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Background-—Family history of coronary heart disease (CHD) as well as genetic predisposition to CHD assessed by a genetic risk
score (GRS) are predictors of CHD risk. It is, however, uncertain to what extent these risk predictors are mediated by major
metabolic pathways.

Methods and Results-—Total effects of self-reported family history and a 50-variant GRS (GRS50), as well as effects mediated by
apolipoprotein B and A-I (apoB, apoA-I), blood pressure, and diabetes mellitus, on incidence of CHD were estimated in 23 595
participants of the Malm€o Diet and Cancer study (a prospective, population-based study). During a median follow-up of 14.4 years,
2213 participants experienced a first CHD event. Family history of CHD and GRS50 (highest versus other quintiles) were
associated with incident CHD, with hazard ratios of 1.52 (95% CI: 1.39–1.65) and 1.53 (95% CI: 1.39–1.68), respectively, after
adjusting for age, sex, and smoking status. Small proportions of the family history effect were mediated by metabolic risk factors:
8.3% (95% CI: 5.8–11.7%) by the apoB pathway, 1.7% (95% CI: 0.2–3.4%) by apoA-I, 8.5% (95% CI: 5.9–12.0%) by blood pressure,
and 1.5% (95% CI: �0.8% to 3.8%) by diabetes mellitus. Similarly, small proportions of GRS50 were mediated: 8.1% (95% CI: 5.5–
11.8%) by apoB, 1.2% (95% CI: 0.5–3.0%) by apoA-I, 4.2% (95% CI: 1.3–7.5%) by blood pressure, and �0.9% (95% CI: �3.7% to 1.6%)
by diabetes mellitus.

Conclusions-—A fraction of the CHD risk associated with family history or with GRS50 is mediated through elevated blood lipids
and hypertension, but not through diabetes mellitus. However, a major part (≥80%) of the genetic effect operates independently of
established metabolic risk factor pathways. ( J Am Heart Assoc. 2017;6:e005254 DOI: 10.1161/JAHA.116.005254).
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F amily history of coronary heart disease (CHD)1–3 as well
as genetic predisposition to CHD directly assessed by

genotyping and expressed as genetic risk score (GRS) for
CHD4–7 are strong predictors of CHD risk. Among others,

Barrett-Connor and Khaw already showed that family history
predicts cardiovascular risk independently of established
metabolic risk factors.8–13 Similarly, it was later shown that
GRSs are associated with CHD independently of established
risk factors.5,14,15 However, a portion of the risk may well be
explained or mediated through metabolic risk factor path-
ways. The fraction of risk associated with family history and
GRS that is mediated through metabolic risk factor pathways
has not been adequately reported in the medical literature.

Previous studies demonstrated that family history of CHD
or GRS was significantly associated with CHD after adjusting
for risk factors such as blood lipids, hypertension, and
diabetes mellitus (DM).5,8–15 However, metabolic risk factors
may not be confounders of genetic risk, but potential
intermediate variables or mediators of the causal pathway
between exposure (family history of CHD or GRS) and
outcome (CHD incidence). A metabolically unhealthy person
with a family history of CHD may suffer from hypertension or
hypercholesterolemia; thus that person’s predisposition to
CHD is mediated through these risk factors. In contrast, a
metabolically healthy person may have an increased genetic
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risk without elevated risk factor levels. The first case is an
example of an indirect effect mediated by intermediate
variables, while the second case is an example of a direct
effect of the exposure on the outcome. The sum of the
indirect and direct effects is the total effect. In contrast to
adjustment for risk factors, statistical mediation analysis
quantifies the magnitudes of total, direct, and indirect effects.

In the present study, we estimated the total effects of
family history and of GRS, as well as the direct effect and
indirect effects mediated by elevated blood lipids, hyperten-
sion, and DM on the incidence of CHD. Analyses were
performed in the Malm€o Diet and Cancer (MDC) study, a
prospective, population-based study providing the most up-to-
date information on genetic CHD risk for 23 595 men and
women. For this purpose, we applied recently developed
methods16,17 in the framework of causal inference.

Methods

Data Source and Study Population
The MDC study is a community-based, prospective observa-
tional study of 30 447 participants drawn from about
230 000 residents of Malm€o, Sweden. Men and women aged
45 to 73 years were invited to participate and were enrolled
between 1991 and 1996. Details of the MDC study design
have been previously reported.18,19

Participants completed a baseline examination that
included a blood draw and a questionnaire with assessment
of cardiovascular risk factors, including cigarette smoking,
family history of myocardial infarction, lipid-lowering therapy,
antihypertension therapy, and antidiabetic therapy.

Of note, apolipoprotein A-I (apoA-I) and apolipoprotein B
(apoB) plasma levels were measured rather than high-density
lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol
levels. DM was self-reported based on a physician’s diagnosis
of DM or use of antidiabetic medication. Self-reported family
history was based on the response of participants to a
questionnaire about whether their mother, father, or sibling
had a history of myocardial infarction.

Genotypes of the MDC study participants were deter-
mined using a multiplex method that combines polymerase
chain reaction, allele-specific oligonucleotide ligation assays,
and hybridization to oligonucleotides coupled to Luminex�

100TM xMAPTM microspheres (Luminex, Austin, TX).20

Subsequently, a genetic risk score accounting for 50 CHD-
related single nucleotide polymorphisms (SNPs) 50-variant
genetic risk score (GRS50) was calculated, as explained in
more detail in the work of Tada et al.21 In short, each study
participant received a score equal to the sum of the number
of risk alleles for each SNP weighted by the log of the odds
ratio reported with the SNP in the original report.

The primary end point of the study was time to first
occurrence of CHD. Incident CHD was defined as coronary
revascularization, fatal or nonfatal myocardial infarction, or
death attributable to ischemic heart disease. Events were
identified by comparison with 3 registers—the Swedish
Hospital Discharge Register, the Swedish Cause of Death
Register, and the Swedish Coronary Angiography and Angio-
plasty Registry (SCAAR)—via ICD-9 codes 410, 412, and 414,
ICD-10 codes I21, I22, I23, and I24, procedure codes 3065,
3066, 3068, 3080, 3092, 3105, 3127, and 3158 (the Op6
system), and FN (the KK�A97 system).22

After we excluded participants who were not genotyped,
had prevalent CHD, or had missing information, 23 595
participants remained eligible for analyses in the current
investigation. Details have been reported elsewhere.21

The MDC study was approved by the ethics committee at
Lund University and performed in accordance with the 1964
Declaration of Helsinki and later amendments or comparable
ethical standards. All participants provided written informed
consent.

Statistical Analysis
Study participants’ characteristics and risk factor measure-
ments were analyzed descriptively (mean and SD for contin-
uous variables, and counts and percentages for categorical
data). Associations of metabolic risk factors with incidence of
CHD were evaluated in a multivariable Cox proportional
hazards models adjusting for participants’ age, sex, smoking,
and use of antihypertensives.

