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Abstract

Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deforma-

tion and strain based on the tagging principle. In this work, we investigate accuracy and pre-

cision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To

this end, synthetic biomechanical left-ventricular tagged MRI data with varying tag distance,

spatial resolution and signal-to-noise ratio (SNR) were generated and processed to quantify

errors in radial, circumferential and longitudinal strains relative to ground truth. Results

reveal that radial strain is more sensitive to image resolution and noise than the other strain

components. The study also shows robustness of quantifying circumferential and longitudi-

nal strain in the presence of geometrical inconsistencies of 3D tagged data. In conclusion,

our study points to the need for higher-resolution 3D tagged MRI than currently available in

practice in order to achieve sufficient accuracy of radial strain quantification.

1 Introduction

The noninvasive assessment of myocardial function represents an important diagnostic tool

in the clinic. Beyond cine Magnetic Resonance Imaging (MRI), a number of dedicated

approaches to quantify ventricular tissue motion and strains have been proposed, including

phase contrast [1], tissue tagging [2], displacement encoding [3] and strain encoding [4].

In the present paper, we focus on three-dimensional (3D) tagged MRI [5], which is based

on the principle of spatial modulation of magnetization [2, 6]. Since its inception, a number of

improvements have been proposed [5, 7–10] and the method has been shown to reveal alter-

ations in myocardial function for a variety of pathologies including ischemic heart disease [11,

12], aortic stenosis [13], cardiac hypertrophy [14], left bundle branch block [15], cardiomyopa-

thy [16] and coronary artery disease [17], among others.

Processing techniques for tagged data can be divided into three main categories: direct,

Fourier-based and tracking-based approaches [18]. While direct methods aim to extract tag

features using image filtering and segmentation approaches [19], Fourier-based methods
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exploit the Fourier-shift theorem by band-pass filtering a single tagging peak in k-space yield-

ing a material point-specific image phase which can be tracked (HARmonic-Phase analysis

(HARP) [20, 21]). Limitations include a reduction of spatial resolution due to band-pass filter-

ing [22], as well as potential phase aliasing [23]. Using sine-wave modeling (SinMod), the

noise sensitivity of HARP is partly addressed by providing improved accuracy of the displace-

ment fields in low signal-to-noise ratio (SNR) scenarios [23]. SinMod was also demonstrated

to perform well in 3D [24]. However, SinMod, like HARP and other phase-based approaches,

requires sufficiently small displacements in-between temporal frames. Tracking-based

approaches aim to find a deformation field to register any two images, typically involving

also some form of regularization [18, 25]. Compared to Fourier-based approaches, which are

applicable to tagged images only, tracking-based methods have a wider range of applications

including cine, tagged [18, 26] or ultrasound images [27]. Among the tracking-based

approaches, Finite-Element (FE)-based methods offer a convenient way to constrain the solu-

tion displacement field, with a proper discretization independent of the image discretization,

thus naturally providing geometrical regularization [28–30]. Moreover, it allows incorporation

of mechanical regularization, either based on basic mechanical principles, or using mechanical

models [26]. These models require the prescription of appropriate boundary conditions and a

material model to characterize the cardiac constitutive behavior.

Studies using MRI tagging have revealed regional differences in strain distribution [14, 31,

32]. While circumferential and longitudinal strains are reported frequently for both healthy

subjects and patients, radial strain is often omitted due to limited accuracy and precision [33].

At the same time, radial strain is a decisive metric for assessing contractility of the heart [34].

It is the objective of the present work to analyze the dependency of radial, circumferential

and longitudinal strain quantification from 3D tagged MRI with regard to tag distance, image

resolution and SNR. To do so, synthetic tagged images are generated using a reference bio-

mechanical left-ventricular (LV) model [35, 36] as input. Strain is then quantified from the

synthetic images using a recently proposed FE-based method with mechanical regularization

referred to as equilibrated warping [26].

