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Introduction: The epidemic of opioid use disorder and opioid overdose carries extensive morbidity and 
mortality and necessitates a multi-pronged, community-level response. Bystander administration of the 
opioid overdose antidote naloxone is effective, but it is not universally available and requires consistent 
effort on the part of citizens to proactively carry naloxone. An alternate approach would be to position 
naloxone kits where they are most needed in a community, in a manner analogous to automated 
external defibrillators. We hypothesized that opioid overdoses would show geospatial clustering within a 
community, leading to potential target sites for such publicly deployed naloxone (PDN). 

Methods: We performed a retrospective chart review of 700 emergency medical service (EMS) runs 
that involved opioid overdose or naloxone administration in Cambridge, Massachusetts, between 
October 16, 2016 and May 10, 2017. We used geospatial analysis to examine for clustering in 
general, and to identify specific clusters amenable to PDN sites.

Results: Opioid-related emergency medical services (EMS) runs in Cambridge, Massachusetts 
(MA), exhibit significant geospatial clustering, and we identified three clusters of opioid-related EMS 
runs in Cambridge, MA, with distinct characteristics. Models of PDN sites at these clusters show that 
approximately 40% of all opioid-related EMS runs in Cambridge, MA, would be accessible within 200 
meters of PDN sites placed at cluster centroids. 

Conclusion: Identifying clusters of opioid-related EMS runs within a community may help to improve 
community coverage of naloxone, and strongly suggests that PDN could be a useful adjunct to 
bystander-administered naloxone in stemming the tide of opioid-related death. [West J Emerg Med. 
2018;19(4)641–648.]

INTRODUCTION
Opioid-associated overdose and death continues at 

epidemic levels throughout the United States (U.S.) with 
mortality from opioid use the leading cause of accidental 
death in the U.S.1, 2 In Massachusetts (MA) there were 1,990 
confirmed opioid-related deaths in 2016, an all-time high and 
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a 19% year-to-year increase over 2015.3 Naloxone, a pure 
competitive antagonist at the opioid receptor, is capable of 
temporarily reversing the effects of an opioid overdose, and 
distribution of naloxone to people at risk of opioid overdose 
as well as their families and friends is a cornerstone of the 
response to the opioid epidemic.4, 5 Bystander naloxone, 
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What do we already know about this issue? 
Acute opioid overdose can be reversed by 
bystanders using naloxone, but only if they 
have access to it. Deploying naloxone kits in 
set locations might improve public access and 
facilitate overdose reversal. 

What was the research question?
Do opioid overdose-related emergency 
medical services (EMS) runs in Cambridge, 
Massachusetts, show distinct geospatial 
clusters where naloxone might be deployed? 

What was the major finding of the study? 
Among 700 EMS runs, we found significant 
geospatial clustering with approximately 40% 
occurring within 200 meters of one of three 
distinct hot spots. 

How does this improve population health?
Identifying clusters of opioid-related EMS 
runs within a community may help to improve 
community coverage of naloxone by suggesting 
specific locations for publicly deployed 
naloxone kits.

administered by the non-medically trained lay public, has been 
shown to reverse opioid overdoses and save lives; however, it 
requires an individual carrying naloxone at the same place and 
time as an overdose occurs.2, 6 Efforts to improve community 
prevalence of naloxone have focused on increasing prescribing 
and improving availability in pharmacies, and naloxone is now 
available in many areas either as an over-the-counter substance 
or under a standing order.7 However, barriers to obtaining and 
carrying bystander naloxone still exist, and bystander naloxone 
is not currently available everywhere it is needed.8-10

Unlike bystander-carried naloxone, the public deployment of 
automated external defibrillators (AEDs) in pre-determined, easy-
to-access locations for use by bystanders in cases of witnessed 
arrest requires no single individual in particular to obtain or 
carry the life-saving device and shifts the burden of providing 
potentially life-saving equipment from individuals to the 
community.11, 12 Traditionally deployed in settings of high traffic 
and mass gatherings such as airports, casinos, or sports stadiums, 
distribution of AEDs has recently been guided by geospatial 
analyses of cardiac arrest data and pedestrian traffic with 
encouraging results.13, 14  Publicly deploying naloxone in AED-
like kits may improve naloxone availability to overdose victims 
and overcome barriers associated with current bystander-carry 
methods. However, like AEDs and cardiac arrests, determining 
where to place potential PDN kits requires understanding where 
opioid overdoses occur. Recent work by our team and others has 
shown spatial clustering of opioid-related emergency department 
visits, opioid-related deaths, and self-reported bystander naloxone 
use, suggesting that opioid overdoses may also show spatial 
clustering amenable to PDN placement.15-17

