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ABSTRACT Objective: Early revascularization of the occluded coronary artery in patients with ST elevation
myocardial infarction (STEMI) has been demonstrated to decrease mortality and morbidity. Currently,
physicians rely on features of electrocardiograms (ECGs) to identify the most likely location of coronary
arteries related to an infarct. We sought to predict these culprit arteries more accurately by using deep
learning.Methods:A deep learning model with a convolutional neural network (CNN) that incorporated ECG
signals was trained on 384 patients with STEMI who underwent primary percutaneous coronary intervention
(PCI) at a medical center. The performances of various signal preprocessing methods (short-time Fourier
transform [STFT] and continuous wavelet transform [CWT]) with different lengths of input ECG signals
were compared. The sensitivity and specificity for predicting each infarct-related artery and the overall
accuracy were evaluated. Results: ECG signal preprocessing with STFT achieved fair overall prediction
accuracy (79.3%). The sensitivity and specificity for predicting the left anterior descending artery (LAD) as
the culprit vessel were 85.7% and 88.4%, respectively. The sensitivity and specificity for predicting the left
circumflex artery (LCX) were 37% and 99%, respectively, and the sensitivity and specificity for predicting
the right coronary artery (RCA) were 88.4% and 82.4%, respectively. Using CWT (Morlet wavelet) for signal
preprocessing resulted in better overall accuracy (83.7%) compared with STFT preprocessing. The sensitivity
and specificity were 93.46% and 80.39% for LAD, 56% and 99.7% for LCX, and 85.9% and 92.9% for
RCA, respectively. Conclusion: Our study demonstrated that deep learning with a CNN could facilitate the
identification of the culprit coronary artery in patients with STEMI. Preprocessing ECG signals with CWT
was demonstrated to be superior to doing so with STFT.

INDEX TERMS Convolutional neural network, electrocardiography, machine learning, percutaneous coro-
nary intervention, STEMI.
Clinical and Translational Impact Statement—Deep learning may help identifying the infarct-related
coronary artery in STEMI patients, speed up revascularization, and improve the clinical outcome.

I. INTRODUCTION

ACUTE coronary syndrome (ACS) is a syndrome due
to decreased blood flow in one or more of the coro-

nary arteries. Patients suffering from ACS have high risk
of mortality and morbidity [1] To date, the diagnosis of
ACS mostly depends on the symptoms of angina, ele-
vation of serum cardiac enzymes, and the electrocardio-

gram (ECG). Among all the examinations, the ECG has
become a valuable, rapid, inexpensive, and non-invasive
tool assisting the clinician in the diagnosis, decision sup-
port of treatment strategy, monitoring treatment efficacy,
and risk stratification in patients with ACS, especially
ST elevation myocardial infarction (STEMI), which man-
dates immediate treatment and intervention [2] Primary
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percutaneous coronary intervention (PPCI) is currently the
preferred reperfusion strategy for treating patients with
ST-elevation myocardial infarction (STEMI). Studies have
demonstrated that shorter door-to-balloon or diagnosis to
wire-crossing times can improve short-term and long-term
outcomes in patients with STEMI [2], [3] Undertaking
direct intervention targeting a coronary artery with a culprit
lesion can hasten revascularization and reperfusion of the
injured myocardium. Although rapid progress has been made
in improving the analytical precision of cardiac troponin
assays,[4] traditional electrocardiogram (ECG) interpretation
remains a mainstay in the initial diagnosis of acute coronary
syndrome in patients in whom it is suspected. This is because
ST-elevation is the best readily available surrogate marker
for detecting complete acute coronary artery occlusion.
In patients with STEMI, ECGs are used widely to predict
the location of culprit lesions,[5], [6], [7] and early and accu-
rate identification of the infarct-related artery can facilitate
prediction of the at-risk area of the myocardium and guide
decision-making based on the urgency of revascularization.