2 Methods

Fig 1 summarizes the pipeline of this study, which includes the reference LV model (Fig 1a),

rasterization, resampling and convolution (Fig 1b), image processing (Fig 1c) and image regis-

tration (Fig 1d).

2.1 Cardiac biomechanical model and reference left-ventricular motion

In this study, we utilize a generic anatomical model of the LV represented by a truncated ellip-

soid with an approximate end-diastolic volume of 202 ml, decreasing down to 62 ml at end-

systole (ES). The ventricular wall thickness is almost constant across the ventricle with approx-

imate values of 15 mm and 22 mm at end-diastole (ED) and ES, respectively. We consider a

reference biomechanical model of the LV [35, 37], which combines a passive visco-hyperelastic

behavior with a micro-macro model of the active muscle contraction [37], and is coupled to a

lumped cardiovascular circulation model [35]. FE resolution of the model provides the dis-

placement field over the LV (from which one can compute any deformation metric, e.g., strain,

strain rate, etc.) with 1000 time steps throughout the cardiac cycle. The model is used as

ground truth in the study. To ensure a physiological behavior and prevent unrealistically large

displacement velocities at the base of the LV [38], the displacement was interpolated in time,

capping the maximum velocity to 0.1mm/ms (Fig 1a).
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2.2 Synthetic image generation

The modified LV model is further utilized to generate synthetic 3D-tagged images as follows.

First, tagged images with 0.5 mm pixel size are generated from the time-resolved LV meshes

through rasterization [39], and using a simplified complementary spatial modulation model

[7] for 3D tagging without tag-line fading (Fig 1b-1). We assume a standard image generating

function used in CSPAMM to create the tagged image stacks:

I ¼ sin
pXi

s

� �

; ð1Þ

where Xi corresponds to the spatial coordinate of the image voxel in the ith direction, and s is

the tagging distance, ranging from 3 mm to 7 mm (Fig 2a). Compared to other tagging tech-

niques, in which the tagging pattern is approximated by higher order functions, (e.g.,

SPAMM) [7], here we assume the standard modulation pattern for CSPAMM as a “worst

case” scenario in terms of tag line contrast. Considering the approximate ventricular wall

thickness at ED, the synthetic images have between ca. 2 (for 7 mm tagging) and 5 (for 3 mm

tagging) tag lines within the thickness of the myocardium.

0.0

Fig 1. Study design. Reference biomechanical LV model simulating the full cardiac cycle (a). Synthetic image generation using the model (b). Three different image

stacks with tag lines in orthogonal directions are generated by rasterization (1) and then resampled by cropping in k-space and convolved in time (2). Adding noise and

changing image resolution by filtering in k-space (c). Image registration showing 3D tagged images superimposed with the warped mesh for different time frames (d).

https://doi.org/10.1371/journal.pone.0258965.g001
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Three stacks are generated, with i = 1, 2, 3 for each tagging direction. Thereafter, images are

resampled to 1 mm pixel size using zero-filling after cropping in k-space and convolution in

time (Fig 1b-2) using a convolution window size of 40 ms [5]. Then, the images are resampled

in time to yield 100 time steps throughout the cardiac cycle. These three series of images are

then combined using:

I0 Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin
pX1

s

� ��
�
�
�

�
�
�
� � sin

pX2

s

� ��
�
�
�

�
�
�
� � sin

pX3

s

� ��
�
�
�

�
�
�
�

3

s

: ð2Þ

to generate the reference dataset used for 3D validation of the FE-based image registration

technique (Fig 1d).

In addition to the reference images, datasets with varying image properties are generated

(Fig 1c). First, different levels of Gaussian noise with zero mean are added to generate sets of

images with varying SNR, which is defined as the ratio of the magnitude of the signal to stan-

dard deviation of the noise:

SNR ¼
Maxsignal
Stdnoise

: ð3Þ

Then, image spatial resolution is changed by filtering the reference dataset in k-space using

a box filter with different bandwidth (Fig 1c). We generated image sets varying in tag distance

(Fig 2a), pixel size (Fig 2b), and SNR (Fig 2c).

