
the generation of fully differentiated DCs: 5-day culture with
GM-CSF or 6-day culture with FLT3L. Consistent with a previous
report35, cells generated in the presence of GM-CSF were
comprised of macrophages (MΦ) and CD135+ DCs (Supple-
mentary Fig. 1a). These DCs also express CD24 and we used this
marker to sort in our experiments with FLT3L culture
(Supplementary Fig. 1). Tumor explant supernatants (TES) from
different tumor cell lines (EL-4 lymphoma or LLC lung
carcinoma) were added for an additional 48 h. In already
differentiated DCs, TES did not change the phenotype and
proportion of these populations or the expression of MHC or co-
stimulatory molecules (Supplementary Fig. 1a, b). TES also did
not affect the stimulation of allogeneic CD8+ T cells (Supple-
mentary Fig. 1c).

To evaluate the ability of DCs to cross-present antigens, DCs
were loaded with OVA protein or OVA-derived long peptide
(Pam)2-KMFVESIINFEKL, which require processing and cross-
presentation22 or OVA-derived short peptide (SIINFEKL) that
directly binds to MHC class I H2Kb (pMHC). The expression of
SIINFEKL/H-2Kb complexes (pMHC) on the cell surface was
evaluated using the 25-D1.16 antibody. We found that TES
affected the ability of DC to present OVA-derived antigens to
peptide-specific OT-1 CD8+ T cells without impairing the direct
presentation of short peptide (Fig. 1e). In both, GM-CSF (GM-
DCs) or FLT3L (FLT3L-DCs) generated DCs, TES did not affect
the expression of pMHC after loading with short peptide. In
contrast, it dramatically reduced the expression of pMHC on DCs
after loading with long peptide (Fig. 1f, h). TES did not affect the
ability of DC to present short peptide (Fig. 1e, g–i, right panel),
whereas cross-presentation of OVA-derived antigens (Fig. 1e, left
panel) or long peptides was significantly impaired (Fig. 1g, h, left
panel). Supernatants prepared from single cell suspensions of
liver, lung, or spleens had no effect on cross-presentation (Fig. 1j),
indicating that only TDF are able to drive defects in cross-
presentation in DCs.

GM-DCs loaded with long peptide after incubation with TES
generated a significantly lower antigen-specific response in vivo
after sub-cutaneous injection into naïve mice than GM-DCs not
treated with TES (Supplementary Fig. 1d). To better characterize
the effect of TES in FLT3L-DCs, we evaluated the populations of
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CD24highCD11blow/−DCs and CD11bhighCD24low/−DCs. TES
caused significant decrease in cross-presentation of long peptide
but did not affect direct presentation of short peptide by these
cells (Supplementary Fig. 1e, f). Since GM-DCs resemble
migratory DCs35, in most experiments we used DCs generated
with GM-CSF.

We directly compared the effect of TES on cross-presenting
ability of DCs and MΦ generated with GM-CSF (Supplementary
Fig. 2a). TES caused substantial decrease in pMHC expression
and stimulation of specific CD8+ T cell proliferation of both DCs
and MΦ after loading with long peptide (Supplementary
Fig. 2b, c). However, expression of pMHC and stimulation of
CD8+ T cells after cross-presentation by DCs was almost tenfold
higher than that by MΦ, which supports critical role of DCs in
cross-presentation. No effect of TES on direct presentation was
seen (Supplementary Fig. 2d).

CD103+ DCs are most potent cross-presenting DCs. We
generated B220−CD11c+CD11blowSirpαlow/negCD103+DCs as
previously described36 and incubated with TES (Fig. 1k). Sorted

CD103+ DCs treated with TES had defect in cross-presentation
but not in a direct presentation (Fig. 1l).

To determine that the defects in cross-presentation were not
limited only to OVA, we evaluated the ability of GM-DCs to
cross-present antigens associated with apoptotic tumor cells and
derived from influenza virus (FLU). DCs were co-cultured with
apoptotic EG7 cells expressing full-length OVA protein and then
tested in their ability to stimulate OT-1 CD8+ T cells. DCs
exposed to TES had substantially lower ability to stimulate
antigen-specific CD8+ T cells than control DCs. Importantly,
those DCs potently stimulated allogenic T cells (Fig. 2a). TES
from 4T1 tumor decreased the ability of GM-DCs generated from
BALB/c mice to cross-present FLU to CD8+ transgenic T cells
specific for HA-derived peptide. In contrast, TES did not affect
the presentation of short H2Dd-matched FLU peptide to these
T cells (Fig. 2b).

Tumor-conditioned medium (TCM) obtained from the human
SK-MEL melanoma cell line did not affect the ability of human
DCs generated from CD14+ monocytes to stimulate allogeneic
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Fig. 2 Effect of TES on DC function and pMHC distribution. a Proliferation of OT1 CD8+ T cells (ratio 1:5) after stimulation with DC treated with TES for
48 h and loaded with apoptotic tumor cells (EG7). b Proliferation of HA transgenic CD8+ T cells stimulated with DC generated with GM-CSF, treated with
TES for 48 h and then infected with FLU or loaded with FLU short peptide. *p< 0.05, **p< 0.01 (unpaired two-tailed Student's t test) between control and
TES-treated DC. Three experiments with the same results were performed. c Proliferation of human allogeneic CD8+ T cells, stimulated with monocyte
derived DC treated with TCM. Typical example of one of three performed experiments is shown. d Proliferation of CD8+ T cells (ratio 1:40) of HLA-A2.1+

healthy donor stimulated with monocyte derived DC treated with TCM and infected with FLU or loaded with specific FLU peptide. *p< 0.05 (unpaired two-
tailed Student's t test). Typical example of three experiments is shown. Bars represent standard deviation (SD). Statistical analysis by unpaired two-tailed
Student's t test with significance determined at *p< 0.05 and **p< 0.01. e, f Analysis of the expression of H2Kb and pMHC in DC treated with TES and
loaded with OVA-derived long peptide. Typical example of flow cytometry (e) and confocal microscopy (f) is shown. Four experiments with the same
results were performed. Scale bars= 10 µm
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T cells (Fig. 2c). However, DC treated with TCM for 48 h and
infected with FLU had reduced stimulation of autologous CD8+

T cells. This effect was absent when DCs were loaded with short
HLA-A2.1 matching FLU peptide (Fig. 2d).

Taken together, these data indicate that TDF cause profound
defects in cross-presentation by differentiated DCs, which was
not, however, associated with a decrease in MHC class I or co-
stimulatory molecule expression, or inhibition of binding of short
MHC class I matched peptide.

