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Fully‑automated root image 
analysis (faRIA)
Narendra Narisetti1*, Michael Henke1,3, Christiane Seiler1, Astrid Junker1, Jörn Ostermann2, 
Thomas Altmann1 & Evgeny Gladilin1

High-throughput root phenotyping in the soil became an indispensable quantitative tool for the 
assessment of effects of climatic factors and molecular perturbation on plant root morphology, 
development and function. To efficiently analyse a large amount of structurally complex soil-root 
images advanced methods for automated image segmentation are required. Due to often unavoidable 
overlap between the intensity of fore- and background regions simple thresholding methods are, 
generally, not suitable for the segmentation of root regions. Higher-level cognitive models such as 
convolutional neural networks (CNN) provide capabilities for segmenting roots from heterogeneous 
and noisy background structures, however, they require a representative set of manually segmented 
(ground truth) images. Here, we present a GUI-based tool for fully automated quantitative analysis of 
root images using a pre-trained CNN model, which relies on an extension of the U-Net architecture. 
The developed CNN framework was designed to efficiently segment root structures of different size, 
shape and optical contrast using low budget hardware systems. The CNN model was trained on a 
set of 6465 masks derived from 182 manually segmented near-infrared (NIR) maize root images. 
Our experimental results show that the proposed approach achieves a Dice coefficient of 0.87 and 
outperforms existing tools (e.g., SegRoot) with Dice coefficient of 0.67 by application not only to NIR 
but also to other imaging modalities and plant species such as barley and arabidopsis soil-root images 
from LED-rhizotron and UV imaging systems, respectively. In summary, the developed software 
framework enables users to efficiently analyse soil-root images in an automated manner (i.e. without 
manual interaction with data and/or parameter tuning) providing quantitative plant scientists with a 
powerful analytical tool.

Image based high-throughput phenotyping of roots is one of the emerging disciplines in plant phenomics. It aims 
to extract the plant morphological and physiological properties in a non-destructive manner to study the plant 
performance under given conditions1. Traditional approaches to root phenotyping have relied on destructive 
and artificial grown mediums such as liquids or gels2,3. However, the root growth is known to be dependent on 
physical conditions4 and such studies have shown a non-typical response of the roots in soil5,6.

More recently, non-destructive methods such as X-ray computed tomography7,8, nuclear magnetic resonance 
(NMR) microscopy9 and laser scanning10 provide unique insights into 3D organization of living root architecture, 
however, their throughput capabilities are presently rather limited. Moreover, minirhizotrons11,12 and rhizotron 
systems13,14 have gained popularity to enable non-invasive imaging of roots in a soil environment. However, the 
minirhizotrons require a repeated photographing of roots through a transparent surface of below ground obser-
vation tubes15. In contrast, rhizotron systems contain rectangular glass pots which requires a single photograph-
ing of roots16. Recently, near-infrared (NIR) imaging of roots growing along transparent pots were presented in 
our previous works17,18. These systems contain special low pass filters to block root exposure to visible light and 
the images were taken by NIR camera under suitable illumination.

Due to high level of optical soil heterogeneity, soil-root images exhibit a relatively low contrast between back- 
and foreground structures. Consequently, at the local scale root and soil pixels cannot be distinguished on the 
basis of their intensity values only. Several root image solutions were suggested in the past, however, most of them 
were designed for a specific imaging system19–23. Examples of general-purpose semi-automated tools include 
GiA Roots24, IJ-Rhizo25 as well as our previously published saRIA software26. All these tools rely on thresholding 
and morphological filtering techniques to segment the roots from background. Other root phenotyping solu-
tions like SmartRoot27,28 require manual segmentation by placing multiple landmarks along the roots that are 
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subsequently interconnected to the root skeleton. All the above software solutions are time consuming, have 
limited throughput capabilities, and require expertise in parameter tuning.

To overcome the limitations of existing methods, automated root image segmentation solutions are required 
for high-throughput root image segmentation and phenotyping. In the last 5 years, deep learning gained high 
attention especially in computer vision applications, because of the ability to directly extract and train relevant 
multi-level features from data without prior knowledge and human effort in feature design. Convolutional neural 
networks (CNNs) are a class of deep learning approaches that have shown to outperform traditional methods 
in many applications of the computer vision that are associated with higher level cognitive abilities29. CNNs 
have been shown to outperform conventional approaches when applied to traditionally difficult tasks of image 
analysis including pattern detection and object segmentation in biomedical images30,31, traffic scenes32 and remote 
sensing33. In recent years, they were also used for high-throughput plant phenotyping such as detection of wheat 
roots grown in germination paper34, segmentation of roots from soil in X-ray tomography35 and segmentation 
of spikes in wheat plants36. However, most of these works present exemplary application and/or computational 
frameworks that can hardly be handled by end-users without advanced programming skills.