Fig 2. Isotropic synthetic images to analyze the effect of image properties. Images with varying tag distances (in mm) (a), pixel

sizes (in mm) (b), and SNRs (c) (values are written at the bottom right corner for each case). Images shown in (a) are noiseless and

have 1 mm pixel size. Images in (b) are noiseless and have 7 mm tag distance. For the ones in (c), pixel size and tag distance are 3.5

mm and 7 mm, respectively. Images represent the configuration at end-diastolic time frame.

https://doi.org/10.1371/journal.pone.0258965.g002
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2.3 FE-based image registration

FE-based image registration is then performed on the synthetic datasets to investigate the

effect of image properties on deformation quantification (Fig 1d). A continuum formulation

of the image registration problem is introduced and later discretized using the FE method.

Considering the reference and current configurations of the object represented by the images,

O0 and Ot, related image intensity fields are denoted by I0 and It. A deformation map F(X) is

defined between these two configurations to map the reference points X 2O0 onto their spatial

counterparts x = F(X) = X + U(X) 2 Ot, where U is the displacement field. In the presence of

image noise, this problem is ill-posed and requires to be formulated as a minimization prob-

lem. Hence, the problem of finding the displacement field can be formulated as

find U ¼ argmin
fUg

¼ fhðUÞ ¼ ð1 � bÞCim
ðUÞ þ bCreg

ðUÞg; ð4Þ

which aims to minimize the functional h expressed in terms of regularization strength β. The

image similarity metric, Cim,

C
im
ðUÞ ¼

1

2
kIt �Φ � I0k

2

L2ðO0Þ
; ð5Þ

and the regularization energy, Creg,

C
reg
¼
X

K

1

2
kDivðF � SÞk2

L2ðKÞ þ
X

F

1

2h
½½ðF � S � NÞ��2L2ðFÞ; ð6Þ

are weighted by factors (1 − β) and β, respectively, to rescale the regularization strength to stay

in the range [0, 1]. K, F and N represent the set of finite elements, the set of interior facets, and

the facets normal, respectively. S and F are the second Piola-Kirchhoff stress tensor and trans-

formation gradients, respectively, and h is a characteristic length of the elements; see [26] for

more details. The novelty in the method is the regularization technique which is a continuum

finite strain formulation of the equilibrium gap principle introduced in [40], readily discretiz-

able with standard finite elements. Compared to other mechanical regularization techniques,

equilibrated warping enforces only the basic principle of mechanical equilibrium, but does not

constrain strain magnitude in any way. Moreover, the registration problem is geometrically

regularized by the FE mesh. In addition to the equations specified above, Eq (6) requires the

specification of a constitutive model, chosen here as Neohookean compressible hyperelastic

potential with Ciarlet-Geymonat [41]:

r0c ¼
k

2
ðJ2 � 1 � lnðJÞÞ þ

m

2
ðIC � 3 � 2 lnðJÞÞ; ð7Þ

in terms of bulk and shear modulus, κ and μ, volume map, J = Det(F), and IC = Tr(C). Here,

F = Grad(F) and C = FTF are the deformation gradient and right Cauchy-Green deformation

tensor, respectively. Following the general FE procedure, the variational form of Eq (4) is

obtained by derivation. It is then linearized, and discretized using standard continuous

Lagrange elements. More details on the formulation and solution procedure can be found in

[26]. The method implementation is freely available as a python library (https://gitlab.inria.fr/

mgenet/dolfin_warp) implemented based on FEniCS [42] and VTK (http://www.vtk.org)

libraries.

The impact of the regularization parameter and the mechanical model utilized are further

discussed in [26, 43]. In this study, for each image set, we run the registration algorithm for a

range of regularization strength β and use the best performing value (i.e. estimated motion

closest to ground truth) in the analysis. The reader is referred to [26] for a more detailed
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discussion on the choice of β in case the ground truth is unknown. By designing this “optimal”

registration technique, we focus the study on the image content itself, not the image processing

approach.

