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Introduction
Gastric cancer (GC) remains a major clinical 
challenge. It is the fifth most common cancer and 
the third leading cause of cancer-related deaths 
worldwide.1 The incidence of GC is high in East 
Asia, Eastern Europe, and South America. 
Helicobacter pylori infection is closely associated 
with the development of GC, and its eradication 
is effective in reducing GC incidence.2 However, 
because of the lack of early clinical signs, GC is 
still frequently diagnosed at advanced stages that 
are not amenable to curative resection. For such 
patients, systemic chemotherapy is the main ther-
apeutic option for prolonging survival and 
improving symptoms and quality of life.3,4

The Lauren classification divides GC into intesti-
nal and diffuse types based on cell histology and 
morphology and is clinically well used because of 
different phenotypes, responses to treatment, and 
prognoses.5 Diffuse-type GC (DGC) cells tend to 
scatter noncohesively into the stoma of the stom-
ach and disseminate easily in the abdominal cav-
ity.5 In addition, DGC cells have enhanced 
invasive abilities in the stomach wall and lym-
phatic vessel compared with intestinal-type GC 
(IGC) cells.6 Consequently, aggressive pheno-
types of DGC result in poor survival outcomes via 
peritoneal dissemination or lymph node metasta-
sis,6–8 and high recurrence frequency after curative 
surgery.9 DGC accounts for approximately 30% 
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of GCs and is trending toward increasing preva-
lence.5,7 Eradication of H. pylori may induce an 
increased risk of developing DGC, in contrast to 
IGC.10 There is an urgent need to develop effec-
tive therapeutic strategies to overcome poor tumor 
cellularity in DGC.

Many molecular-targeted agents have failed to 
demonstrate significantly improved overall sur-
vival (OS) in clinical trials for patients with recur-
rent or metastatic GC, partially due to a lack of 
selective biomarkers and/or intratumoral hetero-
geneity. Currently, human epidermal growth fac-
tor receptor 2 (HER2),11,12 vascular endothelial 
growth factor receptor 2 (VEGFR2),13,14 and pro-
grammed death-1 (PD-1)15,16 are clinically vali-
dated targeted molecules in GC. However, these 
molecular-targeted agents may have limited clini-
cal utility for patients with DGC because of the 
rare frequency of targeted molecule aberrations 
and weak efficacy. There is also less benefit from 
chemotherapy in DGC.17 An in-depth under-
standing of the complexity and diversity of molec-
ular profiles will pave the way for establishing 
personalized molecular-targeted medicine for 
DGC patients.

Based on The Cancer Genome Atlas (TCGA) 
molecular classification, GC can be categorized 
into four subtypes: microsatellite instability 
(MSI), Epstein–Barr virus (EBV)-positive, chro-
mosomal instability (CIN), and genomically sta-
ble (GS) tumors.18 GS tumors have frequent 
fusions of tight junction protein claudin-18 
(CLDN18), and mutations of cadherin 1 (CDH1) 
or ras homolog family member A (RHOA), which 
mediates epithelial disintegration and diffuse-
type phenotype.18–21 In addition, comprehensive 
molecular analyses demonstrate the aberration of 
fibroblast growing factor receptor-2 (FGFR2) as 
a critical molecule in DGC.18 Recently, promis-
ing results of anti-CLDN18 isoform 2 
(CLND18.2) antibody, zolbetuximab, and anti-
FGFR2 isoform IIIb (FGFR2-IIIb) antibody, 
bemarituzumab, were shown in phase II FAST22 
and FIGHT23 trials, respectively. Thus, 
CLDN18.2 and FGFR2-IIIb are relevant thera-
peutic targets and have attracted considerable 
attention as new hope for DGC patients.

In this review, we summarize the biology, molec-
ular, and genetic landscape and clinical features 
of DGC, and highlight a potential therapeutic 
target based on the findings of pivotal clinical 
trials.

Clinicopathological and molecular  
features of diffuse-type gastric cancer
The histology- and morphology-based Lauren 
classification of GC has been widely used for 
50 years.5 According to the Lauren classification, 
GC is mainly divided into two types (IGC and 
DGC), which have distinct etiology, clinico-
pathological features, and molecular profiles.