Fiol et al. developed a simple algorithm by examin-
ing levels of ST-segment deviation in different leads to
identify culprit lesions in patients with STEMI [8], [9]
Tierala et al. [10] evaluated one ECG criteria for culprit
artery prediction with the positive predictive value (PPV) of
the LAD, LCX, and RCA as the IRA were 96%, 65%, and
92%, respectively. However, in their study, the ECGs were
classified according to the criteria into LAD, RCA, LCX,
and ‘‘nonspecific’’ groups prior to evaluation. In addition,
patients with LBBBwere also excluded. A significant portion
of ECGs that met the indication of primary PCI might not
be used in the study. In acute anterior myocardial infarction
(AMI), ECGs are useful in predicting both left anterior
descending (LAD) coronary artery occlusion and the site of
occlusion in relation to the artery’s major side branches [11]
Fujii et al [12] focused on the left side of the heart and
analyzed the ECGs of 435 patients with STEMI; they found
that a large reciprocal ST-segment depression in the inferior
leads and ST-segment depression in lead V5 are key ECG
discoveries that, through comparison of the left main artery
lesion with the LAD lesion, enable the determination of
STEMI. Such discoveries have a positive predictive value of
approximately 70%. However, identifying the culprit artery
in patients with acute inferior STEMI is more challenging [7]
Vives-Borrás et al [13] developed a three-step ECG algorithm
(using the amplitudes of ST-segment deviation in different
leads) to distinguish right coronary artery (RCA) and left
circumflex artery (LCX) occlusion in patients with acute
inferior STEMI. The algorithm achieved a sensitivity of 77%,
specificity of 86%, and accuracy of 82%.Approximately 50%
of patients with STEMI who are referred for primary PCI
have significant stenosis in two or more major coronary arter-
ies [14] The identification of culprit lesions in patients with
STEMIwithmultivessel disease (MVD) is essential; the early
results from the CULPRIT-SHOCK trial support a strategy
of culprit-only revascularization during the index procedure

in patients with acute myocardial infarction complicated by
cardiogenic shock [15] Noriega et al. sought to assess whether
the presence of MVD modifies artery-related ST-segment
changes in patients with acute coronary artery occlusion
and described the subtle differences between artery-related
ST-segment changes in the presence and absence of MVD
[16] Occasionally, reciprocal changes may depress the ST
segment and compete with the ST segment elevation result-
ing from AMI, [17] which increases the complexity of the
interpretation and identification of culprit arteries.

In addition to traditional ECG interpretation, advanced
mathematical methods have also been employed to develop
coronary artery disease (CAD) diagnostic algorithms.
Gregg et al. developed a classification system with logistic
regression for prehospital 12-lead ECGs to identify cul-
prit lesions; the system demonstrated a PPV of 100% for
the LAD, 78% for the RCA, and 90% for the LCX [18]
Gregg et al. also applied a similar multinomial logistic
regression and developed a classifier to discriminate proxi-
mal RCA, middle-to-distal RCA, and LCX occlusion, [19]
achieving a PPV of 64% to 78%. Machine learning methods
have been applied to facilitate the identification of patients
with CAD [20] Currently, the sensitivity of the automated
interpretation of STEMI ranges from 34% to 95%, and the
specificity ranges from 70% to 96% [21], [22], [23], [24],
[25], [26] Artificial intelligence with neural network analysis
was also introduced to detect CAD. Acharya et al. proposed
a deep learning (a class of machine learning) algorithm with
a convolutional neural network (CNN) structure comprising
four convolutional layers, four max pooling layers, and three
fully connected layers to diagnose CAD using 2-second- and
5-second-duration ECG signal segments [27] However,
instead of culprit lesion detection, most of these studies
focused on identification of the injured area during myocar-
dial infarction when they mentioned of localization.