We performed a geospatial analysis of emergency medical 
services (EMS) runs involving suspected or confirmed 
opioid overdose in the community of Cambridge, MA. We 
hypothesized that opioid overdoses do not occur randomly 
but instead show spatial clustering, and that identifying these 
clusters would both support the concept of publicly deployed 
naloxone and help identify locations where naloxone could be 
stationed for maximum potential effect. 

METHODS
Study Design and Selection of Participants

This was a retrospective analysis of EMS runs that occurred 
in Cambridge, MA, between October 16, 2016 and May 10, 
2017. Cambridge, MA, is a community of approximately 
110,000 citizens spread across approximately 17 Km2; EMS 
calls in Cambridge, MA, are served by a public-private 
partnership using the public fire service and a single, private 
EMS company, ProEMS.18, 19 As part of their standard operating 
procedures, EMS providers record pertinent information in an 
electronic medical record maintained by the EMS service. All 
runs for which overdose is part of the dispatch information or 
provider impression, or in which naloxone was administered 
by bystanders, first responders or EMS, are submitted to the 

Cambridge Department of Public Health. All cases, including 
the EMS patient care record and narrative were reviewed by an 
independent epidemiologist blinded to our study hypothesis. 
We included in this analysis any case for which the Cambridge 
Department of Public Health determined a suspected or 
probable opioid overdose. Data were manually reviewed for 
duplicate entries. We excluded any runs originating outside of 
Cambridge, MA. All data manipulation and statistical analysis 
was performed using the R programming language.20 This study 
was approved by the institutional review board at Partners 
Healthcare Boston, MA. 

Geocoding EMS Runs
Geocoding is the process of determining the exact 

spatial location of an address: During this process, a human-
readable address such as 795 Massachusetts Ave, Cambridge, 
MA 02139 (Cambridge City Hall) is transformed to spatial 
coordinates (e.g., X: -71.106026, Y: 42.36681), which are 
amenable to mapping and statistical analysis. We performed 
first-pass geocoding of addresses of EMS runs using 
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the U.S. Census Geocoder and address-batch geography 
lookups matched to U.S. Census 2010 data vintage, which 
provided coordinates in the North American Datum 1983 
(NAD83).21 Addresses not successfully geocoded by the U.S. 
census were geocoded using Google Maps, which provided 
coordinates in the World Geodetic System (WGS84).22 
NAD83 and WGS84 systems are equivalent to within 
approximately two meters over the small areas involved in 
this study, so the two systems were treated interchangeably 
for all geospatial analyses reported here.23-25 Cambridge, MA, 
city boundaries were defined by the Geographic Information 
System of the City of Cambridge, MA.26 Projections between 
latitude/longitude (degrees) and Cartesian coordinates 
(meters [m]) were performed using “sp” package in R.27 
Maps of EMS runs in Cambridge, MA, were produced using 
either the “spatstat” package in R, or QGIS software with 
base maps provided by OpenStreetMaps.28-30