In an attempt to understand the mechanism of inhibition of
antigen-cross presentation by DCs in cancer, we evaluated the
distribution of pMHC in DCs. Long OVA peptides generated a
high density of pMHC which could be detectable. In control DCs,
pMHC were seen on the cell surface within 8 h after loading with

long peptide. It was still clearly detectable after 48 h (Fig. 2e).
In DCs treated with TES, expression of pMHC on the surface was
substantially lower. It was evident at the earliest time point and
further decreased with time. When cells were fixed and
permeabilized, the differences in the amount of pMHC between
control and TES-treated DCs were not detectable suggesting that
the total amount of complexes inside the cell was not affected.
DCs exposed to TES retained a control level of H2Kb expression
(Fig. 2e). Confocal microscopy was used to confirm those
observations. In contrast to control DCs, where pMHC
complexes were localized on the surface of the cells, in TES-
treated DC, pMHC complexes were largely intracellular. No
differences were seen in the localization of total MHC class I
(Fig. 2f).
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Next, we evaluated co-localization of pMHC complexes with
various intracellular compartments. After loading of control DC
with long peptide, pMHC were observed largely on the cell
surface and did not co-localize with early endosomes, Golgi, or
ER. Surprisingly, in more than 60% of all TES-treated DCs,
pMHC co-localized with LAMP2 positive lysosomes/late endo-
somes (Fig. 3a, b). H-2Kb also co-localized with late endosomes/
lysosomes in TES-exposed DC, albeit to a lesser extent than
pMHC, and the expression of H2Kb on the cell surface was not
affected (Supplementary Fig. 3a). Co-localization of pMHC with
lysosomes was also observed in TES-treated CD103+ DCs
(Supplementary Fig. 3b). Thus, defect in cross-presentation was
associated with inability of pMHC to traffic to the cell surface and
their accumulated in lysosomal/late endosomal compartment.

Regulation of cross-presentation by HSP70 and its association
with LB. We next sought to determine the mechanism underlying
impaired trafficking of pMHC. We investigated heat shock

proteins 70 and 90 (HSP70 and HSP90), as these have been
previously implicated in antigen presentation and cross-
presentation by DCs37–40. Selective HSP70 inhibitor PES-Cl,
which blocks substrate binding domain41, caused a decrease in
DC cross-presentation, but not in direct presentation (Fig. 3c).
PES-Cl did not affect DC viability or major co-stimulatory
molecules (Supplementary Fig. 3c, d). PET-16 inhibitor, which
binds to an allosterically regulated domain of HSP7042, had the
same effect (Fig. 3d). In contrast, selective inhibition of HSP90 by
17-N-Allylamino-17-demethoxygeldanamycin (17AAG) did not
affect cross-presentation by DCs. Moreover, at lower concentra-
tions, there was an upregulation of cross-presentation (Supple-
mentary Fig. 4a). Since it is known that 17AAG upregulates
HSP7043, this data further supports a potential role of HSP70 in
cross-presentation. To better evaluate the specific nature
of HSP70 involvement into cross-presentation, we downregulated
HSP70 in DCs generated from BM progenitors using
HSP70 shRNA lentiviral vector (Fig. 3e, raw data on WB can be
found in Supplementary Fig. 5) and then loaded with long or
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short OVA peptides. Partial silencing of HSP70 did not affect
direct binding, but caused a decrease in the ability of DC to cross-
present long peptide (Fig. 3f). Inhibition of HSP70 in long-
peptide loaded DCs prevented re-distribution of pMHC
complexes to the cell surface and increased co-localization of
pMHCs with lysosomes, thus recapitulating the effect of TES
(Fig. 3g). To test whether overexpression of HSP70 can rescue
TES inducible defect in DC cross-presentation, DCs were trans-
duced with lentiviral vectors expressing either GFP (control) or
hsp70 (Hspa1a) and then exposed to TES followed by loading
with long peptide. TES caused a decrease in cross-presentation by
DCs transduced with control vector. In sharp contrast, DCs
transduced with hsp70 lentivirus retained their ability to cross-
present antigen (Fig. 3h) without affecting expression of MHC
class I (Supplementary Fig. 4b). Thus, HSP70 is involved in
regulation of DC cross-presentation in cancer.

Accumulation of lipids in DC and HSP70. We next sought to
determine how HSP70 might contribute to the defective cross-

presentation. Consistent with previous observations, TES caused an
accumulation of large (>0.4 µm) LB in GM-DCs (Fig. 4a) as well as
in CD24+ DCs generated in the presence of FLT3L (Supplementary
Fig. 4c, d). LB co-localized with HSP70 in mouse (Fig. 4b) and
human (Fig. 4c) DCs was generated with GM-CSF and treated with
TES or TCM. In contrast, no co-localization was detected between
small LB present in control DC and HSP70 (Fig. 4b, c). TES also
caused accumulation of large LB co-localized with HSP70 in
CD103+ DCs (Fig. 4d). Co-localization between LB and HSP70 was
found in CD103+ but not CD103− DCs isolated from draining LN
in TB mice (Fig. 4e). In vivo, CD11c+MHCII+F4/80− DCs isolated
from the dLN of LLC TB mice had a greater amount of lipids than
DC from non-draining LN from the same mice (Supplementary
Fig. 4e) and CD103+ DCs had higher amount of lipids than CD103
− DCs (Supplementary Fig. 4f). A higher proportion of CD11c
+MHCII+DCs in dLN had co-localization of HSP70 with LB than
DCs from naïve mice (Fig. 4f).

Using confocal microscopy, we investigated a localization of
HSP70 in different cellular compartments of DCs generated
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in vitro with GM-CSF. CD11c was used as a marker of cellular
membrane and Lamp1 as marker of lysosomes/late endosomes.
After loading of DCs with long peptide, HSP70 was readily
detectable on the cell membrane co-localizing with CD11c. In
contrast, DCs treated with TES had significantly lower co-
localization with CD11c (Fig. 4g). TES significantly decreased the
presence of HSP70 in lysosomes (Supplementary Fig. 4g),
suggesting that the re-distribution of HSP70 could be involved
in changes in cross-presentation. These results prompted us to
further investigate possible role of LB-HSP70 interaction in cross-
presentation.

Lipid accumulation, redox lipidomics, and model of interac-
tion of LB with HSP70. We previously implicated scavenger
receptor CD204 in lipid accumulation by DCs26. Since CD103+

DCs accumulate more LB we investigated the possible role of
CD103 in this process by using CD103 deficient DCs generated

in vitro from CD103 KO mice (Fig. 5a). WT and CD103−/− DCs
accumulated lipids equally well (Fig. 5b). However, CD103−/−

DCs had significantly lower proportion of DCs with large LB
(Fig. 5c). In contrast to WT DCs, TES-treated CD103−/− DCs had
no defect in cross-presentation (Fig. 5d).

We found that the expression of genes involved in lipogenesis
was not increased in CD103+ DCs exposed to TES or isolated
from LN of TB mice (Supplementary Fig. 6a, b). Two genes: dgat2
and dgat1 were upregulated in vitro and in vivo, respectively. The
enzymes encoded by these genes are involved in formation of LB
directly from fatty acid (FA) that are picked up by cells and are
found on the surface of LB44. This supports the conclusion that
lipid uptake is likely to be a major factor regulating formation of
LB in DCs in TB hosts.

Lipidomics and redox-lipidomics analysis of lipids present in
DC exposed to TES revealed 250 molecular species of non-
oxidized (non-ox)lipids of which 165 were represented by
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phospholipids of all major classes. DCs also contained 74
molecular species of triacylglycerides (TAG) and 11 molecular
species of cholesterol esters (CE). The total amount of TAG in
DC treated with TES was elevated as compared to control DCs
(Supplementary Fig. 7a). This effect was mostly due to the major
TAG molecular species containing monounsaturated oleic acid
(C18:1) and polyunsaturated linoleic acid (LA) (C18:2). (Supple-
mentary Fig. 7b–d). No significant differences between control
and TES-treated DC were observed for CE (Supplementary
Fig. 7e–g).