For culprit lesion detection in patients with STEMI,
Mehta et al. applied artificial intelligence algorithms to
identify culprit vessels in patients with STEMI by using
12-lead ECGs [28] and single-lead ECG segments, [29] achi-
eving an overall accuracy of 79.4% and 77.4%, respectively.
However, accuracy and sensitivity were inconsistent between
leads andmyocardial territories for the single-lead ECGs [30]

Artificial intelligence andmachine learning have been used
to analyze various biomedical signals. These technologies
may enable the integration and interpretation of complex
biomedical and health-care data in scenarios in which tra-
ditional statistical methods may not be sufficient[31] Previ-
ously, we evaluated the effectiveness of predicting the onset
of ventricular fibrillation by using a CNN[32] In this work,
a CNN is applied for identifying culprit lesions in patients
with STEMI by using their ECGs.

II. METHODS AND PROCEDURES
A. PATIENTS
We reviewed the medical records of a single medical center
for all emergency department (ED) patients for whom the
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‘‘STEMI protocol’’ was activated between 2016 and 2019.
This retrospective study was approved by the institutional
review board of the medical center. The aforementioned
emergency physician–activated protocol operates 24/7 and
has been proven to shorten the door-to-balloon time of revas-
cularization[33] This protocol was activated for 652 patients
over the course of the 4-year period. Diagnoses of STEMI
were confirmed by an interventional cardiologist, and the
patients received PPCI. Patients with the following conditions
were excluded: those with unavailable digital ECG files
(failed uploads from the ECG device or paper ECG for
patients transferred from other hospitals), those with unac-
ceptable ECG quality, those who personally refused PCI or
whose family did so on their behalf, and those in an extremely
critical condition that led to mortality before completing PCI.

All PCI reports and coronary angiography (CAG) images
were reviewed by interventional cardiologists from the same
hospital. Culprit lesions included in the PCI report were con-
firmed through CAG. If culprit lesions were not included in
the PCI report, the cardiologist determined whether identifi-
cation of the culprit lesion was possible (generally the culprit
lesion was the coronary artery branch or one of the branches
that received the intervention). Patients with incomplete or
missing PCI reports in their electronic medical records were
excluded from the study. Patients initially diagnosed with
STEMI who had no CAG-confirmed evidence of critical
coronary artery stenosis were also excluded. The diagnoses
of these patients included coronary artery spasm, aortic dis-
section, small MI, acute (peri)myocarditis, and pulmonary
embolism. Patients who died before revascularization and
patients with three-vessel disease who were referred for a
coronary artery bypass graft (CABG) were also excluded.
An additional 17 patients were excluded because they had
received PPCI for two or more coronary arteries and review-
ers could not identify the infarct-related artery (IRA) through
CAG or the CAG findings indicated that the cardiologist had
directly sent the patient to receive a CABG.We then classified
the culprit lesions as left main (LM), LAD, LCX, or RCA
regardless of the occluded segment of the coronary artery.
Only nine patients had LM as a culprit lesion; they were
excluded from the study because the number of cases was
insufficient for deep learning. Notably, a history of having
received a CABG operation was not an exclusion criterion;
however, four patients with such a history who had aortocoro-
nary saphenous vein graft stenosis as the culprit lesion were
excluded from this study.

Unlike in other studies, patients with a history of perma-
nent pacemaker installation, previous MI, congenital heart
disease, left ventricular hypertrophy, or a left bundle-branch
block in the baseline ECG or with significant stenosis (>70%)
in two or more major coronary arteries were not excluded
from this study. Pacemaker rhythms were shown in the initial
ECGof two patients in the LADgroup, one in RCA and one in
LCX groups. All these patients had right ventricle pacing lead
placement, which resulted in LBBB morphology. All these
patients’ ECG met at least one of the modified Sgarbossa

FIGURE 1. Diagram of the study and distribution of patients.

Criteria [34] which we also use to diagnose a STEMI in paced
rhythm. And since LBBB patients were not excluded in our
study, we’ve decided not to exclude these 4 patients.

Among included patients, 208 had LAD, 44 had LCX,
and 132 had RCA as the culprit lesion. The ECGs of these
patients were used to train and evaluate the machine learning
model. The characteristics of patients at baseline are shown in
Table 1. Of note, the average heart rates in the RCA and LCX
groups are significantly slower than the LAD group, which
is compatible with our current knowledge [35] [36] and can
be explained by compromised perfusion to the sinoatrial (SA)
and atrioventricular (AV) nodes or the Bezold-Jarisch reflex
(increased vagal tone secondary to ischemia). The research
was approved by the IRB of Shin Kong Wu Ho-Su Memorial
Hospital on Sep 17, 2020 (protocol number: 20200809R).