The focus of this work is on semantic segmentation of soil-root images by which root pixels are automatically 
segmented from soil regions. For this kind of approach, CNNs often use encoder–decoder architecture. Till date, 
several papers have been published on this type of CNN architecture for biomedical30,31 and areal applications32,33. 
Moreover, this type of architectures are constantly improving by cascading or fusing the CNNs in biomedical37,38 
and remote sensing applications39.

Application of CNNs to automated image analysis and plant phenotyping became an emerging trend in 
quantitative plant sciences in the recent years40. However, reliable software tools suitable for a particular plant 
type are rarely available due to the large variability of optical plant appearance, differences between experimental 
setups35,40, and the absence of labelled ground truth data41,42. Consequently, only a few software tools for high-
throughput plant image analysis and phenotyping are presently known.

Previously published state of the art encoder–decoder CNN solutions for root image segmentation include 
RootNav 2.043, SegRoot44 and RootNet45. Among those, RootNav 2.0 and RootNet tools were primarily devel-
oped for particular experimental setups such as roots grown on germination paper with high contrast between 
root and (blue) background pixels, and, thus, cannot be expected to perform accurately by application to other 
imaging modalities such as noisy soil-root images in this work.

Among the above mentioned tools, SegRoot appears to be the most suitable one for soil-root image segmenta-
tion as it is previously shown to be capable of segmenting roots from soil background in minirhizotrons systems. 
Moreover, the architecture of SegRoot is somewhat similar to U-Net and it transfers the location of feature maps 
to decoder for image segmentation. However, this approach failed to detect fine, blurry and low contrast roots, 
which, in turn, compromises the accuracy of resulting phenotypic traits such as estimated root biomass and 
other geometric features. To overcome these limitations, here, we adopted a U-Net30 based encoder–decoder 
architecture which transfers both location and pixel information of the feature maps to the decoder. Also, it is 
especially useful when large amount of manually annotated data is challenging, such as often the case in bio-
medical applications.

The aim of this work is to develop an efficient and handy tool for fully automated root image segmentation 
and quantification using a pre-trained deep CNN framework which could be used in a straightforward manner 
even by unskilled users. Although, our approach relies on supervised model training, for the end-users such a 
model-based image analysis is performed in a fully automated manner (i.e. without interaction with data and/or 
parameter tuning) in contrast to purely manual or semi-automated image segmentation approaches where such 
interactions are required. Consequently, we termed this approach fully-automated root image analysis (faRIA). 
The main contributions of this work include:

•	 Development of a CNN approach to automated root image segmentation based on the U-Net architecture 
from30,

•	 Training and application of the CNN model for efficient segmentation of root structures of different size, 
shape and optical contrast on low budget hardware systems using image masking approach,

•	 Evaluation and comparison of our CNN model vs. other state-of-the-art tools for root image analysis using 
the Dice similarity metrics,

•	 Evaluation of our CNN framework performance on images of different root imaging modalities,
•	 Development of a GUI based front-end for efficient handling of the algorithmic framework suitable also for 

IT-unskilled users.

The paper is structured as follows: first, we describe the methodological framework of proposed U-Net based 
deep learning algorithm and performance matrices for soil-root segmentation. Then, a brief experimental setup 
consist of data preparation, training and prediction procedure are discussed. Followed by, the results of experi-
mental investigation are presented including a comparison of faRIA performance to other image segmentation 
tools, performance on resized images and robustness by application to other image modalities and plant species. 
In discussion, we summarize the results of an evaluation study using faRIA image segmentation and present its 
GUI implementation for efficient application in high-throughput root phenotyping.

Methods
Deep CNN model for root image segmentation.  The proposed CNN architecture is derived from the 
original U-Net30 which provides a versatile framework for semantic image segmentation consisting of encoder 
and corresponding decoder units. Our CNN model has a depth of 3 which is less than original U-Net depth of 
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4 due to the smaller input image size. Further, in our approach  batch normalization46 is applied after each con-
volutional layer in contrast to the original U-Net architecture where it was not the case. The motivation behind 
the batch normalization is it is known to make model performance more faster and stable46,47. Furthermore, the 
original U-Net30 used dropout layer which we avoided because in some cases the combination of batch normali-
zation and dropout layers can cause worse results48. Also, kernel size of the convolutional layers was set larger in 
our approach than in the original U-Net to improve the continuity in segmentation of roots49. The details of the 
convolutional parameters in comparison to the original U-Net are summarized in Table 1.