Mediation analysis was performed using the natural effect
model proposed by Lange et al,16,17 based on the counter-
factual framework. This approach offers a tool to decompose
the total effect of a given exposure into a natural direct effect
and a natural indirect effect through 1 or several mediators.
The natural direct effect here is the effect one would expect if
the sole difference between 2 individuals is the exposure (ie,
family history of CHD or GRS50) and all risk factors are kept
at the value they would naturally take. Detailed definitions of
these effects have been described elsewhere.23,24 Lange
et al’s method is designed for categorical exposures; there-
fore, we classified GRS50 into a low-risk score category
(quintile 1), an intermediate-risk score category (quintiles 2–
4), and a high-risk score category (quintile 5). Mediation
analysis was performed comparing the GRS50 risk categories
high versus low and high versus intermediate and low
combined. Figure shows the underlying model of our analyses
depicted as a directed acyclic graph. We assessed the
mediating role of apoA-I, apoB, systolic blood pressure and
hypertension treatment, and prevalent DM on the association
between family history or GRS50 and CHD incidence, in the
presence of the mediator-outcome confounding variables age,
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sex, and smoking. For this purpose, systolic blood pressure
and the information on hypertension treatment were aggre-
gated into 1 combined variable: In a Cox model corrected for
all confounders, the effect of hypertension treatment was
estimated to be equivalent to an increase of 27.5 mm Hg in
systolic blood pressure; therefore, for all participants using
hypertension treatment, the systolic blood pressure value was
increased by an extra 27.5 mm Hg and this modified value
was used for all further mediation analyses. Similar models
were calculated regarding family history as exposure and
GRS50 as mediator and vice versa.

Point estimates of the natural direct and natural indirect
effects for the outcome CHD incidence were obtained by
means of weighted regression models of the outcome on the
exposure, the confounders, and additional counterfactual
variables. Additional counterfactual variables taking the
opposite (“counterfactual”) of the original exposure value
were introduced in an extended set of the original data.
Weights were derived from multivariable models regressing
the mediators on the confounders and the exposure of
interest (family history of CHD and GRS50, respectively). We
used both Cox proportional hazards models quantifying
relative risk in terms of hazard ratios (HRs), and additive
hazards models with time-independent effects25 quantifying
absolute risk in terms of additional number of CHD events per
100 000 person-years. In Data S1 we give annotated R code
of our implementation of the statistical modeling procedure.
The assumption of proportional hazards for the Cox models
was visually checked by inspecting log(-log) survival plots for
all relevant variables. We also checked the assumption that
each mediator is independent of the others, conditional on
exposure and confounders in separate models.17

For HRs, the contribution of direct and indirect effects to
the total effect of family history of CHD and GRS50 was
calculated on the ln(HR) scale, since HRs are additive on this
scale. Ninety-five percent CIs were computed by bootstrap-
ping using 2000 replications.

Possible effect modification by sex and age was examined
by adding the respective multiplicative terms to the models.
Because there was a significant interaction for indirect effects
of apoA-I (sex, P=0.025) and apoB (sex, P=0.026, and age,
P<0.001), we repeated the previously described analyses
separately for men and women, as well as for individuals
<50 years of age.

It is worth noting that our approach is not equivalent to
Mendelian randomization.26,27 Neither self-reported family
history nor GRS qualify as instrumental variables, because of
the direct effects operating independently of metabolic risk
factors.28 A null or negative indirect effect in our setting does not
mean that the variable concerned is not a risk factor for CHD.

Effects were considered statistically significant if null
effects were not included in the 95% CI. All analyses were
conducted in R, version 3.2.0.29

Results

Study Population
Demographic and risk factor characteristics of the 23 595
MDC study participants are shown in Table 1 (stratified by
self-reported family history and GRS50 categories). Mean age
was 58.0 years, and 8973 (38.0%) of participants were male.
By June 30, 2009, 2213 first CHD events were observed
during a median follow-up of 14.4 years. CHD incidence was

Figure. Causal diagram of the relations among genetic risk of CHD (exposure), metabolic risk factors of
CHD (mediators), and CHD incidence (outcome) with measured confounders; metabolic risk factors are
intermediate variables on the causal pathway between exposure (family history or GRS50) and outcome
(CHD incidence). The direct effect is represented by the solid arrow and indirect effects are represented by
dashed arrows; confounder pathways are depicted as dotted arrows. CHD indicates coronary heart disease;
GRS50, 50-variant genetic risk score.
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markedly higher in participants with family history and those
in the high GRS50 category. Participants with low GRS50 or
without family history of CHD had lower levels of apoB and
systolic blood pressure than those with high GRS50 or with
family history of CHD. Those with family history of CHD were
more likely to have prevalent DM than those without family
history, although the differences between the groups were
small.

All metabolic risk factors were associated with risk of
incident CHD: the HRs per 1 SD increment were 1.28 (95% CI,
1.23–1.34) for systolic blood pressure, 1.32 (95% CI, 1.26–
1.37) for ApoB, and 0.78 (95% CI, 0.74–0.82) for ApoA-I; the
HR for prevalent DM was 2.28 (95% CI, 1.99–2.61).

Mediation Analysis: Total, Direct, and Indirect
Effects of Family History of CHD
Family history of CHD was associated with incident CHD with
an HR of 1.52 (95% CI, 1.39–1.65), after adjusting for age,
sex, and smoking status. A fraction of this risk (20.0%, 95% CI,
14.8–26.4%) could be attributed to indirect pathways medi-
ated by established metabolic risk factors. Specifically, 8.3%
(95% CI, 5.8–11.7%) of the total effect was mediated through
the apoB pathway, 1.7% (95% CI, 0.2–3.4%) through apoA-I,
and 8.5% (95% CI, 5.9–12.0%) through systolic blood pressure.
The indirect effect through DM (1.5% [95% CI, �0.8% to 3.8%])
did not reach statistical significance. In absolute terms, family
history of CHD was associated with 220 additional events of
CHD per 100 000 person-years at risk, of which 52 could be

attributed to metabolic risk factor pathways; the most
relevant risk factors apo-B and systolic blood pressure added
20 and 24 additional events, respectively (Table 2).

When comparing men and women in stratified analyses,
20.8% (95% CI, 14.1–31.0%) of family history was mediated
through metabolic risk factors in women versus 16.3% (95% CI,
8.3–27.6%) in men (Table S1). The effects of family history (total
HR: 1.81 [95% CI, 1.31–2.53]; proportion mediated: 23.5% [95%
CI, 10.5–51.6%]) were generally higher in individuals below
50 years of age as compared to the overall population (Table S2).