2.4 Performance metrics for cardiac strain quantification

Strain quantification performance is assessed through computing the normalized mean and

standard deviation of the norm of the displacement error given by:

di ¼
kui

reg � ui
refk

maxkurefk
; ð8Þ

davg ¼
1

Nn

XNn

i¼1

di � 100ð%Þ; ð9Þ

dstd ¼
1

Nn

XNn

i¼1

ðdi � davgÞ
2
� 100ð%Þ; ð10Þ

where davg and dstd are the normalized mean and standard deviation in displacement error

norm. ui
reg and ui

ref are the displacement vectors at node i at end-systolic time frame, for the

registered case and ground truth, respectively. Moreover, Nn is the total number of nodes.

In addition to the displacement error, we investigate the component-wise sensitivity of

the strain to a change in image characteristics by computing the mean and standard deviation

according to:

ei ¼ sireg � siref ð11Þ

eavg ¼
1

Nel

XNel

i¼1

ei ð12Þ

estd ¼
1

Nel

XNel

i¼1

ðei � eavgÞ
2

ð13Þ

where eavg and estd are the mean and standard deviation in strain error for component s, which

is a scalar field, while sireg and siref are the strain values at element i at end-systolic time frame

for the registered case and the ground truth, respectively.

In this study, we investigate both the individual and combined effects of two image charac-

teristics, Tag distance to Pixel size Ratio (TPR) and SNR on images with isotropic (Fig 2) and

anisotropic (Fig 3) spatial resolution. The first part, analysis on isotropic images, includes

noiseless images with TPR ranging from 2.8 to 7.0 (Fig 2(a) and 2(b)), and images with varying

levels of SNR (from 5 to 30) (Fig 2c), keeping the tag distance and pixel size constant: 7 mm

and 1 mm, respectively. The combined effect of TPR and SNR is investigated on the image set

with isotropic pixel size ranging from 1.5 mm to 3.5 mm having different SNRs (from 5 to 30)

and a tag distance of 7 mm.

The second part is focused on the analysis of anisotropic image resolutions. Similarly, indi-

vidual effects of resolution and SNR are analysed first. For this purpose, we generated noiseless

images with 7 mm tag distance and pixel size ranging from 1.5 mm to 3.5 mm in the tagging

direction, while the transverse directions are assigned to a larger pixel size ranging from 3.5

PLOS ONE Accuracy and precision of 3D tagged MRI-derived left ventricular strain

PLOS ONE | https://doi.org/10.1371/journal.pone.0258965 November 5, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0258965


mm to 7 mm. For the SNR analysis, three datasets are chosen to represent different levels of

pixel size (2.0x4.0x4.0 mm 3, 3.0x6.0x6.0 mm 3, and 3.5x7.0x7.0 mm 3) with varying noise

levels in the same interval as used for the isotropic case. The anisotropic image analysis is

enriched by going beyond random errors and considering a source of systematic error (Fig 3).

Since in vivo 3D tagged images are acquired in three successive breath-holds, individual image

stacks may not be perfectly aligned [10]. Hence, we introduce shifts between individual image

stacks to better reproduce the in vivo image acquisition, and understand the effect on deforma-

tion analysis. In this study, we simulated in-plane (IP) and through-plane (TP) shifts of image

stacks with 3.5x7.0x7.0 mm 3 pixel size and SNR 20. For this purpose, the image stack tagged

in Z is kept constant for both cases while the two other stacks are shifted in the respective

planes by the same amount (Fig 3).