We did not find oxidatively modified phospholipids of any type
in DCs. In contrast, we detected several types of oxidation
products in TAG and CE. In both classes of these neutral lipids,
we identified oxidation products of two types—long chain
oxygenated species (ox-) and oxidatively truncated (ox-tr-)
species formed via oxidative degradation of the side chain.
Notably, higher contents were found for ox-tr electrophilic TAG
(Fig. 5e, f). The most prominently elevated ox-tr-TAG in TES
exposed DCs were ox-tr molecular species formed by cleavage of
LA—9-oxo-nonanoic acid (9-ONA) and arachidonic acid (AA)—
5-hydroxy-8-oxo-6-octenoic acid (HOOA) (Supplementary
Fig. 8a). An increased content of mono- and doubly oxygenated
TAG in DCs in the presence of TES compared to control DC was
observed (Supplementary Fig. 8b–d). In CE, the levels of ox-long
chain molecular species containing epoxy-groups as well as ox-tr-
LA, were significantly increased (Supplementary Fig. 8e–h).
Overall, the LC–MS data clearly demonstrated the selective lipid
oxidation of the major components of LB—TAG and CE,
whereas membrane phospholipids remained refractive to the
oxidation process.

LB contain a monolayer of phospholipids on their surface45.
These phospholipids represent only a minor fraction of the total
phospholipids in DCs. Therefore we evaluated the presence of ox-
lipids directly in LB isolated by gradient centrifugation. Redox
lipidomics showed that phosphatidylcholine (PC) was the major
component of LB and was represented by LA and AA acyls
(Supplementary Fig. 9a, b). Fragmentation analysis identified
oxidation product as hydroxy-derivative of AA (hydroxy-
eicosatetraenoate, HETE)—a relatively stable compound non-
reactive towards proteins46. Neither control DC nor TES-DC
contained ox-tr-phospholipid species readily interacting with
proteins. In contrast, analysis of TAGs in LB revealed significant
amounts of ox-tr-TAGs derivatives (Supplementary Fig. 9c). The
contents of these ox-tr-TAGs products were higher in TES-DC
than in control DC and exceeded many-fold the contents of
hydroxy-products in PC. Based on these results, we conclude that
ox-tr-electrophilic species capable of interacting with proteins
were present exclusively in LB neutral lipids.

To gain molecular insights into the possible anchoring of
HSP70 to LB, we performed computational modeling of their
interactions using ox- and non-ox-TAG. Using coarse-grained
molecular dynamics (CG-MD) simulations, we examined the
motional behavior and preferred localizations of ox-tr-TAG
within LB. CG-MD demonstrated the higher likelihood of ox-tr-
TAG vs. non-ox-TAG to translocate from the LB hydrophobic
core into the phospholipid monolayer on the LB surface (Fig. 5g)
thus making them accessible for interactions with multiple
cytosolic proteins, including HSP70. To directly test this
hypothesis, we performed an experiment with DCs using confocal
microscopy with 3D analysis. LB present in control DCs did not
co-localize with HSP70. In DC exposed to TES, HSP70 was found
localized on the surface of LB (Fig. 5h).

The molecular docking analysis showed that ox-tr-TAG
strongly interacted with N-terminal ATPase domain of HSP70
with the binding energy of −6.1 kcal/mol in contrast to a much
weaker binding to the substrate binding domain or C-terminal

domain (binding energy of −4.9 kcal/mol) (Fig. 6a). We utilized
CG-MD simulations to explore the interactions of HSP70 with LB
containing ox-tr-TAG and non-ox-TAG. Since the full-length
structure of human HSP70 has not been published, we employed
the structure of the Escherichia coli HSP70 orthologue DnaK with
46.5% identity and 26.3% similarity, which represent a high
degree of homology47. We assessed the distance of center of mass
of HSP70 to the surface of LB during 2 μs (Fig. 6b). For non-ox-
TAG-LB, only one trial revealed binding with HSP70. In contrast,
HSP70 interaction with ox-tr-TAG-LB was observed in all three
cases tested. By the end of the simulations, HSP70 remained
tightly bound to the surface of ox-tr-TAG-LB in two runs, and
was positioned in the same orientations (Fig. 6c).

The typical final configurations of HSP70 anchored to ox-
TAG-LB are shown in Fig. 6d. To investigate the sequence
conservation between the E. coli and human HSP70 proteins,
these two sequences were aligned. We observed that Sites 1 and 2
contain two conserved lysine residues (lys55 and lys245) that are
predicted to be responsible for the covalent immobilization of
HSP70 on the ox-TAG-LB surface48. Therefore, HSP70 can be
anchored on the surface of ox-TAG-LB through a two-step
process: (i) the initial interactions governed by long-range non-
bonded forces including electrostatic and hydrophobic forces and
(ii) short-range chemical interactions leading to lipidation of
HSP70. Site 3 does not include any conserved lysine residues,
however, it comprises 10 hydrophobic amino acid residues. We
assigned 15 Å penetration of this beta hairpin like binding site
(Fig. 6e) into the ox-TAG-LB based on the high level of
hydrophobicity of this site likely leading to non-covalent
stabilization of HSP70 on the surface of ox-TAG-LB.

To verify chemical interactions between HSP70 and ox-tr-TAG
in simple biochemical systems we used PAGE shift-gel assay.
Oxidative truncation of PUFAs in TAG leads to the formation of
different electrophilic products (e.g., aldehydes including
4-hydroxy-2-nonenal (4-HNE) and malonyl-dialdehyde
(MDA)) (Supplementary Fig. 10a). 4-HNE is a highly electro-
philic molecule which forms adducts with nucleophilic thiol
(−SH) or amino (−NH2) groups present in amino acids such as
Cys, His, and Lys, via Michael addition (Supplementary Fig. 10b).
HNE can also modify protein structure through Schiff base
formation with lysyl residues, leading to pyrrole formation
(Supplementary Fig. 10c, d). We employed an antibody specific
for protein adducts with 4-HNE to assess the potential interaction
of recombinant HSP70 with 4-HNE added to a mixture of non-
oxidizable TAG with 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) at a ratio 50:1 mimicking the composition of LB. 4-HNE
formed covalent adducts with HSP70 in a concentration-
dependent manner (Fig. 6f). Further, we assessed covalent
association of HSP70 with ox-tr-TAG generated by pre-
incubation of AA and LA-containing TAG with MPO. LC–MS
analysis showed that incubation of TAG(AAA)/DOPC or TAG
(LLL)/DOPC with MPO/H2O2/NaCl resulted in the formation of
a variety of ox-TAG, including ox-tr species. Western blot
analysis detected 4-HNE adducts in the monomeric form of
HSP70 (70 kD) as well as in high molecular weight protein
aggregates present in the gel (Fig. 6g). Aggregated high molecular
weight protein oligomers are characteristic products formed as a
result of protein crosslinking by bifunctional lipid peroxidation
products (Supplementary Fig. 10e). High molecular weight
aggregates formed after interaction of HSP70 with ox-TAG
contained epitopes recognized by antibodies against MDA-
adducts and hexanoyl-lysine adduct (HEL) (Fig. 6h), which are
also products of oxidative modification of LA or AA. Epitopes
recognizable by antibodies against HEL adduct were also found
after interaction of HSP70 with LA-containing ox-TAG (Supple-
mentary Fig. 10f). These combined data support the premise that
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LB containing ox-tr-TAG are able to covalently bind to HSP70
and preclude HSP70 interaction with pMHC, thus affecting
pMHC trafficking to cell surface.