Motivated by the encoder–decoder architecture of U-Net, a network framework for soil-root image segmenta-
tion was constructed, see Fig. 1. In particular, our network was designed to be trained on patches of input images 
in original resolution. This was introduced in order to enable model training using larger amount of ground 
truth data on consumer GPUs while preserving high-frequency image information which otherwise would be 
lost either by restricting the training set to maximum possible capacity of GPU RAM or by image downscaling. 
Furthermore, training of CNN on image patches instead of full-size images is known to be more advantageous 
for learning local features50. Therefore, the architecture was designed in such a way that it has input and output 
layers of the size 256× 256 . In what follows, the details of network encoder and decoder layers are described.

Encoder network: The encoder network consists of 3 encoder blocks. The first encoder block takes the image 
patches of size 256× 256 as input and produces corresponding feature maps of size ( 256× 256× 16 ) as output. 
Then the feature maps are forwarded to the second and third encoder blocks to generate further feature maps 
for the root detection. Each encoder block consists of two convolutional layers to learn feature maps at respec-
tive levels, where each convolutional layer consists of 7× 7 convolution filter followed by batch normalization46 
and a non-linear activation function called Rectified Linear Unit (ReLU)51. Here, batch normalization improves 
the network performance and stability by normalizing the feature maps at respective levels46. Followed by each 
encoder block, max-pooling operation using general window size of 2× 250,52 is applied for down-sampling the 
feature maps by half of its original size. This results in aggregate features are generated more efficiently. All three 

Table 1.   Convolutional parameters of the original U-Net and proposed modifications.

Convolutional parameters Original U-Net Proposed modifications

Kernel size 3× 3 7× 7

Transposed kernel size 2× 2 3× 3

Stride 1× 1 2× 2

Padding Unpadded Padding with zeros

Depth 4 3

Number of filters (64, 128, 256, 512, 1028) (16, 32, 64, 128)

Figure 1.   The proposed U-Net architecture for soil-root image segmentation.
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encoders are repeated with varying depth of 16, 32 and 64 to detect diverse root features respectively. The details 
of each encoder block and corresponding max-pool layers are given in Table 2.

Followed by encoder network, a bridge encoder block without max-pooling layer is applied. This results in 
128 feature maps of each size 32× 32 are generated.

Decoder network: The output from the bridge encoder ( 32× 32× 128 ) is upsampled using 3× 3 transpose 
convolution with same padding and stride 2. This means size of feature maps ( 32× 32× 128 ) were double to 
( 64× 64× 128 ) by applying filter of size 3× 3 to all input elements and boarder elements were computed using 
zero padding. Then the resulting feature map is concatenated with the corresponding encoder feature maps. This 
results in feature maps of size ( 64× 64× 256 ) are generated. Then it is passed through a convolutional layers like 
encoder block but having decreasing channel depth of 64. This process is repeated for remaining decoder blocks 
with decreasing channel depth of 32 and 16. The details of each decoder block and corresponding transpose layer 
outputs are given in Table 3. Finally, the output of the final decoder block is fed into a convolutional layer of size 
1× 1× 1 with “Softmax” activation function53 to classify each pixel as root or non-root at the patch level. The 
output of proposed architecture is a predicted mask of size 256× 256 like the input image patch a shown in Fig. 1.

Performance metrics.  To evaluate the performance of the proposed U-Net model during training and 
testing stage, Dice coefficient (DC)54 is used. It measures the area of intersection between the model and ground 
truth segmentation and its value ranges from 0 to 1, where 1 corresponds to 100% perfect and 0 to false segmen-
tation. The Dice coefficient is defined as:

where P and G are predicted and ground truth binary images respectively. Pi and Gi are output values 0 and 1 
of pixel i in predicted and ground truth binary image respectively. Also, the above equation can be re-written 
as following:

From Eq. (2) it follows that the model would likely overestimate soil pixels and underestimate root pixels in the 
segmented image, because root images typically contain significantly more background pixels than root pixels. 
In that case, precision defines the ratio of correctly predicted root pixels to the number of pixels predicted to 
be root and recall is the ratio of correctly predicted root pixels to the number of actual root pixels in the image.

Ethical approval.  All the protocols involving plants adhered to the ethical guidelines for plant usage were 
followed while conducting theexperiments.

Experimental setup
Data and image annotation.  Near-infrared (NIR) images of maize plant roots grown in soil were cap-
tured by using IPK plant phenotyping system for large plants17. Images were taken by one side-view 12MP 
monochrome camera (UI-5200SE-M-GL, IDS) with chip sensitive in NIR portion of electromagnetic spec-
trum and suitable distortion-free lens (V1228-MPY). Also, it includes homogeneous infrared LED light source 
(850 nm) and filters preventing reflections during image acquisition. In brief, plants were grown in rhizopots 
[ 342× 350 mm ( W × L )] filled with the potting substrate (Potgrond P, Klassmann).
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Table 2.   Details of all encoder blocks and corresponding max-pool layer output.