Mediation Analysis: Total, Direct, and Indirect
Effects of GRS50
GRS50 (highest versus other quintiles) was associated with
incident CHD with an HR of 1.53 (95% CI, 1.39–1.68), after
adjusting for age, sex, and smoking status. Only 12.6% (95%
CI, 7.3–19.1%) of this risk could be attributed to indirect
pathways mediated by established metabolic risk factors.
Most of this attributable risk was mediated through the apoB
pathway (8.1%, 95% CI, 5.5–11.8%), 1.2% (95% CI, �0.5% to
3.0%) through apoA-I, and 4.2% (95% CI, 1.3–7.5%) through
systolic blood pressure. No statistically significant mediation
was observed for DM (�0.9% [95% CI, �3.7% to 1.6%]). In
absolute terms, GRS50 was associated with 281 additional
events of CHD per 100 000 person-years at risk, of which 33
could be attributed to metabolic risk factor pathways; the
most relevant risk factors apo-B and systolic blood pressure
added 20 and 12 additional events, respectively (Table 3).

Table 1. Baseline Characteristics According to Self-Reported Family History of CHD and GRS50 Categories

Family History GRS50 Score

No (N=14 807) Yes (N=8788) Low (N=4719) Intermediate (N=14 157) High (N=4719)

Age, y 57.8 (7.7) 58.4 (7.7) 58.2 (7.8) 58.0 (7.7) 57.9 (7.7)

Men, n (%) 5963 (40.3) 3010 (34.3) 1829 (38.8) 5342 (37.7) 1802 (38.2)

Body mass index, kg/m2 25.7 (4.0) 25.8 (4.0) 25.7 (4.0) 25.7 (4.0) 25.8 (4.0)

Systolic blood pressure, mm Hg 140.5 (20.2) 142.1 (20.0) 140.8 (20.1) 141.0 (20.1) 141.8 (20.1)

Use of antihypertensives, n (%) 2307 (15.6) 1746 (19.9) 825 (17.5) 2417 (17.1) 811 (17.2)

Apolipoprotein A-I, g/L 1.569 (0.281) 1.574 (0.279) 1.573 (0.279) 1.571 (0.283) 1.565 (0.275)

Apolipoprotein B, g/L 1.059 (0.259) 1.086 (0.262) 1.051 (0.260) 1.068 (0.261) 1.089 (0.259)

Prevalent diabetes mellitus, n (%) 566 (3.8) 364 (4.1) 178 (3.8) 575 (4.1) 177 (3.8)

Current smoker, n (%) 4268 (28.8) 2354 (26.8) 1316 (27.9) 3999 (28.2) 1307 (27.7)

Self-reported family history of CHD, n (%) 0 (0.0) 8788 (100.0) 1552 (32.9) 5314 (37.5) 1922 (40.7)

GRS50 �0.045 (0.99) 0.075 (1.00) �1.37 (0.42) �0.02 (0.46) 1.43 (0.50)

Incident CHD event, n (%) 1215 (8.2) 998 (11.4) 318 (6.7) 1303 (9.2) 592 (12.5)

Median (mean) Follow-up 13.87 (14.45) 13.65 (14.37) 14.47 (13.97) 14.41 (13.80) 14.39 (13.56)

Incidence rate from CHD per 100 000 person-years 591.8 832.1 482.3 667.1 925.2

Data are presented as mean (SD) unless indicated. CHD indicates coronary heart disease; GRS50, 50-variant genetic risk score.
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When comparing only the highest versus the lowest
quintile, the total effect was more pronounced, with an HR
of 2.01 (95% CI, 1.76–2.30). However, proportions mediated
were similar (Table 3).

In sex-specific analyses, 17.7% (95% CI, 9.0–30.9%) of
GRS50 (highest versus other quintiles) was mediated through
metabolic risk factors in women versus 7.4% (95% CI, �0.1%
to 15.5%) in men (Table S3). The effects of GRS50 (total HR:
2.01 [95% CI, 1.40–2.78]) were similar regarding proportion

mediated (10.1% [95% CI, �1.3% to 28.8%]) in individuals
below 50 years of age as compared to the overall population
(Table S4).

Relationship of Family History of CHD With
GRS50
An analysis of the relationship between family history of CHD
and GRS50 showed that of the total HR associated with family

Table 2. Total, Direct, and Indirect Effects of Family History on Incident CHD With Metabolic Mediators, Adjusted for Age at
Baseline, Sex, and Smoking Status

Effects

Family History (Yes vs No)

Hazard Ratio
(95% CI)

Proportion Explained (%)
(95% CI)*

Additional Incident CHD
Cases Per 100 000
Person-Years at Risk†

Total effect 1.52 (1.39–1.65) 100.0% 269.7

Direct effect‡ 1.40 (1.28–1.52) 80.0% (73.6–85.2%) 220.2

Indirect effect, combined 1.09 (1.07–1.11) 20.0% (14.8–26.4%) 52.5

Indirect effect, through systolic
blood pressure and hypertension treatment

1.04 (1.03–1.05) 8.5% (5.9–12.0%) 23.5

Indirect effect, through apoA-I 1.01 (1.00–1.01) 1.7% (0.2–3.4%) 5.1

Indirect effect, through apoB 1.04 (1.03–1.05) 8.3% (5.8–11.7%) 19.8

Indirect effect, through diabetes mellitus 1.01 (1.00–1.02) 1.5% (�0.8% to 3.8%) 4.1

apoA-I indicates apolipoprotein A-I; apoB, apolipoprotein B; CHD, coronary heart disease.
*On ln(HR) scale.
†Estimates from additive hazards models with time-independent effects.
‡Effect of family history not mediated by the 4 analyzed risk factors.

Table 3. Total, Direct, and Indirect Effects of GRS50 on Incident CHD With Metabolic Mediators, Adjusted for Age at Baseline, Sex,
and Smoking Status

Effects

GRS50 (High vs Low) GRS50 (High vs Low/Intermediate)

Hazard Ratio
(95% CI)

Proportion
Explained (%)
(95% CI)*

Additional
Incident CHD
Cases Per
100 000
Person-Years
at Risk†

Hazard Ratio
(95% CI)

Proportion
Explained (%)
(95% CI)*

Additional
Incident CHD
Cases Per
100 000
Person-Years
at Risk†

Total effect 2.01 (1.76–2.30) 100.0% 469.3 1.53 (1.39–1.68) 100.0% 314.2

Direct effect‡ 1.87 (1.64–2.14) 89.3% (84.0–94.2%) 424.7 1.45 (1.32–1.59) 87.4% (80.9–92.7%) 281.2

Indirect effect, combined 1.08 (1.04–1.11) 10.7% (5.8–16.0%) 44.6 1.06 (1.03–1.08) 12.6% (7.3–19.1%) 33.0

Indirect effect, through systolic
blood pressure and
hypertension treatment

1.02 (1.01–1.04) 3.5% (1.0–5.9%) 16.2 1.02 (1.01–1.03) 4.2% (1.3–7.5%) 11.9

Indirect effect, through apoA-I 1.01 (1.00–1.02) 1.1% (�0.2% to 2.6%) 5.3 1.01 (1.00–1.01) 1.2% (�0.5% to 3.0%) 3.6