LB enriched with ox-tr-lipids binds to HSP70 and prevented
cross-presentation. To test the possibility that oxidized lipids
bind to HSP70 and inhibit its function, we prepared ox-tr-LA
in vitro using MPO plus a pro-oxidant system (Fe + ascorbate).
Various oxygenated metabolites of LA were determined by LS-MS
(Supplementary Table 1). DC were loaded with non-ox-LA and
ox-tr-LA for 4 h in serum-free medium (SFM) at concentrations
that did not affect DC viability or phenotype (Supplementary
Fig. 11) but resulted in the accumulation of large LB (Fig. 7a).

Loading of DC with LA did not cause the defect in cross-
presentation (Fig. 7b). In contrast, DC loaded with ox-tr-LA had
significantly impaired cross-presentation of long peptide without
affecting direct binding and presentation (Fig. 7c, d). Loading of
DC with LA did not affect pMHC expression on the surface and
did not cause co-localization of pMHC with Lamp1 positive
lysosomes (although some co-localization was detectable). In
contrast, ox-tr-LA disrupted pMHC localization on the surface
and instead lead to its co-localization with lysosomes (Fig. 7e). LB
generated in DC after loading with LA did not co-localize with
HSP70, whereas LB developed after loading with ox-tr-LA
demonstrated co-localization in most of the cells (Fig. 7f).

We investigated the effect of anti-oxidant α-tocopherol
(vitiamin E, Vit. E) on formation of LB and cross-presentation
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Fig. 7 Interaction of HSP70 with oxidized LB directly affect cross-presentation in DC. a Confocal microscopy analysis of LB in BM derived DC treated with
LA or ox-tr-LA. Scale bar= 10 µm. b Proliferation of CD8+ T cells (ratio at 1:40) stimulated with DC treated with 100 μM LA and then loaded with OVA-
derived long (left panel) or short peptides (right panel). Typical example of three performed experiments is shown. Proliferation was measured in
triplicates, mean and SD are shown. c Expression of pMHC measured by flow cytometry in BM derived DC treated with 100 μM ox-tr-LA and then loaded
with OVA long or short peptides. Representative of four independent experiments performed. d Proliferation of OT1 T cells (ratio at 1:20), stimulated with
BM derived DC treated with ox-tr-LA and then loaded with OVA long (left panel) or short peptides (right panel). Proliferation was assessed by 3[H]-
thymidine incorporation in triplicates. Three experiments with the same results were performed. Mean and SD are shown. *p< 0.05 from control. e Co-
localization between pMHC and Lamp1 in BM derived DC treated with LA or ox-LA and loaded with OVA long peptide. Scale bar= 10 µm. Typical example
of staining is shown. Bars represent standard deviation (SD). Statistical analysis by unpaired two-tailed Student's t test with significance determined at *p<
0.05 and **p< 0.01. f Co-localization between LB and HSP70 in BM-derived DC treated with 100 μM LA or ox-tr-LA and loaded with OVA long peptide.
Scale bar= 10 µm. Two typical examples of staining are shown
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by generating DCs with TES in the presence of Vit. E (100 µM).
Vit. E did not affect accumulation of lipids but decreased the
number of large LB (Fig. 8a) and abrogated defects in cross-
presentation caused by TES (Fig. 8b). By acting as a radical
scavenger, Vit. E cannot affect the already formed products of
lipid peroxidation. However, it can prevent the generation of
peroxidized lipids, including ox-tr-lipids. This may explain the
protective effects of Vit. E against TES induced defects in cross-
presentation.

Our previous studies demonstrated that the accumulation of
ox-lipids in DC in cancer was largely due to upregulation of one
of the scavenger receptors, Msr1 (CD204)22, 26. To establish the
direct link between lipid accumulation and cross-presentation we
overexpressed Msr1 in DC using a lentiviral construct (Fig. 8c).
Overexpression of Msr1 did not affect expression of MHC class I,
class II, or co-stimulatory molecules on DC. It did not affect

direct presentation but significantly reduced cross-presentation
(Fig. 8d). Overexpression of Msr1 facilitated uptake of both LA
and ox-tr-LA by DC in SFM (Fig. 8e). However, only ox-tr-LA
caused defects in antigen cross-presentation. No changes in the
direct binding and presentation or MHC class I expression were
observed (Fig. 8f).

Discussion
Cross-presentation by DCs is critically important for antitumor
immunity. Even when T cells with pre-determined specificity
(TCR-T cells or CAR-T cells) are used, the immune responses to
shared antigens depend on the ability of DC to cross-present
tumor antigens. We and others have previously demonstrated
that cross-presentation in DC from TB mice is impaired19–22.
Here, we have identified a mechanism of this impaired cross-
presentation.
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In recent years accumulation of lipids was implicated in the
defective cross-presentation by tumor-associated DCs22, 26–30.
However, the mechanism of this phenomenon remained unclear.
Morphologically, LB accumulated in tumor-associated DC were
much larger than LB present in control DC. However, these LB
did not co-localize with pMHC or cellular compartments22. The
remarkable feature of lipids found in tumor-associated DC, in
contrast to control DC, was accumulation of ox-TAG and CE, the
main components of LB25. The predominance of ox-tr-
electrophilic species suggests that their reactivity towards
nucleophilic amino-acid target proteins is a likely mechanism of
oxidative lipidation of a target critical for cross presentation.
Since DCs have relatively ineffective machinery for oxidation of
intracellular lipids we hypothesized that these cells can pick up
ox-lipids from tumor microenvironment. Overexpression of
CD204 in control DC reduced cross-presentation. Although
overexpression of CD204 facilitated uptake of both non-ox- and
ox-lipids, only ox-lipids inhibited cross-presentation further
supporting important role of ox-lipids in defective cross-
presentation in cancer. More recently it has been suggested that
lipids may accumulate in tumor DC as the result of ER stress31.
We did not find evidence of increased lipogenesis induced by
TES. CD103+ DCs accumulate LB much more than CD103− cells.
It is possible that CD103 may contribute to the formation of LB
in DCs since lack of CD103 resulted in decrease in the number of
LB in DCs. CD103 is integrin alpha E. This integrin has not been
implicated in formation of LB. However, other intergins (pri-
marily αvβ3 and αvβ5) were shown to be important for this
process49, 50.