Geospatial Analysis
Analysis of global spatial clustering of EMS runs, asking 

the question – do EMS runs cluster at all in Cambridge, MA? 
– was examined through calculations of Ripley’s K-function 
[K(r)]. We performed calculations of Ripley’s K function, as 
well as Monte Carlo estimates (MCE) of expected envelopes 
of K(r), using the “spatstat” package in R with Ripley’s 
isotropic corrections at window borders.28 Briefly, K(r) tests 
for clustering in a pattern of spatial points by examining 
observed vs. expected distributions of points around an 
index point within circles of various areas; in the setting of 
complete spatial randomness, the density of points should 
be uniform, so the expected number of points scales with 
the area of the test circle and should produce an exponential 
plot of K(r) vs. the circle radius. Compared to the global 
analysis of clustering provided by the Ripley’s K function, 
local analysis of clustering addressing the question of 
where exactly within Cambridge, MA, clusters might occur 
was performed using density-based clustering. We used an 
unsupervised, spatial density-based clustering algorithm – 
the density-based spatial clustering of applications with noise 
(DBSCAN) method via the “dbscan” package in R, after 
projecting coordinate data to the European Petroleum Survey 
Group (EPSG) Projection 26986.31, 32 Epsilon neighborhood 
parameters for the DBSCAN algorithm (EPS) was estimated 
at 200 using visual inspection of k-nearest-neighbor (KNN) 
plots (Supplemental Figure 1) with minimum KNN cluster 
sizes set to three members as described in the DBSCAN 
vignette.31 To maximize the potential utility of identified 
clusters, we only considered clusters of opioid-related 
EMS runs with at least 69 runs (10% of the total number 
of successfully geocoded runs in Cambridge, MA). We 
calculated distributions of distances between cluster points 
and cluster centroids in the EPSG 26986 projection using the 
“raster” package in R.33

RESULTS
Characteristics of EMS Runs

Between October 16, 2016, and May 10, 2017, we 
identified 700 opioid-related EMS runs in the ProEMS 
database, spread among 359 unique addresses in 
Cambridge, MA. Of these addresses, 353 (98.3%) were 
successfully geocoded to 349 unique physical locations; 
the majority (327, 92.6%) were geocoded using the U.S. 
census, and an additional 26 addresses (7.4%) were 
geocoded using Google Maps. The discrepancy between 
address and physical locations reflects the fact that multiple 
distinct addresses can occur at the same coordinates, such 
as with a multi-unit apartment building. For the remainder 
of our analyses, we used a location-based, as opposed to an 
address-based, approach. Collectively, these 349 locations 
accounted for 693 (99.0%) of the initially identified 700 
runs. Figure 1 shows a map of the locations of EMS runs 
in Cambridge, MA, during the study period. Of note during 
mapping, three locations (each with one run) were found 
to lie outside the official spatial boundary of Cambridge, 
MA, and were removed from further analyses, resulting 
in a final dataset of 690 geocoded runs. Of these 690 runs, 
we recorded information on patient gender for 683 runs 
(99.0%), and patient date of birth for 677 runs (98.1%); 
patients ranged from less than one year of age to 107 years 
old at the date of EMS service, with a median age of 36 
years (interquartile range ([QR] 29-49 years), and the 
majority were male (422, 61.8%).

Geospatial Clustering
To test the hypothesis that opioid-related EMS runs 

in Cambridge, MA, show spatial clustering, we estimated 
Ripley’s K-function for the set of 690 EMS runs that were 
geocoded within Cambridge, MA. Figure 2 shows an 
estimate of the K(r) function for the observed EMS runs, 
as well as a theoretically expected envelope generated by 
a MCE with 999 simulations of completely random spatial 
distributions of EMS runs within Cambridge, MA. As the 
observed estimate of K(r) deviates substantially from the 
MCE-generated expected envelope at multiple radii, there 
is statistically significant evidence of EMS runs clustering 
with an MCE approximate p-value of p ~ 0.001.

While computing K(r) shows evidence that opioid-
related EMS runs do cluster in general across the study 
area, understanding where to optimally place PDN sites 
would require more granular knowledge on locations of 
individual clusters within the study area. To begin to look 
for these clusters, we first searched for evidence of clusters 
of opioid-related EMS runs occurring at an individual 
location. Of the 346 unique locations in Cambridge, MA, 
242 locations (69.9%) had a single run each; 103 locations 
(29.8%) had between two and 16 runs each, collectively 
accounting for 372 runs (53.9%); finally, a single outlier 
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Figure 1. Map of locations of opioid-related emergency medical 
services (EMS) runs in Cambridge, Massachusetts (MA). 
Open circles represent locations at which at least one EMS run 
occurred during the study period. The dashed line shows the 
border of the city of Cambridge, MA. A scale bar is provided in 
the bottom left, and the arrow labeled “N” at the top right points 
due north. Background map data, obtained from OpenStreetMap 
contributors, is available at www.openstreetmap.org.