B. WORKFLOW
The workflow of the methods proposed in this paper is
illustrated in Figure 2. First, segments of ECG signals were
extracted from the 12-lead ECGs of patients. For the original
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TABLE 1. Characteristics of patients at baseline∗.

12-lead ECGs, 10 seconds of signals were recorded for all
leads. The original ECG signals were acquired with Philips
PageWriter TC70 cardiograph. High-pass filter with a cutoff
of 0.5Hz and low-pass filter with a cutoff of 150Hz are
applied by the cardiograph. The signals have sampling rate
of 500Hz and are down-sampled to 250Hz in this study.
From each ECG lead, we obtained a given number of ECG
segments (all the 12 leads included) of fixed length, and
the starting points of the segments were selected at ran-
dom intervals. Compared to detecting specific waves prior
to obtaining the ECG segments, random starting point saves
time and computation cost, which makes more practical in
future clinical device implementation. Similar method had
been used in previous study [37] to classify cardiovascular
diseases with CNN and accomplished high performance.

FIGURE 2. Workflow of identifying coronary culprit lesions with the
proposed 2D CNN.

Second, the ECG segments underwent different methods
of preprocessing. The purpose of the signal preprocessing
was to obtain time–frequency analyses of the ECG signals
to enable our proposed learning system to determine the
culprit lesion. We considered different signal preprocessing
methods. The details of these methods are discussed in the
following subsection.

Third, the preprocessed ECG signals were fed into a
CNN for training. The CNN performed linear and nonlinear
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operations on the preprocessed ECG signals in multiple
stages, and the output was used to determine the culprit lesion.
The ECG signals used in the learning step were labeled,
and by comparing the results of the CNN and the known
labels, the weights of the CNN were adjusted to achieve
more accurate classification (i.e., identification of the culprit
lesion). The details of the CNN are provided in subsequent
sections.

Finally, the performance of the various methods was eval-
uated using the structure and weights of the CNN. The eval-
uation was based on a test set containing ECG signals from
different patients than those considered for training.

The patients for the training and test sets were randomly
selected. The evaluation metrics included accuracy, sensitiv-
ity, and specificity.

C. ECG SIGNAL PREPROCESSING
ECG preprocessing was performed to extract time–frequency
characteristics before deep learning. In this paper, we consid-
ered the following two methods:

1) SHORT-TIME FOURIER TRANSFORM (STFT)
Fourier transform is an essential signal analysis tool; it pro-
vides frequency spectrum and phase measurements. In the
study of biomedical signals, frequency content variations
are crucial. We applied the STFT technique, which intro-
duces information regarding frequency changes in the spec-
tral response with respect to time.

The STFT operation is briefly described as follows:
A window is considered from the starting point of the sig-
nal, and discrete Fourier transform (DFT) is applied to the
window. The windowmoves, maintaining a specified overlap
with the previous window location, and DFT is performed
again to obtain the frequency components of the second
time interval. The operation is repeated until the signal ends.
In this manner, we obtain a (sampled) spectrumwith both fre-
quency and time information. Regarding the window length,
selecting a narrow windowmay result in poor, low-frequency
resolution, whereas selecting a wide window produces poor
time resolution at high frequencies. The inability to apply a
time–frequency representation with perfect accuracy in both
the time and frequency domains can be interpreted as an
instance of the uncertainty principle. The STFT operation can
be formulated as follows:

STFT {x[n](m, ω)} , X(m, ω)
+∞∑

n=−∞

x[n]w(n−m)e−iωn (1)

where x[n] andw[n] denote the signal andwindow sequences,
respectively, ω is the frequency sampling point, and m is the
time shift.