We turned our attention to chaperone HSP70, which is has
been shown to be involved in antigen presentation37, 38. HSP70
can also stabilize lysosomes by binding to an endolysosomal
anionic phospholipid bis(monoacylglycero)phosphate, an essen-
tial co-factor for lysosomal sphingomyelin metabolism51. The
inhibition of HSP70, either pharmacologically or genetically,
blocked cross-presentation of long peptides by DC. In control
mouse and human DC, HSP70 did not co-localize with LB. In
striking contrast, in mouse and human DC exposed to TDF or
isolated from TB mice, LB strongly co-localized with HSP70. We
hypothesized that in tumor DC, LB could bind to HSP70 and thus
prevent effective cross-presentation. This hypothesis was sup-
ported by the fact that inhibition of HSP70 in control DC not
only blocked cross-presentation but caused co-localization of
pMHC with lysosomes, similar to the effect of TES. It suggested
that the nature of LB could determine their ability to bind HSP70
and block cross-presentation. To test this hypothesis directly, we
loaded DC with either non-ox-LA or ox-LA. Since LA is used for
synthesis of TAG and other lipid species loading of DC with LA
caused accumulation of large LB. However, non-ox-LA did not
affect cross-presentation, trafficking of pMHC to cell surface, and
did not cause co-localization of LB and HSP70. In contrast,
loading of DC with ox-LA inhibited cross-presentation, which
was associated with accumulation of pMHC in lysosomes and co-
localization of LB with HSP70. Thus, accumulation of LB con-
taining non-oxidized lipids was not sufficient for the inhibition of
the cross-presentation and interaction between LB and HSP70.
We hypothesized that the presence of polar electrophilic oxygen-
containing groups in ox-lipids or ox-tr-TAG could be responsible
for the interaction between LB and HSP70 in tumor DC. Addition
of hydrophilic oxygen-containing functionalities during perox-
idation of polyunsaturated FA may markedly change the hydro-
phobic/hydrophilic balance of the latter, which may dramatically
affect the structural organization of lipid-enriched domains of
membranes and LB. Computational CG-MD simulation sup-
ported this hypothesis. The computational analysis was directly
confirmed in experiments with 3D confocal microscopy and

further supported by molecular docking simulations. HSP70 has
been deemed to be an attractive target for cancer therapy, given
the considerable overexpression of this stress-induced chaperone
on cancer vs. normal cells52. Our data suggest that HSP70 inhi-
bitors may abrogate cross-presentation by DC, suggesting that
caution in the use of these inhibitors should be exercised.

Thus, our data describe a mechanism of inhibition of cross-
presentation by DC in cancer mediated by ox-lipids via their
interaction with HSP70. Identification of ox-tr-lipids of LBs as
essential contributors to inhibition of cross presentation of tumor
antigens may suggest new potential targets for therapeutic reg-
ulation of cross-presentation.

Methods
Human cell and mouse models. Human studies were approved by The Wistar
Institute IRB. Peripheral blood was collected from seven healthy volunteers after
obtaining informed consent. Animal experiments were approved by The Wistar
Institute Animal Care and Use Committee. Human experiments were approved by
Wistar Institutional Review Board and informed consent was obtained from all
subjects. Balb/c or C57BL/6 mice (female, 4–6 week old, about 20 mice used) were
obtained from Charles River, OT-I TCR-transgenic mice (C57Bl/6-Tg(TCRaTCRb)
1100mjb) (female, 4–6 week old, about 10 mice used), B6.129S2(C)-Itgaetm1Cmp/J
mice (female, 4–6 week old, about 4 mice used), B10.Cg-H2d Tg(TcraCl4,TcrbCl4)
1Shrm/ShrmJ (female, 4–6 week old, about 4 mice used) were purchased from
Jackson Laboratory.

Reagents and cell lines. Tumor cell lines including EL4 lymphoma, LLC (Lewis
Lung Carcinoma), and B16F10 melanoma were maintained in DMEM medium
supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO) at
37 °C, 5% CO2. Tumors were injected subcutaneously (s.c.) at 5 × 105 cells per
mouse. Tumor cell lines were tested for mycoplasm contamination by using
Universal Mycoplasma detection kit (ATCC). SIINFEKL peptide and control
peptide RAHYNIVTF were obtained from American Peptide Company (Vista,
CA), (Pam)2−KMFVESIINFEKL peptide (derived from OVA) and (Pam)2-
KMFVKVPRNQDWL (derived from gp100) were obtained from DBA Synthetic
biomolecules (San Diego). Recombinant mouse GM-CSF was obtained from
Invitrogen. Recombinant human GM-CSF and IL-4 were obtained from Peprotech.
Anti-mouse CD11c conjugated beads were purchased from Miltenyi, and used for
DC purification. FITC or APC conjugated anti mouse CD11c antibodies (Cat. no.
45-0114-82; clone: N418; 0.2 µg/million cells) were obtained from eBiosciences.
APC or PE conjugated anti mouse SIINFEKL-H2Kb complex antibody (Cat. no.
12-5743-82. Clone: 25-D1.16, 0.1 µg/million cells), un-conjugated anti mouse
SIINFEKL-H2Kb complex antibody (Cat. no. Clone: 25-D1.16), PE conjugated
mouse F4/80 (Cat. no. 12-4801-82. clone: BM8. 0.1 µg/million cells) were pur-
chased from eBioscience. Percp5.5 conjugated mouse MHC class I (Cat. no.
562831. H2Kb, clone: AF6.88.5, 0.2 µg/million cells) antibody, PE-Cy7 conjugated
mouse MHC class II (Cat. no. 116419. IAb; clone: AF120.1, 0.05 µg/million cells)
antibody, CD172a (Cat. no. 144007; clone: P84; 0.5 µg/million cells), BV421 con-
jugated mouse CD11b (Cat. no. 101236; clone: M1/70; 0.02 µg/million cells) and
CD103 (Cat. no. 121422; clone: 2E7, 0.2 µg/million cells) were purchased from
BioLegend, BV421 conjugated mouse CD80 (Cat. no. 562611; clone: 16.10A1; 0.1
µg/million cells) antibodies, FITC or PE conjugated mouse CD86 (Cat.no. 553692;
clone: GL1; 0.1 µg/million cells) antibodies, APC conjugated amouse CD40 (Cat.no.
553790; clone: 3/23; 0.1 µg/million cells) antibody were all purchased from BD
Bioscience. BODIPY lipid dye 493/503 was obtained from Invitrogen. The anti-
bodies for detection different cellular compartments including EEA1 antibody
(marker for early endosome. Cat. no. ab2900; 1 µg/ml), Giantin antibody (marker
for Golgi complex. Cat. no. ab24586; 1:100), Lamp2 antibody (marker for lysosome
Cat. no. ab25339; 2.5 µg/ml) and calreticulin antibody (marker for ER. Cat. no.
92516; 0.8 µg/ml) were obtained from Abcam. HSP70 antibody (Cat. no. 610607;
0.5 µg/ml), anti-mouse lamp1 (Cat. no. 553792, clone: 1D4B; 1.25 µg/ml) were
purchased from BD Biosciences. Aqua live, Alexa Fluor 488, Alexa Fluor 647
conjugated anti-mouse (Cat. no. A21202; 5 µg/ml), anti-rabbit (Cat. no. A21245; 5
µg/ml), and anti-rat (Cat. no. A11006; 5 µg/ml) secondary antibodies were obtained
from Invitrogen. Dapi was purchased from life Technology.