Figure 2. Estimates of Ripley’s K-function (K) for opioid-related runs. 
Monte Carlo estimates (MCE) of observed vs. expected values of 
Ripley’s K-function as a function of distance (r). The solid black line 
shows the estimated observed K(r), while the dashed red line shows 
the theoretical K(r) in the setting of complete spatial randomness 
for the same number of observations. The gray-shaded area shows 
estimates of potential variability in K(r) assuming complete spatial 
randomness, generated by MCE with n=999 simulations. 
Obs, observed; Theo, theoretical; Hi, Maximum MCE of theoretical 
distribution of K(r); Lo, minimum MCE of theoretical distribution of K(r).

location had 76 EMS runs, individually accounting for 
11.0% of all runs during the study period. This outlier 
location is a community-based service organization that 
provides recovery services and emergency shelter to 
homeless individuals, including those struggling with drug 
and alcohol addiction.34 Compared to runs originating at 
other addresses, EMS runs originating at this emergency 
shelter involved patients who were older, with a median 
age of 43 years (IQR 36.5-58.5 years) for patients coming 
from the emergency shelter compared to 35 years (IQR 
28-48 years) for patients coming from elsewhere in 
Cambridge, MA. No significant differences were observed 
in patient gender between patients coming from the service 
organization or from elsewhere in Cambridge, MA. 

After identifying this single-location cluster, we next 
considered clusters of EMS runs that spanned multiple, 
distinct locations, using an unsupervised, density-based 
clustering approach. Figure 3 shows the three distinct 
clusters of opioid-related EMS runs identified, named 
clusters “A,” “B,” and “C.” Collectively, 362 EMS runs 
(52.5%) were located in one of the three clusters. Cluster 
A includes 86 EMS runs (12.5%) from 42 separate 
locations covering a roughly circular area of approximately 
116,948m2 (0.05miles2) centered on the Harvard Square 
area, a busy, mixed commercial-residential area containing 
a public transportation hub and parts of Harvard University. 
Cluster B was the largest cluster, involving 191 EMS 

runs (27.7%) from 81 separate locations spread over a 
linear / ellipsoid area covering approximately 319,630m2 
(0.12miles2) along Massachusetts Avenue at the Central 
Square area, another large, mixed commercial-residential 
area containing a public transport hub. Finally, Cluster C 
included 85 EMS runs (12.3%) from only eight separate 
locations, one of which is the single-location cluster 
previously identified, which accounted for 76 (89.4%) 
of the EMS runs in Cluster C. The table summarizes 
geospatial and run-related details about these three clusters.

Modeling PDN Sites
For clusters A and B, which involved EMS runs spread 

widely across multiple locations, we modeled the potential 
impact of sites located at cluster centroids. For the purposes 
of these models, we assumed the PDN sites to be accessible 
within 200 meters (m) in any direction of the cluster 
centroid. This number was chosen to match the epsilon 
neighborhood parameter of the density-based scan statistic, 
but is an assumption of the distance a bystander would be 
willing to travel to access a PDN site. Figure 4 shows maps 
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of Clusters A and B with shaded circles representing the 
area within which the PDN was modeled to be accessible. 
For the purposes of visualization, a spatial jitter (random, 
small, spatial “nudge”) was applied to EMS runs in these 
clusters to better show call volumes at different locations 
in each cluster by allowing runs occurring at the same 
location to be displayed simultaneously on the map. With 

these assumptions, PDN sites at cluster centroids could 
potentially have modified 75 EMS runs (87.2%) from 
Cluster A, and 116 EMS runs (60.7%) from Cluster B. 
Cluster C involves 85 runs, but 76 of these runs come from 
a single location – assuming a PDN site was placed inside 
the service organization at that single location, and that all 
76 EMS runs from this individual site might be modifiable 
by a PDN site at that location, deploying PDN across all 
three clusters could potentially have modified 267 EMS 
runs, 38.7% of the total runs during the study period. 