Encoder block #
Input to encoder 
block

Convolution filter 
size

Number of 
feature maps

Output of 
encoder block

Input to max-
pool Max-pool output

Block 1 256× 256 7× 7 16 256× 256× 16 256× 256× 16 128× 128× 16

Block 2 128× 128 7× 7 32 128× 128× 32 128× 128× 32 64× 64× 32

Block 3 64× 64 7× 7 64 64× 64× 64 64× 64× 64 32× 32× 64

Table 3.   Details of all decoder blocks and corresponding transpose convolutional layers.

Decoder block #
Input to transposed 
convolution

Output of transposed 
convolution

Number of decoder 
blocks Convolution filter size

Number of feature 
maps

Output of decoder 
block

Block 1 32× 32× 128 64× 64× 128 64× 64× 128 7× 7 128 64× 64× 64

Block 2 64× 64× 64 128× 128× 64 128× 128× 64 7× 7 64 128× 128× 32

Block 3 128× 128× 32 256× 256× 32 256× 256× 32 7× 7 32 256× 256× 16
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200 greyscale root images of maize plants acquired with the IPK plant phenotyping system were selected for 
the ground truth segmentation. This labelling task is performed by agronomists using our previously published 
software for semi-automated root image analysis (saRIA)26 which provides an efficient graphical user interface 
for tuning parameters of image segmentation including intensity threshold, morphology and noise removal to 
generate an accurate segmentation of roots in soil. The images acquired with the above imaging system have reso-
lution of 2345× 2665 . A detailed root annotation with saRIA took approximately 5–10 min per image depending 
on the amount of root pixels in the image. Figure 2 shows an example of IPK plant phenotyping system images 
and their corresponding binary segmentation using saRIA. This binary mask contains all roots as foreground in 
white and the remaining pixels as background in black.

To enable application of the proposed model to a broad range of root imaging modalities, the model originally 
developed for NIR root image segmentation was applied to LED-based rhizotron and ultraviolet (UV) imaging 
systems18,26. In fact, such approach is feasible because root structures in both image modalities exhibit large 
similarities. The rhizotron system contains a root camera (Allied Vision Prosilica GT 6600) and uses white LED 
illumination to image the roots growing in soil along plexiglass plates. The UV system contains two monochrome 
UV-sensitive cameras (UI-5490SE-M-GL, IDS) with two sets of LED illumination panels (UV, 380 nm) in a 
custom-made imaging box. It is suitable for capturing small plants in transparent pots of size [ 77× 77× 97 mm 
( W × L ×H )] filled with the potting substrate (Potgrond P, Klasmann). This system allows non-invasive acquisi-
tion of root images in darkness18.

Training.  The proposed U-Net model was developed under Python 3.6.1 using TensorFlow55 library with 
Keras API56,57. Image processing functions like cropping and morphological functions (dilation, erosion) were 
implemented using PIL, Numpy58 and Scikit-Image59 packages. Then the model was trained on Linux operat-
ing system (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz) with NVIDIA Tesla P100-PCIE-16GB graphic card.

Images analysed in this work contain both thin and fine root structures that may have only one or few pixels 
in width. To preserve such fine structures the binary masks were dilated similar to strategy applied in SegRoot44. 
Originally 2345× 2665 sized root images of maize plants are analysed step-wise using  256× 256 crop masks. 
Thereby, the original image edges were padded with zeros so that both its width and height are divisible by 256. 
Hence, original image size is increased to 2560× 2816 with zero-padding. Then each image is partitioned into 
110 non-overlapping 256× 256 crop masks and approximately 20,000 crop masks are generated for all images. 
However, 2/3 of those cropped masks contain only background structures that contribute to training the network 
only background appearance. To avoid potential imbalance between plant and non-plant training masks, only 
cropped regions with both root and background pixels information of the size 256× 256 were selected from 
182 original images. Then each cropped image is normalized in the range of [0, 1] for feature consistency in the 
CNN network.