3 Results

3.1 Isotropic images

3.1.1 Impact of TPR. Fig 4 presents the error analysis as a function of TPR, where the

black curves represent change in pixel size for a constant tag distance of 7 mm while the red

curves stand for constant pixel size of 1 mm as tag distance varies. Normalized mean ± stan-

dard deviation of the displacement error norm (defined Eqs (9) and (10), reported Fig 4a) and

mean ± standard deviation in Green-Lagrange strain component errors (defined Eqs (12) and

(13), reported Fig 4(b)–4(d)) are used as the metrics to assess strain estimation accuracy. As

shown in Fig 4a, the tracking algorithm performs well in comparison to ground truth with a

displacement error of 1.1 ± 0.8% relative to the reference image set. Moreover, it still performs

well for TPR higher than 4.0. The largest strain error is observed in the radial component,

which is 0.1 ± 0.2 for 1 mm pixel size and 3 mm tag distance (Fig 4b).

3.1.2 Impact of SNR. Fig 5 presents the effect of SNR on strain measurement. For all

plots, black curves stand for the best performing regularization β while the red ones represent

error in the displacement field when no regularization is applied. For the best case (Inf SNR),

Fig 3. Anisotropically resolved synthetic images to analyze the effect of geometrical inconsistencies. Images with 7 mm tag

distance, SNR 20, and 3.5x7.0x7.0 mm 3 pixel size for varying amounts of shift increasing from left to right (values are written at the

bottom right corner for each case) on short-axis (a) and long-axis (b) views. IP and TP stand for the direction of shift, in-plane and

through-plane, respectively. Images represent the configuration at end-diastolic time frame. The arrows indicate the regions with the

largest amount of error due to shift for IP (± 6 IP) and TP (± 6 TP).

https://doi.org/10.1371/journal.pone.0258965.g003
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error in the displacement filed is 1.1 ± 0.8% (Fig 5a). For SNR 5, regularization decreases the

error from 3.5 ± 2.6% (for β = 0) to 1.6 ± 1.1% (for best β = 0.05). A similar trend is found in

Fig 5(b)–5(d) in terms of mean ± standard deviations in Green-Lagrange strain component

errors. For SNR 5, errors in radial, circumferential, and longitudinal components are 0.0 ± 0.3,

0.0 ± 0.1, and 0.0 ± 0.1 when no regularization is applied. For optimal regularization, errors in

these components vanishes for all components.

3.1.3 Combined impact of TPR and SNR. Fig 6 presents the results for the images with

different isotropic resolutions varying in SNR at a fixed tag distance of 7 mm. Error in dis-

placement field significantly increases as pixel size and SNR change from 1.0 mm to 3.5 mm

Fig 4. Effect of Tag distance to Pixel size Ratio (TPR) on noiseless isotropic image analysis. Normalized mean ± standard deviations in displacement error norm (%)

plotted as a function of TPR (a). Black curve stands for the errors computed for the images with different pixel sizes keeping the tag distance constant at 7 mm while the

red one represents the analysis results with different tag distances where the pixel size is 1 mm. Mean ± standard deviations in component-wise Green-Lagrange strain

error as a function of TPR for the best performing regularization strength (b-d). Radial strain component (b) is more sensitive to a change in TPR while the

circumferential (c) and the longitudinal (d) components are more accurately measured.

https://doi.org/10.1371/journal.pone.0258965.g004
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and Inf to 5, respectively (Fig 6a). While the error in displacement field is 1.1 ± 0.8% for 1

mm pixel size and Inf SNR, it increases to 3.1 ± 1.8% when pixel size is 3.5 mm and SNR 5

(worst case). Radial strain error (Fig 6b) is larger compared to other components (Fig 6(c)

and 6(d)) and 0.01 ± 0.14 for the worst case. The reader is referred to S1a Fig in S1 File for

the choice of optimal β values for varying image resolution and SNR. The two-way ANOVA

analysis on SNR and image resolution shows that SNR is the main source of error in dis-

placement field, radial and circumferential strain errors with 56%, 69% and 39%, respec-

tively, while the corresponding contributions from image resolution are 39%, 20% and 37%.

The longitudinal strain error, however, is 17% due to SNR and 72% due to image resolution

(p < 0.0001).