As with most standard applications, the STFT is per-
formed on a computer using the fast Fourier transform (FFT).
We then calculate the magnitude of the STFT results. After
these operations are performed, the one-dimensional (1D)
ECG signal becomes a two-dimensional (2D) time–frequency
signal. Hamming window is used in the preprocessing,

FIGURE 3. Example of STFT output of an ECG segment.

window length is 64, with overlap of 25%. An example of
the magnitude of the STFT for an ECG segment is displayed
in Figure 3, in which the x-axis represents the time domain
and the y-axis represents the frequency domain. The ‘‘parula’’
colormap from MATLAB was used for visualization.

2) CONTINUOUS WAVELET TRANSFORM (CWT)
CWT is another popular method for time–frequency analysis
of input signals. The CWT operation extracts the variation of
signals with different scales that correspond to different fre-
quencies. A wavelet of a smaller scale extracts the variation
of signals faster within a shorter interval, whereas a wavelet
of a larger scale extracts the variation of signals slower within
a longer interval. The CWT operation for input signal x(t) can
be described by the following formula:

Xw (a, b) =
1

|a|
1
2

∫
∞

−∞

x (t)ϕ∗0

(
t − b
a

)
dt (2)

where ϕ0 is the mother wavelet, whose complex conjugated,
scaled, and shifted versions are used to analyze signals.
Parameters a and b represent the scale and time shift, respec-
tively. In this paper, we use a real-valued Morlet wavelet as
our mother wavelet for the CWT method:

ϕ0 (t) = et
2/2 cos 5t (3)

Scales 1 to 32 are used in this study. An example of the
CWTmagnitude for an ECG segment is displayed in Figure 4,
in which the x-axis represents the time domain and the y-axis
represents the scale (frequency) domain.

The STFT and CWT transform a 1D ECG signal into a
2D plot. In addition, our raw ECG signals were obtained
from 12 leads and became a third dimension of input for our
learning system. For example, with the CWT method, the
input dimensions were 125, 32, and 12 for time, scale, and
leads, respectively.

D. DEEP LEARNING STRUCTURE
We designed a CNN for the learning structure. The CNN
structure is displayed in Figure 5. The learning structure
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FIGURE 4. Example of CWT output of an ECG segment.

FIGURE 5. CNN (ResNet) structure.

comprise a convolutional layer to perform the linear operation
over the input, a multistage residual network which is the core
of the CNN, and the output layer. Detailed explanations of the
key enabling components are as follows:

1) ONE CONVOLUTION LAYER WITH POOLING
The convolution layers perform linear combinations of the
input. In our approach, 2D convolution is performed, and
nearby points in the time and frequency domains are cor-
related. One convolution layer comprises multiple feature
maps, with each extracting a feature. Max pooling is applied
after convolution to reduce the size of input to next step.

2) MULTISTAGE RESIDUAL NETWORK
In the main part of the CNN, we adopt a multistage residual
network (ResNet),[38] which is developed as follows. The
basic building blocks are residual units, each comprising
two convolution layers with a skip layer that connects the
input to output, and an activation layer (e.g., Rectified Linear
Unit). ReLU serves as the default activation function when
developing many CNNs because it overcomes the vanishing
gradient problem, allowingmodels to learn faster and perform
better. Batch normalization is also used to apply a transfor-
mation that maintains the mean output close to 0 and the

output standard deviation close to 1 to accelerate training.
Multiple residual units with the same configurations (number
of feature maps or filter size) are then cascaded to form a
stage. The next stage has a similar structure; however, the
configurations are different. In our design, the number of
feature maps is doubled from one stage to the next. Three
total stages are used.

3) OUTPUT LAYER
One fully connected layer is introduced after the ResNet
and pooling layer. Average pooling is used instead of max
pooling as in the original proposal of ResNet. All components
are correlated to achieve full connection. The output from
the fully connected layer is converted to probability values
(range 0 to 1) using the softmax operation, and the results are
used to determine if the predicted culprit lesion is compatible
with the CAG.