Indirect effect, through apoB 1.04 (1.03–1.06) 6.0% (3.7–8.6%) 22.3 1.04 (1.02–1.05) 8.1% (5.5–11.8%) 19.9

Indirect effect, through
diabetes mellitus

1.00 (0.99–1.02) 0.2% (�1.6% to 2.7%) 0.7 1.00 (0.98–1.01) �0.9% (�3.7% to 1.6%) �2.4

apoA-I indicates apolipoprotein A-I; apoB, apolipoprotein B; CHD, coronary heart disease; GRS50, 50-variant genetic risk score.
*On ln(HR) scale.
†Estimates from additive hazards models with time-independent effects.
‡Effect of GRS50 not mediated by the 4 analyzed risk factors.
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history (1.52; 95% CI, 1.39–1.65) only 6.2% (95% CI, 4.3–
8.7%) was mediated through GRS50 (Table S5), and of the
total HR associated with GRS50 (1.53, 95% CI, 1.39–1.68;
highest versus other quintiles), 4.2% (95% CI, 2.5–6.6%) was
mediated by family history (Table S6).

Discussion
The main purpose of the present work was to explore whether
the previously identified associations between family history
or GRS50 and CHD incidence are mediated through major
metabolic risk factors. Specifically, we sought to decompose
the total effect of family history and GRS50, respectively, on
CHD risk into a direct part and distinct indirect parts via
different risk factor pathways. Our findings demonstrate that
some of the risk associated with family history as well as
some of the risk conferred by GRS50 is mediated through
known metabolic risk factors, specifically apolipoproteins and
blood pressure, but we did not find evidence that DM
mediates these effects. However, a major part (≥80%) of the
family history effect and of the GRS50 effect operates
independently of established metabolic risk factor pathways.

Recently, genetic risk scores were added to cardiovascular
risk prediction, reflecting a partially different aspect of genetic
information than reported family history.6,21,30 Through
genome-wide association studies, identification of CHD-
related SNPs has progressed rapidly. Consequently, CHD-
related SNPs have been aggregated in genetic risk scores,
providing simple predictive measures of the risk of developing
CHD.4–7 The number of known CHD-related SNPs used in
GRSs has expanded from just 13 in 20104 to 25 in 2011,31

and 46 in 2013.5 The 50-SNP GRS used for this study was
introduced in 2016 by Tada et al21 and represents the most
comprehensive GRS at time of writing.

Attempts to relate CHD-predicting SNPs to metabolic risk
factors have been made in several studies.5,14,15,31 The
CARDIoGRAMplusC4D Consortium found in their study of 46
CHD-predicting SNPs, a subset of the GRS50 used here, that
12 SNPs were associated with lipid traits, 5 with blood
pressure, and none with DM, leaving the major part of SNPs
operating independently of these 3 risk factors.15 Ganna et al
came to similar conclusions that “most of the CHD loci are
not involved in pathways perturbing currently known risk
factors.”5 However, their methods did not allow quantification
of the proportions mediated. Our findings, that about 9% of
the total effect of the GRS50 was mediated by apolipopro-
teins, 4% by blood pressure, and none by DM, confirm their
heuristic findings.

Other studies investigated the role of family history, either
self-reported or with validated parental event records, as a
predictor for CHD.1–3,8–13 Sesso et al1 examined the associ-
ation of self-reported family history of myocardial infarction

with risk of offspring cardiovascular disease using data from
the Physicians’ Health Study and the Women’s Health Study.
They adjusted for cardiovascular risk factors, but did not
perform a mediation analysis. However, proportions mediated
through cardiovascular risk factors can be estimated from
their published results as a rough approximate measure. The
results of Sesso et al1 were quantitatively similar to ours,
specifically, the proportions mediated as converted were in a
comparable range. Lloyd-Jones et al13 examined the associ-
ation between parental cardiovascular disease and CHD risk
using data from the Framingham Heart Study where parental
events were validated. In contrast to Sesso et al1 and our
results, Lloyd-Jones et al13 gave higher estimates of total
effects, and the proportions mediated as estimated from
these published results were higher as well. It is possible that
the effects of family history and mediated proportions may be
diluted because of the self-reporting of family history. In line
with our subgroup analysis of MDC study participants aged
below 50 years (Table S2), participants’ age may constitute
another reason for differences in effect estimates, because
family history more strongly predicts onset of CHD at a
younger age.21,32 Thus, the higher proportion mediated
through risk factors in the Framingham Heart Study, which
investigated a younger study population, seems plausible.
Furthermore, the knowledge of an existing genetic risk may
alter a person’s health behavior and may thus lead to reduced
risk factor levels33 and consequently to smaller proportions
mediated. Finally, errors in the measurement of the mediators
may also lead to an underestimation of the indirect effects.34

Mediation analysis applied on the relationship between
family history and GRS50 suggests that these 2 measures of
genetic risk are partly independent of each other. The
proportions mediated by metabolic risk factors were stronger
for family history than for GRS50 (20.0% versus 12.6%),
mainly because blood pressure mediation was larger for
family history than for GRS (8.5% versus 4.2%). The search for
candidate genes for CHD is still ongoing;30 thus, the addition
of new genetic variants to GRSs can alter the difference
between the mediated fractions of family history and GRS50.

Our study has several strengths and some potential
limitations. Major strengths are the prospective study design,
the large sample size, and the length of follow-up in the MDC
study. In addition, we were able to use the newest available
genetic data in CHD so far. The recently developed mediation
analysis technique16,17 allowed for the first time quantification
of the mediated effects separately for each single metabolic
factor. Limitations are that the study was conducted in
Swedish middle-aged individuals; hence, the generalizability to
other ethnicities or other age groups is uncertain. Although
genetic risk assessment could be useful in the young,21 this
study population did not include individuals younger than
45 years and thus no risk estimates for this age group are
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possible. Overrepresentation of women in the MDC study
cohort may influence the somewhat different effect estimates
between men and women. A recently published study showed
age- and sex-related differences regarding metabolic media-
tion.35 LDL cholesterol and HDL cholesterol levels were not
available for our study population; therefore, we used the
available apoA-I and apoB plasma levels as covariates in our
established risk factors model. Although apoB is incorporated
in a few lipoproteins in addition to LDL and apoA-I does not
completely represent HDL, it has been shown that apolipopro-
teins have equally strong predictive abilities for future CHD
events as LDL cholesterol does.36–38

In conclusion, a fraction of the CHD risk associated with
family history or with GRS50 is mediated through elevated
blood lipids and hypertension, but not through DM. However,
the major part of the genetic effect operates independently
from the established metabolic risk factors, confirming the
importance of the assessment of family history and genetic
predisposition to CHD. Metabolically healthy individuals with
genetic predisposition form an important group of individuals
at risk for CHD, providing a major challenge for primary
prevention. Therefore, intensified preventive measures in
addition to risk factor surveillance and treatment may be of
benefit in genetically predisposed individuals.
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Data S1. 