Preparation of TES and TCM. Tumor explant supernatants were prepared from
excised non-ulcerated tumors ~1.5 cm in diameter. Tumors were minced into
pieces <3 mm in diameter, washed with PBS 1× and resuspended in RPMI
1640 supplemented with 2 mM L-glutamine, 200 U/ml penicillin plus 50 μg/ml
streptomycin, 55 µM β-mercaptoethanol (Gibco) and 10% FBS. The cell free
supernatant were collected after 16–18 h of incubation at 37 °C and kept at −80 °C.
Tissue conditioned media (TCM) were prepared from excised liver, lung and
spleen, by following the procedure above.
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Cell phenotype and lipid contents by flow cytometry. DC were incubated with
FC-block (BD Biosciences) for 10 min and surface staining was performed at 4 °C
for 15 min. Cells were run on LSRII flow cytometer (BD Biosciences) and data were
analyzed by FlowJo (Tristar). For lipid staining, cells were re-suspended in 500 μl of
Bodipy 493/503 at 0.25 μg/ml in PBS. Cells were stained for 15 min at room
temperature in the dark, then washed twice, re-suspended in PBS and run
immediately on LSRII. At least 10,000 cells were collected for subsequent analysis.

Generation of DCs. Mouse DCs were generated from enriched BM hematopoietic
progenitor cells (HPCs) with 10 ng/ml of GM-CSF. Briefly, HPCs were isolated
from mouse BM by using Lineage depletion kit (Miltenyi), according to manu-
facturer’s instructions. Cells were seeded at 50,000 cell/ml in 24 well plates and
GM-CSF (10 ng/ml) was added to the culture at day 0 and day 3. At day 5, cells
were collected and CD11c positive cells were isolated by using anti-CD11c con-
jugated beads and then were cultured for additional 48 h in the presence of fresh
medium containing 20% v/v TES and 10 ng/ml of GM-CSF. In some experiments
DC were generated from HPCs with 200 ng/ml of FLT3L (Peprotech). In some
experiments DC were generated with GM-CSF and FLT3L. The cytokines were
added again at day 3 and cells were used at day 6 or day 7.

Human DC were generated from human CD14 positive monocytes. Briefly,
HLA-A2.1 positive PBMCs were obtained from donors’ buffy coat by ficoll-Paque
(GE Healthcare) gradient centrifugation and CD14 positive monocytes were
isolated from PBMC by using anti-human CD14 conjugated beads (Miltenyi),
following the manufacturer’s instructions. Monocytes were cultured for 5 days with
25 ng/ml of rhGM-CSF and 25 ng/ml of rhIL-4. Cytokines were added again at
day 3. On day 5, media was replaced and 20% tumor-conditioned media (derived
from SK-MEL melanoma cell lines) was added. 48 h later, the non-adherent and
loosely adherent cells were collected.

Isolation of DC from LN. LN were digested for 30 min at 37 °C with collagenase A
(0.5 mg/ml; Sigma Aldrich), Dnase I (0.2 mg/ml, Roche), diluted in HBSS with Ca2
+/Mg2+ and 20 mM EDTA (Invitrogen) was added 5 min at room temperature to
stop the reaction. Single suspensions were prepared and then DC were stained and
sorted on BD FACS Aria (BD Biosciences).

Cross-presentation in vivo. HPV-DNA vaccine: 6–8-week-old C57Bl/6 mice were
implanted with 50,000 TC-1 HPV16 E6/E7 expressing tumor cells (gift from Dr.
Yvonne Paterson) subcutaneously in both flanks. Naïve or TB mice were immu-
nized once with 25 µg (in water) of HPV16 E6E7 plasmid (pGX3001) by intra-
muscular injection (IM) into the Tibialis anterior (TA) muscle followed by
electroporation (EP) using the CELLECTRA -3P adaptive constant current elec-
troporation device (Inovio Pharmaceuticals, Inc.). Two 0.1 A constant current
pulses (52 ms in length) were delivered with a 1 s delay between pulses. Draining
LNs were collected and DCs isolated 3 days after immunization. E6/E7 specific
CD8+ T cells used as responders were isolated by using EasySep Mouse CD8+ T
Cell Enrichment Kit (STEMCELL) from spleen of naïve mice, immunized twice
with HPV E6E7 plasmid as above and labeled with 0.5 µM of CFSE (Biolend),
following manufactures’ instruction.

OVA-lentiviral vector (LV): 6–8-week-old C57Bl/6 mice were implanted with
5 × 105 LLC subcutaneously. Naïve and tumor bearing mice were immunized once
with 1.000.000 TU/mouse of OVA-LV subcutaneously. Draining LNs were
collected and DC isolated 3 days after immunization. CFSE labeled OT1 CD8+

T cells were used as responders.

Cross-presentation of OVA-derived long peptides. DCs were loaded for 16–18 h
with 100 μg/ml OVA or 5 μg/ml long peptides. CD8 T cells were isolated from
spleens of responder mice by using EasySep Mouse CD8+ T Cell Enrichment Kit
(STEMCELL) and then plated at 105 T cells per well. DC and T cells were mixed at
different ratios. DC were loaded with 0.5 µg/ml of SIINFEKL for 1 h at 37 °C. In
some experiments OVA was delivered in DC through CD205 receptors. Briefly, DC
were stained with anti-biotin CD205 (Miltenyi) for 10 min at 4 °C. Then cells were
labeled with monoclonal anti-biotin antibodies conjugated to OVA, following the
manufacturer’s instructions (Ova antigen delivery Reagent, Miltenyi). DC were
washed, resuspended in complete RPMI supplemented with GM-CSF and incu-
bated for 8 or 16 h at 37 °C before functional assays. In some experiments, DC were
used to stimulate allogeneic CD8+ T cells isolated from spleen of Balb/c mice. At
day 3 3[H]-thymidine was added at 1 μCi per well for an additional 18 h followed
by cell harvesting and a radioactivity count on liquid scintillation counter.

Cross-presentation of peptide derived from FLU. Mouse DC were generated
from enriched HPCs of Balb/c mice, as described above. At day 6 DC were isolated
using magnetic beads and infected with FLU (A/Puerto Rico/8/1934(H1N1)) (2000
HAU/107 cells) for 2 h at 37 °C or loaded with 0.5 µg/ml of IYSTVASSL short
peptide (518–526) (AnaSpec Inc.) for 1 h at 37 °C. Cells were washed twice with
complete medium and then mixed at different ratios with HA specific CD8+ T cells
isolated from HA TCR transgenic mice using EasySep Mouse CD8+ T Cell
Enrichment Kit. HLA-A2.1 matched human DC, generated from CD14+ mono-
cytes were infected at day 6 with FLU (2000 HAU/107 cells) for 2 h at 37 °C or
loaded with 1 µg/ml of CEF1 (influenza matrix protein M1 (58–66)) (AnaSpec Inc.)

short peptide for 1 h at 37 °C. Cells were washed twice with complete medium and
then mixed at different ratios with T cells isolated from HLA-A2.1 matched
autologous CD8+ T cells, using EasySep Human CD8+ T Cell Enrichment Kit. In
some experiments human DC were used to stimulate allogeneic T cells isolated
from PBMC of healthy donors. At day 4 3[H]-thymidine was then added at 1 μCi
per well for an additional 18 hof incubation, followed by cell harvesting and a
radioactivity count on liquid scintillation counter.

Cross-presentation of apoptotic tumor cells. DCs were co-cultured with apop-
totic tumor cells and then used to stimulate OT1 CD8+ T cells, isolated as described
above. Briefly, EG7 (expressing OVA) tumor cell lines were treated with 2 µM of
Doxorubicin (Sigma Aldrich) to induce apoptosis. The cells were collected 24 h
later, washed three times and then co-cultured with DCs at ratio 3:1. After 24 h DC
were collected, washed and used for assays.