Fig 5. Effect of SNR on isotropic image analysis. Results on images with 1 mm pixel size and 7 mm tag distance. Normalized mean ± standard deviations in

displacement error norm (%) without regularization (red curve) and with optimal regularization (black curve) (a). Regularization helps decreasing the registration error

significantly. Mean ± standard deviations in component-wise Green-Lagrange strain error as a function of SNR which is independent of regularization strength for

SNR�20 (b-d).

https://doi.org/10.1371/journal.pone.0258965.g005
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3.2 Anisotropic images

3.2.1 Impact of image resolution. Fig 7 summarizes the analysis results on noiseless

anisotropically resolved images. For each plot, the x axis represents the pixel size in tagging

direction which is finer compared to the orthogonal (transverse) directions represented by the

y axis. Fig 7a shows the normalized mean ± standard deviation (%) of the displacement error

norm which increases from 1.5% to 2.6% as the pixel size increases from 1.5x3.5x3.5 mm 3 to

3.5x7.0x7.0 mm 3. The error in radial strain increases up to 0.06 when the pixel size in orthog-

onal direction is larger than 5 mm (Fig 7b). Moreover, circumferential (Fig 7c) and longitudi-

nal (Fig 7d) components are less sensitive to change in image resolution.

Fig 6. Combined effect of image resolution and SNR on isotropic image analysis. Results on images with 7 mm tag distance. Normalized mean ± standard deviations

in displacement error norm (%) plotted as a function of SNR for different pixel sizes (a). Mean ± standard deviations in component-wise Green-Lagrange strain error as a

function of SNR and pixel size (b-d). Combined effect of pixel size and SNR is more pronounced on the radial strain component (b) while there is almost no change in

the circumferential (c) and longitudinal (d)components. Legends show the pixel size in mm.

https://doi.org/10.1371/journal.pone.0258965.g006
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3.2.2 Combined impact of image resolution and SNR. We observe an increase in error

both in displacement field (Fig 8a) and strain components (Fig 8(b)–8(d)) for anisotropic

images as SNR decreases and pixel size increases. The lowest error was found for the smallest

pixel size and highest SNR: the error in displacement field is 1.5 ± 1.0% while it increases to

4.4 ± 2.8% for the worst case (3.5x7.0x7.0 mm 3 pixel size & SNR 5) (Fig 8a) The reader is

referred to S1b Fig in S1 File for the choice of optimal β values for anisotropic image resolu-

tions (2.0x4.0x4.0 mm 3, 3.0x6.0x6.0 mm 3 and 3.5x7.0x7.0 mm 3) and varying SNR. ANOVA

analysis shows that SNR is the main source of error in displacement and radial, circumferential

and longitudinal strain errors with values of 62%, 78%, 64%, and 46%, respectively while

image resolution contributes with 36%, 1%, 16%, and 24% to each field (for p< 0.0001).

3.2.3 Combined impact of image resolution, SNR and geometrical inconsistencies. Fig

9 presents the results for the images with anisotropic resolution 3.5x7.0x7.0 mm 3, tag distance

of 7 mm and SNR 20 when different amounts of shift between tagged image stacks are applied.

For all plots, the black curves represent the analysis results on images shifted in-plane, i.e., in

Fig 7. Effect of image resolution on anisotropically resolved image analysis. Results on noiseless images with 7 mm tag distance. Normalized mean ± standard

deviations in displacement error norm (%) as a function of pixel size (a). Signed averages in Green-Lagrange strain component errors as a function of pixel size (b-d).

Radial strain component is the most sensitive to an increase in pixel size (b), while circumferential (c) and the longitudinal (d) components are not affected at all.

https://doi.org/10.1371/journal.pone.0258965.g007
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the short-axis plane. Red curves stand for the images shifted through-plane along the long

axis, where the same stacks are shifted in the transverse direction. Error in displacement field

increases as the stacks are shifted further (Fig 9a). When the image stacks are shifted by ±6

mm in-plane and through plane, the error increases up to 10.1 ± 5.4% and 9.8 ± 5.0%, respec-

tively. Effect of shifting is more significant on radial strain component (Fig 9b). The error is

-0.02 ± 0.27 when the shift is ±6 mm in-plane while it is -0.01 ± 0.32 for through plane shift.