 
In this appendix, we provide detailed annotated R code of how we implemented the natural 

effects model, the statistical procedure we used for our analysis, including the calculation of 

bootstrapping confidence intervals, exemplarily for the variable family history. This method 

was introduced by Lange et al. in 2014 (Lange T, Rasmussen M, Thygesen LC. Assessing 

natural direct and indirect effects through multiple pathways. Am J Epidemiol. 2014;179:513–

8). 

The data frame myData contains the following variables. Data originates from the MDCS 

cohort. 

ID  Subject identifier 

age  Age at baseline examination 

sex  Sex (1=male, 2=female) 

smoking Indicator variable (0/1) of smoking status 

FH  Reported family history of CHD (0=no, 1=yes) 

ApoA  ApoA-I level at baseline examination 

ApoB  ApoB level at baseline examination 

DM  Prevalent diabetes mellitus at baseline examination (0=no, 1=yes) 

BP  Systolic blood pressure at baseline examination 

time  CHD event time or censor time (years after baseline examination) 

event  event indicator (0= No CHD event, 1=CHD event) 

Our aim is to quantify how much of the effect of family history of CHD is mediated through 

the apoA-I pathway, the apoB pathway, the DM pathway, and the BP pathway, in the 

presence of the mediator-outcome confounders age, sex, and smoking. More specifically, we 

want to obtain estimates of natural direct, natural indirect, and total effects conditional on the 

confounder variables. We refer to the work of Pearl for definitions of these effects (Pearl J. 

Causality: Models, reasoning and inference. Cambridge University Press. 2009. 2nd edn.). 
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In a first step, we regress each mediator on the exposure variable FH, while conditioning on 

the covariates age, sex, and smoking. For the continuous mediators, we choose linear 

regressions, for the dichotomous mediator DM a logistic regression. We also save the 

residual variances of the linear models since they will be needed for the computation of 

weights later on. Since being convenient for the weight calculation, also a new variable 

FHtemp is created. 

myData$FHtemp <- myData$FH 

fitApoA <- lm(ApoA ~ FHtemp+age+sex+smoking, data=myData) 

fitApoAvariance <- summary(fitApoA)$sigma^2 

fitApoB <- lm(ApoB ~ FHtemp+age+sex+smoking, data=myData) 

fitApoBvariance <- summary(fitApoB)$sigma^2 

fitBP <- lm(BP ~ FHtemp+age+sex+smoking, data=myData) 

fitBPvariance <- summary(fitBP)$sigma^2 

fitDM <- glm(DM ~ FHtemp+age+sex+smoking, data=myData, 

family="binomial") 

To assess if the mediators do indeed correspond to distinct non-intertwined causal pathways, 

these models can be extended to include also the respective other mediator variables. For 

the variable ApoA, for example, the respective model is 

fitApoA_check <- lm(ApoA ~ FHtemp+age+sex+smoking+ApoB+DM+BP, 

data=myData) 

Small parameter estimates for the additional variables ApoB, DM, and BP as well as non-

significant p-values, obtained for example by 

anova(fitApoA_check) 

are an indication of non-intertwined causal pathways. Analogous analyses were done for the 

remaining three mediators. 

Next, we construct a new, expanded dataset, denoted myDataExpanded, with new auxiliary 

exposure variables FHInd1, FHInd2, FHInd3, and FHInd4, each corresponding to the 

value of the exposure relative to the respective indirect path. We replicate each observation 
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16 times and assign FHInd1, FHInd2, FHInd3, and FHInd4 the values 0 or 1 in all possible 

combinations of these (24=16 combinations). This can be achieved by the following code: 

levelsOfFH <- unique(myData$FH) 

ds1 <- myData 

ds2 <- myData 

ds1$FHInd1 <- levelsOfFH[1] 

ds2$FHInd1 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd2 <- levelsOfFH[1] 

ds2$FHInd2 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd3 <- levelsOfFH[1] 

ds2$FHInd3 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd4 <- levelsOfFH[1] 

ds2$FHInd4 <- levelsOfFH[2] 

myDataExpanded <- rbind(ds1,ds2) 

Now, it comes to the computation of the weights. The weights consist of a part corresponding 

to the ApoA-I level, a part corresponding to the ApoB level, a part corresponding to the DM 

status, and a part corresponding to systolic blood pressure. These parts are calculated 

consecutively via the following code (using the predict function) and are then combined. 

The weight part corresponding to the apoA-I level: 
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myDataExpanded$FHtemp <- myDataExpanded$FH 

tempDir1 <- 

dnorm(myDataExpanded$ApoA,mean=predict(fitApoA,type="response",newda

ta=myDataExpanded),sd=sqrt(fitApoAvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd1 

tempIndir1 <- 

dnorm(myDataExpanded$ApoA,mean=predict(fitApoA,type="response",newda

ta=myDataExpanded),sd=sqrt(fitApoAvariance)) 

myDataExpanded$weight1 <- tempIndir1/tempDir1 

The weight part corresponding to the apoB level: 

myDataExpanded$FHtemp <- myDataExpanded$FH 

tempDir2 <- 

dnorm(myDataExpanded$ApoB,mean=predict(fitApoB,type="response",newda

ta=myDataExpanded),sd=sqrt(fitApoBvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd2 

tempIndir2 <- 

dnorm(myDataExpanded$ApoB,mean=predict(fitApoB,type="response",newda

ta=myDataExpanded),sd=sqrt(fitApoBvariance)) 

myDataExpanded$weight2 <- tempIndir2/tempDir2 

The weight part corresponding to the DM status: 

myDataExpanded$FHtemp <- myDataExpanded$FH 

temp <- predict(fitDM,type="response",newdata=myDataExpanded) 

tempDir3 <- ifelse(myDataExpanded$DM==1,temp,1-temp) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd3 

temp <- predict(fitDM,type="response",newdata= myDataExpanded) 

tempIndir3 <- ifelse(myDataExpanded$DM==1,temp,1-temp) 

myDataExpanded$weight3 <- tempIndir3/tempDir3 

The weight part corresponding to blood pressure: 
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myDataExpanded$FHtemp <- myDataExpanded$FH 

tempDir4 <- 

dnorm(myDataExpanded$BP,mean=predict(fitBP,type="response",newdata= 

myDataExpanded),sd=sqrt(fitBPvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd4 

tempIndir4 <- 

dnorm(myDataExpanded$BP,mean=predict(fitBP,type="response",newdata=m

yDataExpanded),sd=sqrt(fitBPvariance)) 

myDataExpanded$weight4 <- tempIndir4/tempDir4 

The final weight is obtained by multiplying over the four parts: 

myDataExpanded$weight <- 

myDataExpanded$weight1*myDataExpanded$weight2*myDataExpanded$weight3

*myDataExpanded$weight4 

The stability of the weights can be evaluated by drawing a histogram: 

hist(myDataExpanded$weight) 