The Python codes and samples of our patient ECGs
(de-identified) can be found via the following link:
https://drive.google.com/drive/folders/165cXGF6UvdKTy
YR_YO6GrXI23Uo8OniN?usp=sharing.

E. EXPERIMENT EVALUATION
The patients with each culprit vessel category were divided
into two sets: training and test. The ECG signal from each
patient was segmented. The ECG segments for each patient
were randomly assigned for use in a training or test set but
not for use in both, even for different ECG segments from
the same ECG. This ensured the independence of the training
and test sets. The overall procedure of our experiment can be
described as follows: approximately 70% and 30% of patients
were assigned to a training and test set, respectively. For
each patient, 100 ECG segments (all the 12 leads included)
were extracted at random intervals between the segments.
The extracted ECG segments were combined into batches of
128 segments. The training phase ran up to 100 epochs, and
each epoch generated a learned model. A model generated
by an early epoch (<100) was chosen if the test results
(e.g., accuracy) were more favorable than those of later
epochs.

To describe the performance of our proposed methods,
we evaluated the following predictive metrics: overall accu-
racy; left versus right accuracy; and the sensitivity, specificity,
and PPV for each culprit coronary artery. Since the majority
of STEMI patients with RCA or LCX as the IRA had inferior
MI, these patients were selected and the accuracy of predic-
tion was evaluated. Different input ECG signal lengths and
preprocessing methods were compared.

The performance of the criteria proposed by Tierala [10]
using our database was also evaluated.

III. RESULTS
In total, 384 patients with STEMI were included. Among
them, 208 had the LAD, 44 had the LCX, and 132 had
the RCA as the culprit artery. No statistically signifi-
cant differences were identified with respect to age, sex,
history of diabetes mellitus, chronic renal insufficiency,
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TABLE 2. Evaluation results of STFT method.

previous MI, smoking (current smoker), hypertension,
dyslipidemia, stroke, peripheral arterial occlusive disease
(PAOD), chronic obstructive pulmonary disease (COPD),
or previous PCI and CABG between groups.

The evaluation results of the preprocessing methods are
discussed in the following.

1) STFT METHOD
The evaluation results for the STFT method are provided
in Table 2.

The overall accuracy improved with longer ECG segments.
For example, the CNN achieved nearly 80% accuracy when
using 2-second segments. The left versus right accuracy was
higher than 80%. The sensitivity and specificity of the LAD
andRCA cases were approximately 80%. Although the speci-
ficity of the LCX cases was good, the sensitivity was poor.

2) CWT (MORLET WAVELET) METHOD
The evaluation results for the CWT-based method are pro-
vided in Table 3.

The numerical results for the CWT-basedmethod exhibited
similar trends to those of the STFT-based method in terms
of accuracy, sensitivity and specificity. However, the CWT-
based method achieved higher (higher than 80%) overall
accuracy.

3) TIERALA’S CRITERIA
The evaluation results for the Tierala’s criteria are provided
in Table 4.

IV. DISCUSSION
Our study demonstrated that with a properly designed neural
network model and adequate subjects for training, the culprit

TABLE 3. Evaluation results of CWT method.

TABLE 4. Evaluation results of Tierala’s criteria.

coronary artery in patients with STEMI can be identified
from ECGs.

The electrophysiological basis of ST-segment changes in
MI can be explained by the electrical potential differences
between normal and ischemic myocardial tissue (referred to
as injury currents). The injury currents in transmural ischemia
(which leads to STEMI) are directed from the infarcted area
to the surrounding normal area of the heart, which results in
ST-segment elevation in the corresponding leads. Thrombotic
occlusion of more than one coronary artery is not rare; it
occurred in up to 50% of patients in one autopsy series[39]
One study suggested that complete revascularization could
reduce the risk of cardiovascular death if performed either
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during or after the index hospitalization (‘‘staged’’ PCI)[40]
However, timely treatment of the IRA and revasculariza-
tion of the culprit lesion in primary PCI procedures remain
the highest priorities. In patients with MVD, ECGs may
reveal less ST-segment elevation, which increases the diffi-
culty of ECG interpretation[16] Myocardial salvage is most
likely to occur in early reperfusion; a strategy of performing
ECG-guided PCI of the culprit coronary vessel followed by
contralateral angiography may shorten the door-to-balloon
time[41] Our study yielded a means for early identifica-
tion of the IRA, better intervention planning, and potentially
improved prognosis through the assistance of deep learning.