However, circumferential and longitudinal strain components are quite robust to any type of

shift between image stacks (Fig 9(b) and 9(c)). The localized effects of shifting are further dis-

cussed in Supporting information.

Fig 8. Combined effect of image resolution and SNR on anisotropically resolved image analysis. Results on images with 7 mm tag distance. Normalized

mean ± standard deviations in displacement error norm (%) plotted as a function of SNR for different pixel sizes (a). Mean ± standard deviations in component-wise

Green-Lagrange strain error as a function of SNR and pixel size (b-d). Combined effect of increased pixel size and decreased SNR is more pronounced on the radial strain

component (b) while there is almost no change in the circumferential (c) and longitudinal (d) components.

https://doi.org/10.1371/journal.pone.0258965.g008
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4 Discussion

We have investigated the effect of image resolution, tag distance and SNR on deformation

quantification from 3D tagged images and have illustrated the challenges in quantifying radial

strain.

For noiseless images, registration can be performed without regularization for all TPR val-

ues greater than 2 in case the tag distance is kept constant (see Fig 4). Although TPR is a

dimensionless parameter essentially controlling the impact of tag distance and image resolu-

tion on the motion tracking, the tracking error still differs when varying TPR by changing tag

distance (red curve of Fig 4) or pixel size (black curve of Fig 4). This is due to the fact that the

tracking also depends on the different spatial scales of the problem, i.e., the object size, the

Fig 9. Effect of geometrical inconsistencies. Results on images with anisotropic pixel size 3.5x7.0x7.0 mm 3 and SNR 20 for 7 mm tag distance. Normalized

mean ± standard deviations in displacement error norm (%) plotted as a function of in-plane and through plane shift (in mm) between image stacks (a). Mean ± standard

deviations in component-wise Green-Lagrange strain error as a function of in-plane and through plane shift (in mm) between image stacks (b-d). Increasing amount of

shift leads to an increased error in radial strain component (b) while there is almost no change in the circumferential (c) and longitudinal (d) components.

https://doi.org/10.1371/journal.pone.0258965.g009
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displacement length, and the mesh size (which defines the tracked displacement characteristic

length). Indeed, for an object of given size and an image of given TPR, an image with coarser

discretization will lead to more partial voluming, and thus larger tracking error. Similarly, for

a given object motion, jumps across tag lines will be facilitated on images with smaller tagline

distances. Note that such tag jumps are not directly caused by our choice of tracking method

or temporal discretization; they are inherent to tracking with periodic tagging patterns and

have been reported for other tracking methods such as harmonics phase imaging [20]. There-

fore, we studied the effect of TPR in the optimal range of tag distance; coarse enough to pre-

vent the tag line jumping during tracking and fine enough to have good image contrast.

Practically, for future CMR tagging acquisitions, this suggests using rather large tag distances

(� 5 mm) to prevent tag jumping when tracking cardiac motion. Focusing on results with 7

mm tag distances (black curve of Fig 4), tracking results are not drastically influenced by TPR,

i.e., by image resolution. This holds true for the displacement error, as well as for the strain

error, in terms of both mean and standard deviation. Radial strain error is generally larger

than circumferential and longitudinal strain errors; however, this higher sensitivity of radial

strain is not significantly affected by image resolution.

Conversely, for noisy images, SNR has a significant impact on tracking errors (see Fig 5),

especially when tracking without regularization (red curve of Fig 5). Indeed, in this case, the

standard deviation of the strain error explodes for low SNR. This is true for all components,

though it is more significant for radial strain compared to circumferential and longitudinal

strains. However, the higher error of radial strain can be alleviated by the use of regularization

(black curve of Fig 5). Indeed, with regularization, even though the radial strain error standard

deviation is higher than for circumferential and longitudinal strains, the tracking error is not

influenced by SNR.