Subsequently, the data set was partitioned into training and validation sets in the ratio of 85:15. The train-
ing set is used to optimize the proposed model with Adam optimizer60 in such way that the weight parameters 
improve the model segmentation performance. Also, the initial weights of the networks were defined randomly 
as proposed by Krizhevsky et al.61 with the mean 0 and the standard deviation of 0.05. Here, the model training 
was initialized for maximum of 200 epochs with 16 number of convolutional channel features and batch size of 
128 as per system constraints. Loss functions quantify the unhappiness of our network during training and it 
defines the difference between predicted output and ground truth generated by saRIA. The result of loss func-
tion can be improved by updating weights of the network in an iterative manner. Here, more commonly used 
“binary cross-entropy loss” function50 is used to predict binary class label (i.e., roots and non-roots) at each 
patch level. This function compares each pixel prediction (0: non-root, 1: root) to the corresponding ground 
truth pixel and averages all pixels loss for computing total loss of the image. Therefore, each pixel contributes to 
the overall objective loss function. Then the learning rate of the Adam optimizer60 was estimated from a range 

Figure 2.   Exemplary root image from IPK plant phenotyping system: (a) maize plant roots 28 days after 
sowing, (b) corresponding root segmentation from soil performed using saRIA.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16047  | https://doi.org/10.1038/s41598-021-95480-y

www.nature.com/scientificreports/

of reasonable values (0.00001, 0.0001, 0.001, 0.1, 1 and 10) while monitoring the training and validation Dice 
coefficient of the model.

Prediction.  As stated in image annotation subsection, the images from IPK plant phenotyping system 
have the original resolution of 2345× 2665 , while the proposed U-Net model requires input images of the size 
256× 256 . In the preprocessing stage, zero padding is applied to test images similar as it was done in the training 
stage. Then non-overlapping 256× 256 masks were generated. The model does predictions on these 256× 256 
masks that are then combined to one single output image. Finally, the zero padded pixels were removed and the 
segmented image with resolution identical to the original input image was generated. This complete process is 
dynamic and automatized in the prediction stage as shown in Fig. 3. Since the output layer is given by the Sig-
moid activation function, the predicted segmentation is a probability map with values ranging between 0 and 1. 
Hence the generated probability map was converted to a binary image using threshold T. Here, the root pixels 
with a relatively high T ≥ 0.9 is chosen to avoid misclassification for the soil-root image segmentation. After 
fully automated segmentation, the proposed model performs phenotyping of segmented root structures similar 
to saRIA26.

In practice, the end-users prefer to have an easy-to-use software solution including the Graphical User Inter-
face (GUI). Therefore, a user-friendly GUI front-end was developed under the MATLAB 2019b environment62 
to comfortably operate the complex algorithmic framework of faRIA software. Figure 3 shows the complete 
workflow involved in faRIA for automatic root segmentation and trait extraction. For import of deep learning 
models trained under Python the MATLAB interoperability routine importKerasNetwork62 was used. Accord-
ing to specification of this function, the U-Net models trained in Python were exported in the so-called h5 file 
format, which is supported by the recent versions of MATLAB including 2019b.

In addition to 256 cropped masks, the proposed U-Net model was extended to train on full images. This 
model has an input and output images of size 1024× 1024 as per our system constraints. So that the original and 
ground truth images were resized to 1024× 1024 using bi-linear interpolation method63. Also, the model consist 
of an additional encoder and decoder blocks with convolution mask of size 5× 5 in their respective networks. 
Therefore, encoder network generates the feature maps from size 1024× 1024× 1 to 32× 32× 128 and inverse 

Figure 3.   Workflow of the pipeline for image processing and segmentation in faRIA. Green and orange colour 
boxes represents the operations of image segmentation and trait calculation: (a) original image, (b) original 
image patches of size 256× 256 , (c) segmented image patches of size 256× 256 , (d) binary segmentation of 
original image, (e) binary skeleton of (d).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16047  | https://doi.org/10.1038/s41598-021-95480-y

www.nature.com/scientificreports/

size in the decoder network. To distinguish both networks, the proposed U-Net model on 256 and 1024 masks 
are named as faRIA:256 and faRIA:1024, respectively.

Results
Training and validation of faRIA.  As discussed above, the training and validation of faRIA:256 model 
was performed on totally 6465 image patches in the ratio of 85:15 between train and test images, respectively. 
The performance of the trained model is analysed using binary cross-entropy loss, Dice coefficient, precision 
and recall at each epoch during learning stage of the network. Figure 4 shows the training and validation perfor-
mance of the faRIA:256 over 200 epochs. It turned out that the training loss (Fig. 4a) was minimized and platen 
the curve near to zero after epoch number 140. Simultaneously, training DC, precision and recall were maxi-
mized and achieved more than 90% of the accuracy from epoch number 100. But generalized performance of the 
model is measured using validation parameters. Figure 4b explains that the proposed model achieved maximum 
validation Dice coefficient of 0.874 and minimum validation loss of 0.033 at epoch number 71.