Finally, natural direct and natural indirect effects can be computed using a natural effects 

model, for example a Cox proportional hazards model (function coxph of the R package 

survival) or an additive hazards model (function aalen of the R package timereg), 

applied on the weighted dataset just created. 

library(survival) 

coxph(Surv(time,event) ~ 

FH+FHInd1+FHInd2+FHInd3+FHInd4+cluster(ID)+age+sex+smoking, 

data=myDataExpanded,weights=myDataExpanded$weight) 

library(timereg) 

aalen(Surv(time,event) ~ 

const(FH)+const(FHInd1)+const(FHInd2)+const(FHInd3)+const(FHInd4)+co

nst(age)+const(sex)+const(smoking),data=myDataExpanded, 

clusters=myDataExpanded$ID, weights=myDataExpanded$weight, robust=T) 
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The parameter estimates for FH of these models yield estimates of the natural direct effect, 

and the parameter estimates for FHInd1, FHInd2, FHInd3, and FHInd4 yield estimates of 

the natural indirect effects via apoA-I, apoB, DM, and blood pressure pathways (conditional 

on confounder variables age, sex, and smoking status). 

Instead of relying on the robust standard errors as output by the functions coxph/aalen, we 

use bootstrapping to obtain 95% bootstrap percentile confidence intervals. This is done by 

encapsulating the previous code in a function, and then applying the function boot of the R 

package boot. 

The following R code encapsulates the previous commands in the function 

NaturalEffectsModel for a Cox proportional hazards model as the natural effects model. 

NaturalEffectsModel <- function(ds0,i) { 

library(survival) 

ds <- ds0[i,] 

#Mediator models 

ds$FHtemp <- ds$FH 

fitApoA <- lm(ApoA ~ FHtemp+age+sex+smoking, data=ds) 

fitApoAvariance <- summary(fitApoA)$sigma^2 

fitApoB <- lm(ApoB ~ FHtemp+age+sex+smoking, data=ds) 

fitApoBvariance <- summary(fitApoB)$sigma^2 

fitBP <- lm(BP ~ FHtemp+age+sex+smoking, data=ds) 

fitBPvariance <- summary(fitBP)$sigma^2 

fitDM <- glm(DM ~ FHtemp+age+sex+smoking, data=ds, 

family="binomial") 

#Expansion of dataset 

levelsOfFH <- unique(ds$FH) 

ds1 <- ds 

ds2 <- ds 

ds1$FHInd1 <- levelsOfFH[1] 
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ds2$FHInd1 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd2 <- levelsOfFH[1] 

ds2$FHInd2 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd3 <- levelsOfFH[1] 

ds2$FHInd3 <- levelsOfFH[2] 

tempds <- rbind(ds1,ds2) 

ds1 <- tempds 

ds2 <- tempds 

ds1$FHInd4 <- levelsOfFH[1] 

ds2$FHInd4 <- levelsOfFH[2] 

myDataExpanded <- rbind(ds1,ds2) 

#Weight corresponding to apoA-I 

myDataExpanded$FHtemp <- myDataExpanded$FH 

tempDir1 <- 

dnorm(myDataExpanded$ApoA,mean=predict(fitApoA,type="response",

newdata=myDataExpanded),sd=sqrt(fitApoAvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd1 

tempIndir1 <- 

dnorm(myDataExpanded$ApoA,mean=predict(fitApoA,type="response",

newdata=myDataExpanded),sd=sqrt(fitApoAvariance)) 

myDataExpanded$weight1 <- tempIndir1/tempDir1 

#Weight corresponding to apoB 

myDataExpanded$FHtemp <- myDataExpanded$FH 
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tempDir2 <- 

dnorm(myDataExpanded$ApoB,mean=predict(fitApoB,type="response",

newdata=myDataExpanded),sd=sqrt(fitApoBvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd2 

tempIndir2 <- 

dnorm(myDataExpanded$ApoB,mean=predict(fitApoB,type="response",

newdata=myDataExpanded),sd=sqrt(fitApoBvariance)) 

myDataExpanded$weight2 <- tempIndir2/tempDir2 

#Weight corresponding to DM status 

myDataExpanded$FHtemp <- myDataExpanded$FH 

temp <- predict(fitDM,type="response",newdata=myDataExpanded) 

tempDir3 <- ifelse(myDataExpanded$DM==1,temp,1-temp) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd3 

temp <- predict(fitDM,type="response",newdata= myDataExpanded) 

tempIndir3 <- ifelse(myDataExpanded$DM==1,temp,1-temp) 

myDataExpanded$weight3 <- tempIndir3/tempDir3 

#Weight corresponding to blood pressure 

myDataExpanded$FHtemp <- myDataExpanded$FH 

tempDir4 <- 

dnorm(myDataExpanded$BP,mean=predict(fitBP,type="response",newd

ata= myDataExpanded),sd=sqrt(fitBPvariance)) 

myDataExpanded$FHtemp <- myDataExpanded$FHInd4 

tempIndir4 <- 

dnorm(myDataExpanded$BP,mean=predict(fitBP,type="response",newd

ata= myDataExpanded),sd=sqrt(fitBPvariance)) 

myDataExpanded$weight4 <- tempIndir4/tempDir4 

#Final weight 



10 

 

myDataExpanded$weight <- 

myDataExpanded$weight1*myDataExpanded$weight2*myDataExpanded$we

ight3*myDataExpanded$weight4 

#Final natural effects model 

fitNatEffMod <- coxph(Surv(time,event) ~ 

FH+FHInd1+FHInd2+FHInd3+FHInd4+cluster(ID)+age+sex+smoking, 

data=myDataExpanded,weights=myDataExpanded$weight) 

#Calculation of natural direct, natural indirect, and total 

effects as well as percentages 

coef <- fitNatEffMod$coefficients 

HRTE <- exp(coef[1]+coef[2]+coef[3]+coef[4]+coef[5]) 

HRNDE <- exp(coef[1]) 

HRNIE <- exp(coef[2]+coef[3]+coef[4]+coef[5]) 

HRNIE1 <- exp(coef[2]) 

HRNIE2 <- exp(coef[3]) 

HRNIE3 <- exp(coef[4]) 

HRNIE4 <- exp(coef[5]) 