Reciprocal ST depression generally occurs in electrically
opposite leads. For example, ST-segment elevation in the
high lateral leads I and aVL typically produces reciprocal
ST depression in lead III (inferior). This facilitates diagnosis
in traditional ECG interpretation and may also provide key
information for our neural network model. However, recipro-
cal change does not always occur. Therefore, ST depression in
other leads should always be considered possible myocardial
ischemia (subendocardial) of another area until proven other-
wise. Because all 12 ECG leads were used in our model, the
inclusion of depressed ST segments in other leads can also
be used to train the model to improve the accuracy of culprit
lesion prediction.

Ventricular premature contractions (VPCs) are not rarely
seen in AMI patients. VPCs definitely affect the result of
time-frequency analyses. STFT was also used in the anal-
ysis of APC and VPC [42] and CNN was used to localize
the origins of VPC. [43] As we know, VPC is related to
myocardial ischemia; the resulting information presented in
the time-frequency analysis might also have some role the
identification of the infarct-related artery. Thus, no special
treatment was done to the VPCs in the original ECG signals
in the study. Further studies focusing on the effect of VPCs
may be conducted if sufficient cases can be enrolled.

Our study included 12 patients who had undergone return
of spontaneous circulation (ROSC) and ST-segment ele-
vation and who had survived to the completion of the
PCI procedures. Most research has excluded these patients.
The combined American College of Cardiology Founda-
tion and American Heart Association in addition to the
European Society of Cardiology have published STEMI
guidelines recommending immediate coronary angiography
and PCI, when indicated, for resuscitated out-of-hospital
cardiac arrest (OHCA) patients with ST-segment elevation
on their ECGs [44], [45], [46], [47] Acute coronary lesions
have been identified in 70% to 80% of cases of OHCA
patients who experienced ventricular fibrillation or pulseless
ventricular tachycardia and were successfully resuscitated
with sustained ROSC and ST-segment elevation or with a new
left bundle-branch block on the surface ECG [48], [49] In our
study, 11 of the 12 patients who had undergone ROSC had
CAG-identified critical stenosis of at least one coronary
artery. The overall accuracy of our model in identify-
ing the culprit lesion in these patients was 49.6%, with

78.2% accuracy in predicting whether the culprit coronary
artery was on the left (LAD or LCX) or right side (RCA).
The sensitivity and specificity of identifying the LAD as
the culprit lesion were both 79.6%, and the sensitivity and
specificity for the RCA were 74% and 81%, respectively.
Because only one patient had the LCX diagnosed as the
culprit coronary artery, the sensitivity and specificity were
2% and 90.2%. More cases could not be included because
most OHCA patients did not achieve sustained ROSC
before receiving coronary angiography. Further inclusion of
these patients would yield a more solid prediction model
for identifying culprit coronary lesions to facilitate early
revascularization.

One of the major contributions of this work is the prepro-
cessing method. Our methods transformed 1D ECG signals
into 2D time–frequency plots. To extract the time-varying
features of the ECG signals, filters were applied to the
ECG signals within moving windows. With the STFT-based
method, the moving window size was fixed. With the CWT-
based method, the moving window size was adjusted accord-
ing to scale. As demonstrated by the results of the sim-
ulation, the CWT-based method outperformed the STFT-
basedmethod for most metrics.With the CWT-basedmethod,
more than 80% of the test cases were correctly classified,
and when we only distinguished between the left and right
vessels, the accuracy was higher than 90%. The advantage
of the CWT-based method is its ability to extract differ-
ent frequency components at different resolutions[50], [51]
Higher-frequency features are extracted from more localized
signals (i.e., smaller moving window sizes) because they are
faster; lower-frequency features are slower, and they should
be extracted using longer moving window sizes with wider-
scale wavelets.