Evaluation of faRIA versus SegRoot.  For comparing the performance of faRIA:256 model with exist-
ing tools, SegRoot44 was trained on the same image data set. For this purpose, the SegRoot model was trained 
on 256× 256 image blocks for 200 epochs with best practical parameters of depth 5 and width 8 as suggested 
in Wang et al.44. In addition, to validate the performance of proposed model on full image instead of 256× 256 
blocks (faRIA:256), faRIA:1024 was proposed. The faRIA:1024 model was trained for 200 epochs with training 
configurations similar to faRIA:256. Tables 4 and 5 show the training parameters and performance measures of 
the faRIA:256 with respect to SegRoot and faRIA:1024.

Followed by training performance, an exemplary performance of above three models on test image was 
performed, see in Fig. 5. Thereby, the faRIA:256 model showed the DC of 0.83 whereas SegRoot and faRIA:1024 

Figure 4.   Training and validation performance of the faRIA:256 model over 200 epochs. X- and Y-axes 
represent the epoch number and performance measure, respectively.

Table 4.   Training parameters of SegRoot, faRIA:1024 and faRIA:256 over 200 epochs.

Training parameter SegRoot-8-5 faRIA:1024 faRIA:256

Learning rate 0.01 0.001 0.001

Batch size 128 3 128

Epochs 200 200 200
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achieved 0.42 and 0.44 respectively. Also, the presence of marginal artefacts in faRIA:1024 and faRIA:256 com-
pared to ground truth are shown in Fig. 6.

Segmentation of further image modalities.  The faRIA:256 model originally trained on maize plant 
roots from IPK plant phenotyping system is applied to LED-based rhizotron and UV imaging systems for the 
root segmentation from soil. Figures 7 and 8 shows the DC of faRIA:256 model over 40 barley and 30 arabidop-
sis root images from rhizotron and UV imaging system and achieved mean DC of 0.85 and 0.68 respectively. 
An exemplary segmentation of rhizotron (image number 4 in Fig. 7) and UV image (image number 6 in Fig. 8) 
are shown in Figs. 9a–c,e and 10a–c,e respectively. Here, the faRIA:256 model resulted DC of 0.87 and 0.79 for 
rhizotron and UV image compared to the ground truth generated by saRIA respectively. In addition, the perfor-
mance of the SegRoot on same rhizotron and UV image compared to the ground truth is shown in the Figs. 9d,f 
and 10d,f respectively. Here, false negative (green) and false positive (pink) pixels represents the undetected and 
falsely classified root pixels in the predicted segmentation compared to the ground truth.

Evaluation of phenotypic traits versus saRIA.  In addition to the segmentation performance, pheno-
typing characterization obtained with faRIA are also evaluated in comparison to saRIA. Here, correlation coef-
ficient of determination R2 and significance level p value are used to measure the percent of the faRIA calculated 
traits that are close to the ground-truth (from saRIA) and model validation respectively. Figure 11 shows the 
correlation between the saRIA (x-axis) and faRIA (y-axis) outputs for four traits where each point denotes one 

Table 5.   Training performance of SegRoot, faRIA:1024 and faRIA:256 over 200 epochs.

Validation measure SegRoot-8-5 faRIA:1024 faRIA:256

Cross-entropy loss 0.374 0.043 0.033

Dice coefficient 0.666 0.888 0.874

Precision 0.652 0.901 0.849

Recall 0.735 0.824 0.846

Figure 5.   Segmentation performance: (a) original image, (b) ground truth segmentation by saRIA, (c) SegRoot 
with DC: 0.42, (d) faRIA:1024 with DC: 0.44, (e) faRIA:256 with DC: 0.83.

Figure 6.   Segmentation artefacts: (a) original root structure, (b) faRIA:1024: noisy segmentation of (a) at root 
edges, (c) faRIA:256: noise-free segmentation of (a).
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particular image out of 40 barley root images from rhizotron imaging system. Out of 75 traits, only four impor-
tant traits for root biomass calculation are presented for faRIA evaluation. They are total root area, total root 
length, total root surface area and total root volume. Further information on definition of traits is included in 
the Supplementary Information, see Table S1. Figure 11 shows that correlations between traits calculated with 
saRIA and faRIA are highly significant and exhibit R2 values greater than 0.98, 0.97, 0.98 and 0.98 and p values 
1.59e−40, 5.01e−38, 7.63e−42, and 5.13e−42, respectively.

Graphical user interface and runtime.  Figure 12 shows the GUI of faRIA software which is freely avail-
able as a precompiled executable program from https://​ag-​ba.​ipk-​gater​sleben.​de/​faria.​html. In addition to fully 
automated image segmentation, faRIA calculates 75 root traits that are categorized into 12 feature groups named 

Figure 7.   Dice coefficient of faRIA:256 over 40 barley soil-root images from rhizotron imaging system. The 
orange line represents the mean DC value.