HRTEpct <- log(HRTE)/log(HRTE)*100 

HRNDEpct <- log(HRNDE)/log(HRTE)*100 

HRNIEpct <- log(HRNIE)/log(HRTE)*100 

HRNIE1pct <- log(HRNIE1)/log(HRTE)*100 

HRNIE2pct <- log(HRNIE2)/log(HRTE)*100 

HRNIE3pct <- log(HRNIE3)/log(HRTE)*100 

HRNIE4pct <- log(HRNIE4)/log(HRTE)*100 

return(c(HRTE,HRNDE,HRNIE,HRNIE1,HRNIE2,HRNIE3,HRNIE4,HRNDEpct,

HRNIEpct,HRNIE1pct,HRNIE2pct,HRNIE3pct,HRNIE4pct)) 

} 
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Bootstrap percentile confidence intervals can then be obtained by the function bootstrap 

as defined as follows: 

bootstrap <- function(pathname,numit){ 

results <- boot(myData,NaturalEffectsModel,R=numit,stype="i") 

TE <-boot.ci(results, type = c("perc"),index=1) 

NDE<-boot.ci(results, type = c("perc"),index=2) 

NIE<-boot.ci(results, type = c("perc"),index=3) 

NIE1<-boot.ci(results, type = c("perc"),index=4) 

NIE2<-boot.ci(results, type = c("perc"),index=5) 

NIE3<-boot.ci(results, type = c("perc"),index=6) 

NIE4<-boot.ci(results, type = c("perc"),index=7) 

NDEpct<-boot.ci(results, type = c("perc"),index=8) 

NIEpct<-boot.ci(results, type = c("perc"),index=9) 

NIE1pct<-boot.ci(results, type = c("perc"),index=10) 

NIE2pct<-boot.ci(results, type = c("perc"),index=11) 

NIE3pct<-boot.ci(results, type = c("perc"),index=12) 

NIE4pct<-boot.ci(results, type = c("perc"),index=13) 

sink(pathname,append=FALSE,split=FALSE) 

cat("\n\nNumber of bootstrapping iterations: ",numit) 

cat("\n\nTotal effect: ", round(TE$t0,2)," 

[",round(TE$percent[4],2),"-",round(TE$percent[5],2),"], 

",round(100,2)," [",round(100,2),"-",round(100,2),"]\n",sep="") 

  cat("Direct effect: ", round(NDE$t0,2)," 

[",round(NDE$percent[4],2),"-",round(NDE$percent[5],2),"], 

",round(NDEpct$t0,2)," [",round(NDEpct$percent[4],2),"-

",round(NDEpct$percent[5],2),"]\n",sep="") 

  cat("Indirect effect: ", round(NIE$t0,2)," 

[",round(NIE$percent[4],2),"-",round(NIE$percent[5],2),"], 
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",round(NIEpct$t0,2)," [",round(NIEpct$percent[4],2),"-

",round(NIEpct$percent[5],2),"]\n",sep="") 

  cat("Indirect effect (Mediator 1): ", round(NIE1$t0,2)," 

[",round(NIE1$percent[4],2),"-",round(NIE1$percent[5],2),"], 

",round(NIE1pct$t0,2)," [",round(NIE1pct$percent[4],2),"-

",round(NIE1pct$percent[5],2),"]\n",sep="") 

  cat("Indirect effect (Mediator 2): ", round(NIE2$t0,2)," 

[",round(NIE2$percent[4],2),"-",round(NIE2$percent[5],2),"], 

",round(NIE2pct$t0,2)," [",round(NIE2pct$percent[4],2),"-

",round(NIE2pct$percent[5],2),"]\n",sep="") 

  cat("Indirect effect (Mediator 3): ", round(NIE3$t0,2)," 

[",round(NIE3$percent[4],2),"-",round(NIE3$percent[5],2),"], 

",round(NIE3pct$t0,2)," [",round(NIE3pct$percent[4],2),"-

",round(NIE3pct$percent[5],2),"]\n",sep="") 

  cat("Indirect effect (Mediator 4): ", round(NIE4$t0,2)," 

[",round(NIE4$percent[4],2),"-",round(NIE4$percent[5],2),"], 

",round(NIE4pct$t0,2)," [",round(NIE4pct$percent[4],2),"-

",round(NIE4pct$percent[5],2),"]\n",sep="") 

sink() 

return() 

} 

The function bootstrap performs the bootstrapping with the number of iterations specified 

by the parameter numit, and writes the results of the natural effects model for family history 

of CHD in a text file in the folder pathname. 

For our data, we get the following output which is also the basis of Table 2 of the main text: 

Number of bootstrapping iterations:  2000 

Total effect: 1.52 [1.39-1.65], 100 [100-100] 

Direct effect: 1.4 [1.28-1.52], 79.96 [73.58-85.21] 
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Indirect effect: 1.09 [1.07-1.11], 20.04 [14.79-26.42] 

Indirect effect (Mediator 1): 1.01 [1-1.01], 1.7 [0.2-3.39] 

Indirect effect (Mediator 2): 1.04 [1.03-1.05], 8.32 [5.84-11.7] 

Indirect effect (Mediator 3): 1.01 [1-1.02], 1.49 [-0.78-3.76] 

Indirect effect (Mediator 4): 1.04 [1.03-1.05], 8.53 [5.94-11.93] 
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Table S1. Total, direct, and indirect effects of family history on incident CHD with metabolic mediators, adjusted for age at baseline and smoking 

status, stratified by sex 

CI – confidence interval; CHD – coronary heart disease 

*Effect of family history not mediated by the four analyzed risk factors. 

†On ln(HR) scale. 

  

Effects 

Men (N=8,973)  Women (N=14,622) 

Hazard Ratio (95% CI) 
Proportion explained (%) 

(95% CI)† 
 Hazard Ratio (95% CI) 

Proportion explained (%) 

(95% CI)† 

Total effect 1.42 (1.27 to 1.59) 100.0%  1.67 (1.45 to 1.92) 100.0% 

Direct effect* 1.34 (1.20 to 1.49) 83.7% (72.4% to 91.7%)  1.50 (1.30 to 1.72) 79.2% (69.0% to 85.9%) 

Indirect effect, combined 1.06 (1.03 to 1.09) 16.3% (8.3% to 27.6%)  1.11 (1.08 to 1.15) 20.8% (14.1% to 31.0%) 

Indirect effect, through systolic 

blood pressure and hypertension 

treatment 

1.02 (1.01 to 1.04) 6.4% (2.2% to 12.0%)  1.05 (1.03 to 1.06) 8.8% (5.6% to 13.8%) 

Indirect effect, through apoA-I 1.01 (1.00 to 1.02) 2.2% (-0.3% to 5.3%)  1.01 (1.00 to 1.02) 1.7% (-0.1% to 3.9%) 

Indirect effect, through apoB 1.03 (1.01 to 1.04) 7.5% (3.8% to 12.8%)  1.04 (1.03 to 1.06) 7.7% (4.8% to 12.4%) 