Looking at the combined effect of image resolution and SNR (see Fig 6), we observed a

considerable increase in displacement error with increasing pixel size and decreasing SNR.

This trend is seen despite the use of optimal regularization and fine temporal discretization,

which suggests that the cause may be found in the image properties, i.e., spatial resolution

and SNR. More specifically, we found that radial strain was much more sensitive to image

characteristics than circumferential and longitudinal components. This is in line with obser-

vation made on tagged CMR image processing [18, 26]. The elevated error in the radial com-

ponent can also be associated to the thickness of the myocardial wall, which is much smaller

than the circumference and length of the ventricle [44]. However, in this study, we did not

investigate the effect of wall thickness on motion quantification in detail. Instead, we limited

the scope of the study to the effect of imaging parameters only, fixing the geometrical and

material biomechanical model parameters to normal values. One solution would be to

increase the tag line density in the radial direction; however, as discussed previously, this

would require to make the tracking more robust with respect to tag jumping. Alternatively,

for future CMR acquisitions, tagged image resolution needs to be improved for better radial

strain mapping.

The effect of SNR is more pronounced for the estimation of the displacement field and

radial strain when combined with the anisotropic voxel sizes (see Figs 7 and 8). Although the

anisotropic images represent a better approximation of the in-vivo imaging setting, we do not

observe a dramatic increase in error for low SNR values by the choice of optimal β (Fig 8a and

8b). On the contrary, circumferential and longitudinal strains did not show significant increase

in error when choosing an anisotropic voxels size within the range evaluated in this study.

And again, since this is found with a fine temporal discretization and an optimal motion track-

ing method, this reinforces the point that reduced radial strain measured on in vivo images is

induced by limited image spatial resolution and SNR.
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To further study this point and mimic multi breath hold in vivo acquisitions, we investi-

gated geometrical stack misalignment as additional source of error (see Fig 9). While the direc-

tion of shifting appeared to not influence the error, we observed an increased error more

pronounced in the radial strain component while the other two components remain insensi-

tive when stacks are shifted further apart.

Radial strain quantification remains sensitive to low SNR, TPR and slice misalignment,

however the quantification of circumferential and longitudinal strains appears to be affected

only little across the parameter range investigated in this study. Both global longitudinal strain

(GLS) and global circumferential strain (GCS) have been used as prognostic value for disease

severity in the clinical setting [45, 46], with GLS being the most widely used metric to predict

heart failure [47]. To this end, the tracking method used in this study [26], offers a robust way

for the assessment of clinically used strain values.

In order to make radial strain measurement more robust and potentially useable in the clini-

cal setting, multiple attempts have already been made. Combining untagged and tagged images

has been shown to perform better compared to using only one type of image [18, 48], though the

use of untagged images suggests that strain heterogeneities might not be mapped accurately. Pro-

posed as a new imaging modality, subtly tagged steady state free precession (SubTag SSFP) fea-

ture tracking has allowed for acquiring regional deformation and ventricular function in a single

MRI scan, hence, achieving shorter scan time and better mechanical assessment [49]. Lastly, the

imaging process itself has also been modeled to understand the effect of partial voluming, which

deteriorates the image quality, and as a consequence, deformation assessment [50]. Nevertheless,

our study suggests that by improving image resolution, measuring accurate radial strain fields

could be achieved based solely on tagged MRI with existing image processing techniques.

5 Conclusion

In this study, we systematically investigated the accuracy and precision of deriving LV strain

components from CMR tagged images by finite element digital image correlation. It shows the

robustness of GLS and GCS to varying image characteristics, supporting their reliability and

common usage in the clinical setting. Moreover, the error analyses suggest that it is worthwhile

investing into higher spatial resolution when planning tagged CMR acquisitions in order to

obtain a robust radial strain estimate.
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