Figure 8.   Dice coefficient of faRIA:256 over 30 arabidopsis soil-root images from UV imaging system. The 
orange line represents the mean DC value.

https://ag-ba.ipk-gatersleben.de/faria.html
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area (number of root pixels), number of disconnected root objects, total length, surface area, volume, number of 
branching and ending points, statistical distribution (mean, median, standard deviation, skewness, kurtosis, per-
centile and bootstrap) of root geometry in horizontal and vertical direction, width, orientation and convex-hull. 
In the present release, the phenotyping module of faRIA is identical to our saRIA software26. Further informa-
tion on definition of traits is included in the Supplementary Information, see Table S1.

The faRIA software provides users with an option to select faRIA:256 or faRIA:1024 model depending on 
image quality, time and accuracy. The faRIA software can analyse a single image or large image data set to 
automatically detect and extract multiple root traits. Regarding timing performance, the faRIA segmentation, 
root tracing and trait calculation all together take, in average, 80 s using faRIA:256 and 15 s using faRIA:1024 
models to process and analyse a 6-megapixel (cropped) image on a system with Intel(R) Xeon(R) Gold 6130 
CPU @2.10GHz. Therefore, faRIA:1024 can process at least 3 times faster than faRIA:256 for root image analysis.

Discussion
Our experimental results on different plant species from different imaging systems have demonstrated a remark-
able accuracy of an adopted U-Net model for fully automated soil-root image segmentation. During the training 
stage, the faRIA:256 model achieved nearly zero loss and ≥ 95% of accuracy measured by the Dice coefficient 
(DC) crossover 200 epochs, see Fig. 4. By application to the test images, the best performance was found at the 
epoch number 71 with the maximum DC of 0.874 and minimum loss of 0.033. For larger number of epochs, 
validation error was just marginally higher. However, the precision and recall are contrasting each other at low 
DC epochs, and both achieved maximum at epoch number 71. Therefore, the network weights and optimization 
parameters at epoch number 71 are adopted as the best model for soil-root image segmentation.

The performance of the faRIA:256 model was compared with the SegRoot. From the summary in Table 5, it 
is evident that faRIA:256 is significantly outperforming the SegRoot on our data set with improving the cross-
entropy loss by the factor 10 and DC by 20%, respectively. We draw this results back to the fact that the SegRoot 
model transfers only max-pooling indices (i.e., location of feature maps) from encoder to decoder for feature 
concatenation and reconstruction, whereas our U-Net model transfers complete feature map information (i.e., 
both location and pixel values) to the decoder. This leads to detection of both primary and secondary low contrast 
roots with the improved DC in comparison to the SegRoot, see Fig. 5. However, more information required for 
U-Net makes the decoder path expensive and requires more memory (9.47 MB) than the SegRoot (1.49 MB).

Figure 9.   Applicability of faRIA on rhizotron soil-root images: (a) image of barley plant roots at lateral stage, 
(b) ground truth segmentation generated by saRIA, (c) predicted segmentation using faRIA:256, (d) predicted 
segmentation using SegRoot, (e) overlay of faRIA prediction on ground truth with DC = 0.87, (f) overlay of 
SegRoot prediction on ground truth with DC = 0.73. Green, pink and white colour pixels represents false 
negatives, false positives and correctly segmented pixels in the predicted image with respect to ground truth 
respectively.
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In addition to the faRIA:256 model, which was trained on 256× 256 patches of original large root images, 
the performance of proposed U-Net architecture was reformulated on full images and validated with images 
downscaled to the size of 1024× 1024 due to our hardware limitations using the faRIA:1024 model. While both 
faRIA:1024 and faRIA:256 models demonstrated a comparable accuracy in the training stage, faRIA:256 exhibits 
more balanced performance between precision and recall than faRIA:1024. This imbalance is cased by the pixels 
of intermediate intensity on the boundary between the soil and root regions that correspond to average values 
calculated by downscaling. Pixels of intermediate intensities lead to false positive detection (Fig. 5b). In par-
ticular, it is the case by segmentation of thin root structures in downscaled images using the faRIA:1024 model.

Since roots and background regions exhibit similar structural properties in images of different modalities 
and plant species, our model originally trained on NIR maize roots images could also be applied to barley and 
arabidopsis roots from LED-rhizotron and UV imaging systems, respectively. For rhizotron images it achieved 
the minimum accuracy of 80% for all images with exception of the image number 19 in Fig. 7. The overall mean 
DC = 0.85 indicates a fairly accurate segmentation of rhizotron images. The exceptional image with the number 
19 exhibit low DC due to the presence of high intensity noise similar to root structures. Moreover, our model 
preserves the root thickness and continuity in the secondary roots compared to the SegRoot as shown in Fig. 9e,f. 
This results in DC of rhizotron image 0.87 is higher than the SegRoot 0.73.