DISCUSSION
We found that EMS runs involving opioid overdose 

exhibit geospatial clustering in Cambridge, MA, and 
identified three distinct geospatial clusters as potential 
targets for publicly deploying naloxone. To our knowledge, 
this is the first work to examine spatial clustering of opioid 
overdoses at the level of spatial granularity required to 
pinpoint potential sites of naloxone deployment. Our 
findings show two distinct types of spatial clusters, which 
may require different methods of naloxone deployment: 
clusters “A” and “B” are both centered at highly trafficked 
public areas in Cambridge, MA, while cluster “C” represents 
a spike of opioid-overdoses occurring at a single location. 

The optimum strategy for delivering naloxone to 
Cluster C would likely be locating naloxone kits at or inside 
the identified emergency shelter. By comparison, there 
might be multiple strategies for PDN sites within Clusters 
A and B, the simplest of which would be to position PDN 
sites at cluster centroids we modeled here. Positioning 
PDN sites at the cluster centroid is an inherently naïve 
solution that does not account for geographic realities 
such as vehicle and pedestrian access to various locations 
within a cluster, public visibility, and accessibility at off 
hours. Further work would be needed to understand how 
to optimize PDN placement within a cluster accounting for 

Figure 3. Density-based clustering of opioid-related emergency 
medical services (EMS) runs. Map of locations of opioid-related EMS 
runs with superimposed cluster analysis. Filled and unfilled circles 
both identify locations at which at least one EMS run occurred during 
the study period. Unfilled circles show locations not in clusters, 
while filled circles show locations in clusters and are colored by 
cluster membership. The areas encompassed by identified clusters 
are shaded in gray. The outer black line shows the boundary of 
Cambridge, Massachusetts, while the inner black lines surrounding 
clusters show the convex hull polygons enclosing each cluster. 
Labels “A,” “B,” and “C” identify and name the clusters.

Cluster Runs Locations Area M-Dist N-200 P-200 M-Age P-Female
A 86 42 116948.3 97.2 75 87.2 38 34.9
B 191 81 319630.7 171.7 116 60.7 37 31.4
C 85 8 94332.4 17.7 80 94.1 40 35.3

Table. Characteristics of clusters of opioid-related emergency medical services runs.

Runs: total number of emergency medical services (EMS) runs included in cluster. 
Locations: unique spatial locations included in cluster. 
Centroid: coordinates of cluster centroids, listed as Latitude / Longitude with WGS84 coordinate reference. 
Area: physical size of cluster in square meters. 
M-Dist: median distance in meters between all points in a cluster and the centroid of that cluster. 
N-200 and P-200: number and percentage of EMS runs in a cluster falling within 200 meters of the cluster centroid. 
M-Age: median age in years of patients receiving EMS care within a cluster. 
P-Female: percent of patients receiving EMS care within a cluster that was identified as female.
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Figure 4. Publicly deployed naloxone coverage areas in opioid-related emergency medical services (EMS) run clusters. Sub-maps 
of locations of opioid-related EMS runs in Cambridge, Massachusetts, centered on Cluster A (left) or Cluster B (right). Open circles 
represent locations in each cluster where at least one EMS run occurred during the study period. (A random spatial jitter has been 
applied to reduce numbers of degenerate points and better show approximate numbers of EMS runs at each location.) Locations of 
EMS calls that were not part of the relevant cluster are not shown. Solid lines surrounding clusters show the convex hull polygons 
describing the boundary of each cluster; because of the random spatial jitter, run locations may artificially appear outside of these 
polygons. Solid squares show the location of the centroid of each cluster, and shaded gray circles show circles with radii of 200 meters 
centered on cluster centroids.

these geographic realities, and different clusters likely have 
different optimal solutions. Still, using the simple models 
of naloxone deployment at cluster centroids, our results 
show that approximately 40% of the opioid-overdoses in 
this dataset would have occurred within 200m of a potential 
PDN site, suggesting that deploying naloxone at these sites 
would have a large impact on improving the availability of 
naloxone where it is needed most. 