Treatment with LA and ox-tr-LA. DC were resuspended in serum-free RPMI
containing 100 µM LA or 100 µM ox-LA and 10 ng/ml GM-CSF, and incubated for
4 h at 37 °C. Cells were then washed twice with complete RPMI and loaded with
OVA long peptide (5 µg/ml) for 16–18 h or loaded with short peptide (SIINFEKL,
0.5 µg/ml) for 1 h at 37 °C. Cells were then used for assays.

Confocal microscopy. Dendritic cells were washed twice with PBS 1×, resus-
pended in complete RPMI and 50,000 cells were seeded on poly-L-lysine cellware
12 MM round coverslips (Corning) for 45 min at 37 °C. After that time, cells were
washed with PBS 1× and were stained for surface markers. Briefly, cells were
incubated with FC-block (BD Biosciences) for 10 min, stained with un-conjugated
antibodies for 15 min at 4 °C, washed twice with PBS before incubation with
fluorochrome associated secondary antibodies. Afterwards, cells were fixed and
permeabilized with Fixation & Permeabilization Buffers (BD Biosciences) for 15
min at RT, washed twice with wash buffer (BD Biosciences), and then blocked with
PBS containing 5% FBS for 45 min. Cells were incubated with FC-block for 5 min
at RT and stained with different primary antibodies, at 4 °C for 16–18 h. Cells were
washed three times and incubated with fluorochrome associated antibodies for 45
min at RT. After that time cells were washed three times and then stained with
BODIPY, to detect lipid bodies for 15 min at RT. Cells were washed and incubated
with DAPI and mounted on slides using Prolong Gold antifade reagent (Life
Technology). The cells were imaged with a Leica TCS SP5 laser scanning confocal
microscope (Leica Microsystems). Rate of co-localization (%) was calculated by
using Leica LASX (Microsystems software). Briefly, it is calculated from the ratio of
the area of colocalizing fluorescence signals (Colocalization Area) and the area of
the image foreground (Area Foreground). Backgrounds and the thresholds were set
up before starting the analysis.

Generation of LV-MSR1, LV-HSP70, and LV-OVA. The Msr1 gene was excised
from the pCMV6-AC-MSR1-GFP plasmid (Origene) using SnaBI/XhoI and cloned
into a SIV-based self-inactivating lentiviral transfer vector [53] downstream of the
internal CMV promoter (pGAE-CMV-MSR1-Wpre). The HSP70 gene was excised
from the pcDNA3.1D/V5-His-TOPO-HA-HSP70 plasmid using SnaBI/XhoI and
cloned into a SIV-based self-inactivating lentiviral transfer vector downstream of
the internal CMV promoter (pGAE-CMV-HA-HSP70-Wpre). The transfer vectors
pGAE-CMV-GFP-Wpre and pTY2-CMV-OVA-Wpre, the packaging plasmid
pAd-SIV3+, and the Vesicular Stomatitis virus envelope G protein (VSV-G)
pseudotyping vectors from Indiana serotype (pVSV.GIND), have been previously
described [53–55]. The human epithelium kidney 293T Lenti-X cells (Clontech)
were maintained in Dulbecco’s Modified Eagles medium (DMEM) (Gibco) sup-
plemented with 10% fetal bovine serum (FBS) (HyClone) and 100 units/ml of
penicillin–streptomycin–glutamine (PSG) (Gibco). For production of recombinant
lentiviral vector (LV), 3.5 × 106 Lenti-X cells were seeded on 100 mM diameter
Petri dishes and transfected with 12 µg per plate of a plasmid mixture containing
transfer vector, packaging plasmid and VSV.G plasmid in a 6:4:2 ratio, using the
JetPrime transfection kit (Polyplus Transfection) following the manufacture’s
recommendations. At 48 and 72 h post transfection, culture supernatants were
cleared from cellular debris by low speed centrifugation and passed through a 0.45
μm pore size filter unit (Millipore). Filtered supernatants were concentrated by
ultracentrifugation for 2 h at 23.000 RPM on a 20% sucrose cushion. Pelleted vector
particles were resuspended in 1× PBS and stored at −80 °C until further use. Each
LV-Msr1 stock was titered using a reverse transcriptase (RT) activity assay (Reverse
Transcriptase Assay, colorimetric, Roche) and the corresponding transducing units
(TU) calculated by comparing the RT activity of each LV-MSR1 and LV-HSP70
stock to the RT activity of LV-GFP stocks with known infectious titers [56].

Treatment with inhibitors and HSP70 knock down. DCs were pre-treated 30
min at 37 °C with the following inhibitors: 4 or 6 µM of PES-Cl [PES-Cl=2-(3-
chlorophenyl) ethynesulfonamide] or PET-16 [Triphenyl(phenylethynyl)phos-
phonium bromide] or 25 or 50 µM of HSP90 inhibitor. Then the cells were washed
twice and used for assays.

HSP70 shRNA was expressed in the pLKO.1 vector obtained from Open
Biosystems (TRCN0000013831). shControl was generated in pLKO.1 vector with
target sequence 5′-TTATCGCGCATATCACGCG-3′. All shRNA targeting
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sequences (TRCN0000008515, TRCN0000098597) were obtained from Wistar
protein expression facility. Lentiviruses were produced by co-transfecting
pLKO.1 shRNA expression plasmid packaging vectors pMD2.G and pSPAX2.

DCs were generated as described above. At day 3 cells were resuspended in
serum-free medium (SFM) containing lentiviral vectors followed by centrifugation
of the plate at 2200 rpm for 45 min at 37 °C. Fresh media supplemented with GM-
CSF was then added. Puromycin (1 µg/ml) was added 48 h post infection and cells
were collected and used for assays 48 h later. HSP70 downregulation was verified
by western blot.

Western blot. Cells were lysed in RIPA buffer (Sigma-Aldrich) in presence of
protease inhibitor cocktail (Sigma-Aldrich). Whole cell lysates were prepared and
subjected to 10% SDS-PAGE and transferred to PVDF membrane. The membranes
were probed overnight at 4oC with the antibodies specific for HSP70 (BD Bios-
ciences) and GAPDH (Cell Signaling Technology), Membranes were washed and
incubated for 1 h at room temperature with secondary antibody conjugated with
peroxidase.

Quatitative real time PCR. RNA was extracted using Total RNA Kit I (Omega,
Biel/Bienne, Switzerland) according to manufacturer’s instructions. DNase diges-
tion was performed cDNA was generated with High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA). qRT-PCR was
preformed using Power SYBR Green PCR Master Mix (Applied Biosystems) in 96-
well. Plates were read with ABI 7900 (Applied Biosystems). Amplifications were
carried out with the following primers (mouse): β-actin-f, ggagggggttgaggtgtt; β-
actin-r, gtgtgcacttttattggtctcaa; acaca-f, cagtgctatgctgagattgagg; acaca-r, aca-
cagccagggtcaagtg; acacb-f, agttcgccgattcccagt; acacb-r, atggcctcttcacggttct; dgat1−f,
tcgtggtatcctgaattggtg; dgat1-r, aggttctctaaaaataaccttgcatt; dgat2-f, gctggtgccctactc-
caag; dgat2-r, ccagcttggggacagtga; msr1-f, gggagtgtaggcggatca; msr1-r, ggagatga-
tagtagggtgctctg. scd1-f, ggtgatgttccagaggaggta; scd1-r cgcaagaaggtgctaacga.