Indirect effect, through diabetes 

mellitus 
1.00 (0.99 to 1.01) 0.2% (-3.5% to3.6%)  1.01 (1.00 to 1.03) 2.6% (-0.6% to 6.1%) 
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Table S2. Total, direct, and indirect effects of family history on incident CHD with metabolic mediators, adjusted for age at baseline, sex, and smoking 

status, in a subgroup of individuals <50 years of age 

Effects 

<50 years of age (N=4,684) 

Hazard Ratio (95% CI) 
Proportion explained (%) 

(95% CI)† 

Total effect 1.81 (1.31 to 2.53) 100.0% 

Direct effect* 1.58 (1.15 to 2.19) 76.5% (48.4% to 89.5%) 

Indirect effect, combined 1.15 (1.07 to 1.24) 23.5% (10.5% to 51.6%) 

Indirect effect, through systolic 

blood pressure and hypertension 

treatment 

1.05 (1.02 to 1.09) 7.9% (2.8% to 19.9%) 

Indirect effect, through apoA-I 1.02 (1.00 to 1.04) 3.0 (0.4% to 9.5%) 

Indirect effect, through apoB 1.08 (1.03 to 1.13) 12.4% (4.7% to 30.0%) 

Indirect effect, through diabetes 

mellitus 
1.00 (0.97 to 1.03) 0.2% (-6.1% to 5.4%) 

CI – confidence interval; CHD – coronary heart disease 

*Effect of family history not mediated by the four analyzed risk factors. 

†On ln(HR) scale. 
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Table S3. Total, direct, and indirect effects of GRS50 (high vs. low/intermediate) on incident CHD with metabolic mediators, adjusted for age at 

baseline, and smoking status, stratified by sex 

CI – confidence interval; CHD – coronary heart disease 

*Effect of GRS50 not mediated by the four analyzed risk factors. 

†On ln(HR) scale. 

  

Effects 

Men (N=8,973)  Women (N=14,622) 

Hazard Ratio (95% CI) 
Proportion explained (%) 

(95% CI)† 
 Hazard Ratio (95% CI) 

Proportion explained (%) 

(95% CI)† 

Total effect 1.52 (1.35 to 1.70) 100.0%  1.56 (1.32 to 1.83) 100.0% 

Direct effect* 1.47 (1.31 to 1.65) 92.6% (84.53% to 100.1%)  1.44 (1.23 to 1.68) 82.3% (69.1% to 91.0%) 

Indirect effect, combined 1.03 (1.00 to 1.06) 7.4% (-0.1% to 15.5%)  1.08 (1.04 to 1.13) 17.7% (9.0% to 30.9%) 

Indirect effect, through systolic 

blood pressure and hypertension 

treatment 

1.02 (1.00 to 1.04) 4.9% (0.5% to 10.0%)  1.02 (1.00 to 1.04) 3.7% (-0.1% to 8.3%) 

Indirect effect, through apoA-I 1.00 (0.99 to 1.01) -0.9% (-3.8% to 1.7%)  1.01 (1.00 to 1.02) 2.9% (0.3% to 6.2%) 

Indirect effect, through apoB 1.02 (1.01 to 1.04) 5.8% (2.5% to 10.3%)  1.05 (1.03 to 1.07) 10.0% (5.5% to 17.0%) 

Indirect effect, through diabetes 

mellitus 
0.99 (0.98 to 1.00) -2.5% (-6.6% to 0.8%)  1.00 (0.99 to 1.03) 1.1% (-3.6% to 6.0%) 



17 

 

Table S4. Total, direct, and indirect effects of GRS50 (high vs. low/intermediate) on incident CHD with metabolic mediators, adjusted for age at 

baseline, sex, and smoking status, in a subgroup of individuals <50 years of age 

Effects 

<50 years of age (N=4,684) 

Hazard Ratio (95% CI) 
Proportion explained (%) 

(95% CI)† 

Total effect 2.01 (1.40 to 2.78) 100.0% 

Direct effect* 1.87 (1.30 to 2.59) 89.9% (71.2% to 101.3%) 

Indirect effect, combined 1.07 (0.99 to 1.17) 10.1% (-1.3% to 28.8%) 

Indirect effect, through systolic 

blood pressure and hypertension 

treatment 

1.00 (0.97 to 1.03) -0.2% (-6.4% to 5.0%) 

Indirect effect, through apoA-I 1.00 (0.97 to 1.02) -0.4% (-4.4% to 3.1%) 

Indirect effect, through apoB 1.07 (1.02 to 1.14) 10.3% (3.1% to 24.9%) 

Indirect effect, through diabetes 

mellitus 
1.00 (0.97 to 1.04) 0.4% (-5.4% to 7.2%) 

CI – confidence interval; CHD – coronary heart disease 

*Effect of GRS50 not mediated by the four analyzed risk factors. 

†On ln(HR) scale. 
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Table S5. Total, direct, and indirect effects of family history on incident CHD with mediator GRS50, adjusted for age at baseline, sex, and smoking 

status 

Effects 

Family history (yes vs. no) 

Hazard Ratio 

(95% CI) 

Proportion explained 

(%) (95% CI)† 

Additional incident 

CHD cases per 100,000 

person-years at risk‡ 

Total effect 1.52 (1.40 to 1.65) 100.0% 273.2 

Direct effect* 1.48 (1.37 to 1.61) 93.8% (91.4% to 95.7%) 255.7 

Indirect effect through GRS50 1.03 (1.02 to 1.03) 6.2% (4.3% to 8.7%) 17.6 

 

CI – confidence interval; CHD – coronary heart disease 

*Effect of family history not mediated by GRS50. 

†On ln(HR) scale. 

‡Estimates from additive hazards models with time-independent effects. 
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Table S6. Total, direct, and indirect effects of GRS50 on incident CHD with mediator family history, adjusted for age at baseline, sex, and smoking 

status 

 

CI – confidence interval; CHD – coronary heart disease 

*Effect of GRS50 not mediated by family history. 

†On ln(HR) scale. 

‡Estimates from additive hazards models with time-independent effects.  

Effects 

GRS50 (high vs. low)  GRS50 (high vs. low/intermediate) 

Hazard Ratio 

(95% CI) 

Proportion explained 

(%) (95% CI)† 

Additional 

incident 

CHD cases 

per 100,000 

person-years 

at risk‡ 

 
Hazard Ratio 

(95% CI) 

Proportion explained 

(%) (95% CI)† 

Additional 

incident CHD 

cases per 

100,000 

person-years 

at risk‡ 

Total effect 2.00 (1.75 to 2.29) 100.0% 470.1  1.53 (1.39 to 1.68) 100.0% 315.6 

Direct effect* 1.94 (1.69 to 2.21) 95.0% (92.2% to 96.9%) 447.1  1.50 (1.36 to 1.65) 95.8% (93.4% to 97.4%) 304.0 

Indirect effect through family 

history 
1.04 (1.02 to 1.05) 5.0% (3.1% to 7.8%) 23.0  1.02 (1.01 to 1.03) 4.2% (2.5% to 6.6%) 11.6 