Beyond simply providing targeting information for 
stationing naloxone kits, understanding local clustering 
patterns in opioid-related EMS runs could provide crucial 
information for a broader, multidisciplinary approach to a 
community’s response to the opioid epidemic. Knowledge 
of cluster location and EMS transport patterns could be 
used to identify potential community partners, for example, 
large academic centers such as a large university located 
in cluster A, a second large university located close to 
Clusters B and C, coalitions of business owners such 
as those in Clusters A and B, or specific hospitals that 
handle large portions of EMS transport from particular 
clusters. Knowledge of cluster locations could also inform 
other efforts to respond to the opioid epidemic including 
potentially where to deploy ambulances or where to focus 

efforts on training first responders and the lay public on 
bystander naloxone delivery. 

While these clusters represent effective potential PDN sites, 
future work combining these maps with spatial information 
about public naloxone use, deaths from opioids, or overdoses 
involving synthetic opioids such as fentanyl or car-fentanyl, 
could further optimize PDN placement within Cambridge, 
MA. Similarly, it might be useful to consider other sites of 
public access to emergency equipment that already exist and 
compare clusters of opioid-related EMS runs to the locations 
of AEDs already deployed in Cambridge, MA. Future work is 
also needed to consider the details of how PDN sites physically 
would be constructed, how the naloxone would be stored, and 
how they could be made most easily accessible to the public. In 
general, geospatial analysis of a particular subset of EMS runs, 
such as opioid-related runs, could be a useful tool for focusing 
community engagement, education, and intervention.

LIMITATIONS
This analysis of geospatial clustering of opioid-related 

EMS runs is limited to the underlying data captured by 
Cambridge’s EMS services, and therefore might not include all 
opioid overdoses in Cambridge, MA. While the total number 
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of opioid overdoses occurring in Cambridge, MA, during the 
study period is therefore likely greater than the 700 EMS runs 
we consider here, it is not possible to determine where non-
recorded overdoses occur geospatially. While inclusion of EMS 
runs into our data was determined by a trained epidemiologist 
independent to our study who examined all EMS data, we did 
not have access to outcome data including toxicological testing 
and hospital records. Thus, it was not possible to confirm 
overdose in each case with certainty. Additionally, the raw 
data for each run were not available so it was not possible to 
independently verify the epidemiologist’s assessment. However, 
these cases do likely represent the patients who would receive 
naloxone in a PDN program. Collectively, these facts might 
introduce error into our clustering, which is inherently only as 
good as the data it is built on. A minor limitation is the inability 
to independently verify the age of the one patient transported 
by EMS with a reported age of 107; it is not possible from 
available data to determine if this patient actually was 107 years 
old or had a default date of birth of 01/01/1910 entered. 

Within each cluster, the percentage of EMS runs that we 
label as “potentially modifiable” is dependent on our assumption 
of 200m as a travel distance to a PDN site. As discussed above, 
optimal placement of PDN sites requires further study, and 
bystanders might be willing to travel more or less than this 
distance depending on factors such as the built environment, 
weather, and time of day. Additionally, the analysis we performed 
here is limited to a single city served by a single EMS service, 
and more work would be needed to extend the modeling solution 
developed here to other cities including cities served by multiple 
EMS services each with partial data. Specifically, larger cities 
or cities with unique geographic features such as rivers or 
geographic boundaries that partition the city would require more 
robust spatial analysis. Each city considering implementation of 
PDN sites would need to analyze city-specific overdose data to 
optimize PDN positioning. 

Finally, it is not yet known if placing PDN sites would 
improve outcomes for cases of opioid overdose or would actually 
offer a quicker delivery of naloxone over EMS administration 
when studied in real life, and significant future work would 
be needed to investigate if this is the case. We believe that this 
analysis offers the theoretical and geospatial grounding for 
performing an “in vivo” PDN study and determining its utility as 
a response to the opioid epidemic.  

CONCLUSION
Opioid overdoses show spatial clustering in this geospatial 

analysis of EMS runs in Cambridge, MA, with three distinct 
clusters of opioid overdoses identified. In general, public 
deployment of naloxone in areas of high opioid overdose could 
be a useful and important adjunct to other methods of naloxone 
delivery including bystander naloxone and first-responder 
naloxone. Identifying clusters of opioid-related EMS runs within 
a community is a key first step.
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