Liquid chromatography and mass-spectral analysis of lipids. Lipids were
extracted by Folch procedure (Folch et al., 1957) with slight modifications, under
nitrogen atmosphere, at all steps. Prior LC–ESI-MS analysis, lipid extracts were
separated by 1D-HPTLC ((5 × 5 cm TLC plates). Special measures were taken to
prevent oxidative modification of lipids during their processing and separation. To
bind adventitious transition metals from silica, plates were treated with methanol
containing 1 mM EDTA, 100 mM diethylene triamine pentaacetic acid prior to
application and separation of lipids by 1D-HPTLC. Then the plates were developed
with a solvent system consisting of hexane: diethyl ether: glacial acetic acid (75:15:1
v/v). After the plates were dried with a forced N2 blower to remove the solvent. The
lipids were visualized by exposure to iodine vapors and identified by comparison
with authentic phospholipid standards. For LC–ESI-MS analysis of lipids, plates
were sprayed by distilled water and white lipid spots were scraped, transferred into
tubes and then lipids were extracted.

LC/ESI-MS analysis of lipids was performed on a Dionex HPLC system
(utilizing the Chromeleon software), consisting of a Dionex UltiMate 3000 mobile
phase pump, equipped with an UltiMate 3000 degassing unit and UltiMate 3000
autosampler (sampler chamber temperature was set at 4 °C). The Dionex HPLC
system was coupled to a LXQTM ion trap mass spectrometer or to a hybrid
quadrupole-orbitrap mass spectrometer, Q-Exactive (ThermoFisher, Inc., San Jose,
CA) with the Xcalibur operating system. The instrument was operated in both the
negative and positive ion modes (at a voltage differential of –3.5 to 5.0 kV, source
temperature was maintained at 150 °C).

For phospholipid (PL) MS and MS/MS analysis of PLs was performed on a Q-
Exactive hybrid-quadrupole-orbitrap mass spectrometer (ThermoFisher Inc., San
Jose, CA). Analysis was performed in negative ion mode at a resolution of 140,000
for the full MS scan and 17,500 for the MS2 scan in a data-dependent mode. The
scan range for MS analysis was 400–1800 m/z with a maximum injection time of
128 ms using one microscan. A maximum injection time of 500 ms was used for
MS2 (high energy collisional dissociation (HCD)) analysis with collision energy set
to 24. An isolation window of 1.0 Da was set for the MS and MS2 scans. Capillary
spray voltage was set at 3.5 kV, and capillary temperature was 320 °C. Sheath gas
was set to eight arbitrary units and the S-lens Rf level was set to 60.

Normal phase column separation of PLs. PLs were separated on a normal phase
column (Luna 3 µm Silica (2) 100 A, 150 × 2.0 mm, (Phenomenex)) at a flow rate of
0.2 ml/min. The column was maintained at 35 °C. The analysis was performed
using gradient solvents (A and B) containing 10 mM ammonium acetate and 0.5%
triethylamine. Solvent A contained propanol:hexane:water (285:215:5, v/v/v) and
solvent B contained propanol:hexane:water (285:215:40, v/v/v). The column was
eluted for 0.5 min isocratically at 25% B, then from 0.5 to 6.5 min with a linear
gradient from 25% to 40% solvent B, from 6.5 to 25 min using a linear gradient
from 40 to 55% solvent B, from 25 to 38 min with a linear gradient from 55 to 70%
solvent B, from 38 to 48 min using a linear gradient from 70 to 100% solvent B,
then isocratically from 48 to 55 min at 100% solvent B followed by a return to
initial conditions from 55 to 70 min from 100 to 25% B. The column was then
equilibrated at 25% solvent B for an additional 5 min.

MS and MS/MS analysis of TAG/CE. MS and MS/MS analysis of TAG/CE was
performed on a Q-Exactive hybrid-quadrupole-orbitrap mass spectrometer
(ThermoFisher Inc., San Jose, CA). TAG/CE cations were formed through molecular
ammonium adduction (TAG+NH4). Positional analysis of acyl chains in TAG
species was performed after CID fragmentation of TAG [57, 58]. Analysis was
performed in positive ion mode at a resolution of 140,000 for the full MS scan and
17,500 for the MS2 scan in a data-dependent mode with an inclusion list for TAG or
CE. The scan range for MS analysis was 300–1200m/z with a maximum injection
time of 128ms using one microscan. A maximum injection time of 500 ms was used
for MS2 (high energy collisional dissociation (HCD)) analysis with collision energy
set to 24. An isolation window of 1.0 Da was set for the MS and MS2 scans. Capillary
spray voltage was set at 4.5 kV, and capillary temperature was 320 °C. Sheath gas was
set to eight arbitrary units and the S-lens Rf level was set to 60.

Reverse phase column separation of TAG/CE. TAG/CE were separated on a
reverse phase column (Luna 3 µm C18 (2) 100A, 150 × 1.0 mm, (Phenomenex)) at
a flow rate of 0.065 ml/min. The column was maintained at 35 °C. The analysis was
performed using gradient solvents (A and B) containing 0.1% NH4OH. Solvent A
was methanol and solvent B was propanol. The column was eluted for 2 min from
0% B to 2% B (linear), from 3 to 6 min with a linear gradient from 2% solvent B to
3% solvent B, then isocratically from 3 to 18 min using 3% solvent B, 18 to 35 min
with a linear gradient from 3% solvent B to 40% solvent B, 35 to 60 min using a
linear gradient from 40 to 55% solvent B, then isocratically from 60 to 65 min at
55% solvent B then from 65 to 80 min from 55 to 0% B (linear) followed by
equilibration from 80 to 90 min at 0% B.

CGMD simulations of lipid droplet systems. Coarse graining was performed
using the MARTINI force field developed by Marrink et al. [59]. The lipid
droplet model contained two distinct regions, phospholipid monolayer and
hydrophobic core. In this model, 400 palmitoyl-oleoyl-phosphocholine (POPC)
have been used to cover the core filled with 200 polyunsaturated trilinoleoyl-
TAG molecules. Oxidation was introduced in the polyunsaturated-fatty-acid
(PUFA) residues in 10% and in 20% of the TAG molecules. Two simulations for
each system, total of six simulations, were run and analyzed to assess the number
of TAG molecules that were able to leave the core region. CGMD simulations
were performed using the GROMACS v. 4.5.4 MD package [60]. The system was
minimized for 20 ps, before 0.2 ns NPT ensemble equilibration followed by a 0.2
ns NVT ensemble equilibration. Each MD run was carried out for 400 ns. A 20fs
time step was used to integrate the equations of motion. Non-bonded interac-
tions have a cutoff distance of 1.2 nm. Temperature and pressure were controlled
using the Brendsen algorithm [61]. Simulations were run at 310 K and at 1 atm
during NPT and MD runs. For all CG simulations, visualization and analysis
were performed using the VMD v. 1.9 visualization software [62].

Statistical analysis. Statistical analysis was performed using unpaired two-tailed
Student's t test with significance determined at p < 0.05. Estimation of variation
within each group of data was performed and variance was similar between groups
that were compares. Animal experiments were not blinded.

Data availability. All relevant data are available within the articles and its sup-
plementary informations and from the authors upon reasonable request.
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