Clinicopathological features of  
diffuse-type gastric cancer
Clinicopathological features according to the 
Lauren classification are shown in Table 1. IGC 
is characterized by cohesive tumor cells with a 
glandular or intestinal structure, leading to an 
expanding growth pattern, while DGC is charac-
terized by poorly cohesive tumor cells with few or 
no glandular structures, leading to a diffusely 
infiltrating growth pattern. DGC cells induce 
fibrosis and nestle within a rich fibrous stroma, 
which easily spreads not only along the stomach 
wall, but also in the upper layers of the stomach 
wall.24,25 In a meta-analysis of GC transcriptome 
data integrating 940 gastric transcriptomes, DGC 
showed higher stromal gene expression profiles 
associated with extracellular matrix biology and 
stromal cells than IGC, and DGC patients with 
high stromal profiles had more aggressive tumor 
biology and poor prognostic outcomes compared 
with those with low profiles.26

DGC is more prevalent in younger, larger tumors 
that are infiltrating, proximal stomach predomi-
nant, advanced stage, advanced in depth of inva-
sion, and poorly differentiated, scirrhous type 
stromal reactions, and lymphovascular inva-
sions.7,27,41 Clinically, the two histology types of 
GC have different patterns of metastatic spread 
and prognostic outcomes. DGC tends toward per-
itoneal dissemination, lymph node metastasis, and 
direct extension into neighboring tissues, while 
IGC is associated with hematogenous metastasis 
including liver.6,9,38–40 DGC has a high risk of peri-
toneal recurrence, even after curative surgery.9 In a 
total of 20,218 patients from the Surveillance, 
Epidemiology, and End Results database, DGC 
patients had significantly less favorable cancer-spe-
cific survival compared with IGC patients, with a 
hazard ratio (HR) of 1.44 [95% confidence inter-
val (CI), 1.38–1.50]. In a large cohort study of 
3071 patients who underwent gastrectomy, DGC 
was an independent prognostic factor.7 A meta-
analysis including 61,468 GC patients demon-
strated similar unfavorable OS of patients with 
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DGC versus IGC in all patients (HR, 1.23; 95% 
CI, 1.17–1.29) and in patients treated with adju-
vant therapy only (HR, 1.27; 95% CI, 1.17–1.37).8 
Collectively, DGC cells have aggressive traits and 
a high risk of recurrence and metastasis, which 
results in poor prognosis.

Molecular classification of diffuse-type  
gastric cancer
GC is a heterogeneous disease with diverse genetic 
and molecular levels, and four molecular subtypes 
(MSI, EVB, CIN, and GS tumors) were defined 
according to the results of comprehensive molecu-
lar analyses in the TCGA project.18,42 The GS sub-
type often shows a diffused cellular morphology 
due to the frequent loss of cell adhesion-related 
molecules via CLDN18-Rho GTPase-activating 
protein-6 or 26 (ARHGAP6, ARHGAP26) fusions 
(15% of GS subtype), mutations of CDH1 (37%), 
and RHOA (15%).18–21 In fact, DGC predomi-
nantly belongs to the GS subtype, and 73% of GS 
subtypes in the TCGA cohort were DGC.18 These 
genetic alterations are mutually exclusive, suggest-
ing a contribution to carcinogenesis depending on 
cell adhesion-related signaling in DGC.

The Asian Cancer Research Group (ACRG) pro-
posed four molecular subtypes according to the 
distinct molecular profiles and clinical outcomes 
using gene expression profiling, genome-wide copy 
number microarrays, targeted gene sequencing, 
and clinical information: MSI, microsatellite stable 
(MSS)/Tumor Protein P53 (TP53)-inactive, 
MSS/TP53-active, and MSS/epithelial-mesenchy-
mal transition (EMT) tumors.43 MSS/EMT 
tumors have similar features to the GS subtype in 
TCGA classification, associated with diffuse-type 
histology, lowest rate of mutations, early-onset, 
highest risk of recurrence, development of perito-
neal carcinomatosis, and worst prognosis among 
the four ACRG subtypes. In fact, the majority 
(80%) of MSS/EMT tumors included DGC. 
However, there are substantial differences between 
the GS subtype in TCGA and MSS/EMT subtype 
in ACRG. Although 57% of DGCs were classified 
into the GS subtype in the TCGA cohort, only 
27% of DGCs exhibited MSS/EMT subtype in the 
ACRG cohort, with distribution across all ACRG 
subtypes. In addition, mutations of CHD1 and 
RHOA were less common in the MSS/EMT sub-
type than in the GS subtype.