The application of faRIA on UV images, the accuracy of the faRIA:256 model ranged between 60 and 83% 
with the mean DC = 0.7, see Fig. 8. A relatively low DC for some UV images is due to the presence of diverse 
artefacts including low contrast between the root architecture and heterogeneous soil regions, in-homogeneous 
scene illumination (i.e., vertical intensity gradient). This results in inaccurate segmentation (pink colour pix-
els) of low contrast structures and false detection of high intensity background structures as shown in Fig. 10. 
However, faRIA:256 achieved the continuity in the root segmentation along the contrast varying root structures 
with DC of 0.80 (Fig. 10e) whereas SegRoot results in discontinues root structures with DC of 0.67 (Fig. 10f). 
Therefore, approximately 80% of the root pixels were correctly detected by faRIA:256 compared to the ground 
truth. Further examples of NIR, rhizotron and UV root image segmentation for juvenile or adult plants are in 
the Supplementary Information (see Figs. S1–S6).

Furthermore, a direct comparison between phenotypic traits calculated with semi-automated (saRIA) and 
fully automated (faRIA) approaches shows a highly significant correlation which indicates that root image seg-
mentation and phenotyping using faRIA as practically as good as human-supervised one.

Figure 10.   Applicability of faRIA on UV soil-root images: (a) image of arabidopsis plant roots from UV 
imaging system, (b) ground truth segmentation generated by saRIA, (c) predicted segmentation using 
faRIA:256, (d) predicted segmentation using SegRoot, (e) overlay of faRIA prediction on ground truth with DC 
= 0.80, (f) overlay of SegRoot prediction on ground truth with DC = 0.67. Green, pink and white colour pixels 
represents false negatives, false positives and correctly segmented pixels in the predicted image with respect to 
ground truth respectively.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16047  | https://doi.org/10.1038/s41598-021-95480-y

www.nature.com/scientificreports/

Figure 11.   Correlation between root traits calculated using semi-automated saRIA (x-axis) and fully-automated 
faRIA (y-axis) image segmentation. Each point represents a trait value estimated from one of 40 soil-root images 
from rhizotron imaging system. The red colour solid line and dotted lines represent a fitted curve and 95% 
confidence bounds, respectively. The R2 value indicates good conformity between saRIA and faRIA results of 
image segmentation and trait calculation.

Figure 12.   Graphical user interface of faRIA. Green colour pixels represent root regions automatically 
segmented by the U-Net model.
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Further, investigations with extended and/or augmented image data are required to improve the accuracy of 
segmentation of other root images that were not included in the original training set. On the other hand, it can-
not be excluded that training of dedicated models with a narrow focus on a particular type of imaging modality 
and image structures could be a more reliable strategy to achieve more accurate results.

Conclusion
Automated segmentation and analysis of a large amount of structurally heterogeneous and noisy soil-root images 
is a challenging task which solution is highly demanded in quantitative plant science. Here, we present an 
efficient GUI-based software tool for fully automated soil-root image segmentation which relies on the U-Net 
CNN architecture trained on a set of 6465 masks derived from 182 manually segmented soil-root images. The 
proposed algorithmic framework is capable to efficiently segment root structures of different size, shape and 
contrast with higher accuracy of DC = 0.87 in comparison to the state-of-the-art solutions (SegRoot: DC = 0.67). 
Our experimental results showed that the model trained with representative patches of root and background 
structures enables consideration of a larger amount ground truth data than original full-size images. Thereby, 
the faRIA:256 model trained on smaller size masks outperforms the larger mask model (faRIA1024) with respect 
to the overall precision and recall by comparison with ground truth data. In addition to NIR maize root images 
that were originally used for CNN model training, the faRIA tool can also be applied to other imaging modali-
ties and plants species that exhibit similar structural properties of root and background regions. In addition to 
root image segmentation, faRIA calculates a number of useful phenotypic traits that in our experimental stud-
ies were shown to exhibit a significant correlation ( R2 = 0.98 ) with the ground truth traits. While the present 
CNN framework was predominantly trained with regular soil-root images, further investigations are required 
to address such challenging problems as segmentation of roots overlaid with a large scale noise (for example, 
due to water condensation) or filling artificial gaps in the root system that occur due to inhomogeneous scene 
illumination. Possible approaches to addressing these problems include, for example, appropriate augmentation 
of the training data set and/or alternative CNN models.
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