Another key design consideration is the choice of a mother
wavelet for the CWT-based method. The Morlet wavelet is
one of the most popular complex wavelets in ECG analysis; it
has been demonstrated to have high frequency resolution [52]

We have also evaluated the performance of the criteria
proposed by Tierala et al. [10] using our patient database.
The PPV of the LAD, LCX, and RCA as the IRA were
around 91%, 33%, and 78%, respectively. The overall accu-
racy was 74%, while the L vs. R accuracy was 83%. Com-
pared to their traditional criteria, the CWT-based CNNmodel
generally achieved better performance, which might help
shorten the time to revascularization as mentioned previously.

This study has several limitations. First, the sensitivity in
detecting the LCX as the culprit coronary artery was rela-
tively low. This also occurs in traditional ECG interpretation.
Patients with RCA or LCX artery occlusion can present
with ST-segment elevation in leads II, III, and aVF. Several
differential electrocardiographic criteria have been reported
and clinically implemented [53] This difficulty in accu-
rate prediction can be explained by individual variation in
coronary artery anatomy, especially in the posterior descend-
ing artery. The posterior descending artery usually originates
from the RCA. However, in some patients, it originates
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from the LCX [54] Second, the performance of The CNN
models tend to improve with longer ECG segments. The
results of our study also showed this trend in LAD and RCA
groups with both STFT and CWT methods. However, the
LCX sensitivity and LCX PPV of the STFT-based method
decrease remarkably with 1s ECG segment, and the LCX
sensitivity and LCX PPV of the CWT-based method decrease
with 2s ECG segment. This might be due to insufficient
case numbers in LCX group which results in significant
bias during random selection of the ECG segments during
model training. As we know, it is relatively rare for LCX
to be the culprit lesion in STEMI; further collection of
the data might help solve this problem. Third, challenging
situations may occur in which the ECG does not present
typical diagnostic ST-segment elevations when the patient
should be managed as a patient with STEMI according to an
emerging consensus on ‘‘STEMI equivalents.’’ For example,
the de Winter pattern can be observed in approximately 2%
of acute LAD occlusions and is often underrecognized by
clinicians [55] Wellens syndrome [56] is another example in
which critical stenosis of the LAD results in deeply inverted
or biphasic T waves in V2-V3 without typical diagnostic ST-
segment elevations. In some patients with critical left main
coronary artery occlusion, ST-segment elevation may only
be observed in lead aVR although widespread ST-segment
horizontal depression presents in leads V4–V6. Posterolat-
eral wall transmural infarction may present only in V1–V3
ST-segment depression on standard 12-lead ECGs, and the
ST-segment elevation can only be detected with special ECGs
using posterior leads V7–V9. Such patients do not meet
the standard diagnostic criteria for STEMI and were not
included in our study, although physicians and cardiologists
have recently suggested that they should be managed as
patients with STEMI. Further studies should focus on patients
diagnosed with severe stenosis who underwent PCI when no
diagnostic ST-segment elevation was observed in the initial
ECG. If critical stenosis can be predicted in these patients,
the proposed model of this study may provide a stronger
and clearer indication for early intervention or primary
PCI. Fourth, nonischemic causes of ST-segment elevation
can occur: the presence of conduction defects and previous
infarcts subvert the rules for identification,[57] hypercal-
cemia and hyperkalemia may cause ST-segment elevation in
leads V1-V2, and acute pericarditis can interfere with ECG
presentation [58] However, automated ECG interpretation
with incorporated neural networks may also assist in differ-
entiating these patients in the future.

V. CONCLUSION
This study demonstrated that deep learning with a CNN
can aid in identifying culprit coronary arteries in patients
with STEMI. Preprocessing ECG signals with CWT was
demonstrated to be superior to doing so with conventional
STFT. This is possibly due to the time-variant nature of ECG
signals. The inclusion of more patients in the training set
would further improve accuracy.
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