Lei et al. identified three subtypes with distinct bio-
logical properties and chemotherapy sensitivities 

using a method of consensus hierarchical cluster-
ing with iterative feature selection: proliferative, 
metabolic, and mesenchymal tumors.44 The mes-
enchymal subtype has features with cancer stem-
like cells (CSCs) and is enriched in DGC. This 
subtype appears to have limited benefits from 
5-fluorouracil (5-FU) chemotherapy. In a tran-
scriptome analysis using the gene coexpression 
network, enriched mesenchymal stemness was a 
major driving force of DGC.45

A growing number of studies have provided 
insight into the heterogeneity of DGC. A prot-
eomic analysis showed three subtypes of DGC 
with distinct clinical outcomes based on the sta-
tus of enriched immune response proteins and 
dysregulation in the cell cycle and EMT pro-
cess.46 A molecular signature of different prog-
nostic subtypes of DGC was reported using RNA 
sequencing–based transcriptome data.47 The 
intestinal-type-like subtype exhibited a signature 
associated with cell cycle or DNA repair, whereas 
the core diffuse-type subtype had poor prognosis 
and an enriched signature of EMT-associated 
functions, such as cell adhesion/migration and the 
TGF-β signaling pathway. In addition, DGC has 
a bimodal age distribution at diagnosis with early-
onset and late-onset. Early-onset DGC has higher 
proportions of somatic mutations in CDH1 and 
TGF-β receptor 1 (TGFBR1) and lower propor-
tions of RHOA mutations compared with late-
onset DGC.48

Collectively, although there is heterogeneity even 
among DGCs, most DGCs belong to the GS sub-
type in TCGA, MSS/EMT subtype in ACRG, 
and the mesenchymal subtype in Lei’s 
classification.

Aberrant signaling pathway in  
diffuse-type gastric cancer
Typically, IGC develops in the background of 
atrophic gastritis and subsequent intestinal meta-
plasia through a sequence of complicated multi-
step carcinogenesis.49 Although the mechanism of 
developing DGC has not yet been fully under-
stood, DGC may develop through a shorter, uni-
dentified sequence of events from gastric epithelial 
cells.50

A growing number of comprehensive genomic 
analyses of GC have shown that DGC exhibits 
different genetic and molecular profiles than IGC 
(Table 2 and Figure 1). In addition to mutations 

https://journals.sagepub.com/home/tam


A Ooki and K Yamaguchi 

journals.sagepub.com/home/tam	 5

of genes associated with cell adhesion, cytoskele-
ton, and cell motility, including CDH1, RHOA, 
and Rho-associated coiled-coil-containing pro-
tein kinase (ROCK),18–21,51 multiplex profiling of 
peritoneal metastases from GC showed that DGC 
had high rates of heterozygous deletion of chro-
mosome 3p, which encompasses multiple tumor 

suppressor genes, and duplication of 20q, which 
encompasses oncogenes.40 Furthermore, DGC 
has frequent dysregulation of signaling pathways 
associated with hallmarks of cancer, including 
G2/M cell cycle checkpoint, mitotic spindle 
assembly, MYC, and inflammatory response. In a 
comparative study between signet ring cell 

Table 2.  Molecular features according to the Lauren classification.

Molecule Intestinal type Diffuse type Reference

HER2 Amp / OverExp 
(18–32%)

Amp / OverExp (0–7%) Van Cutsem et al.,52 Kurokawa 
et al.,53 Kataoka et al.,54 Kim et al.55

KRAS Mt (5–12%) Mt (1–5%) Kakiuchi et al.,25 Hewitt et al.,56 Van 
Grieken et al.57

EGFR Amp, OverExp 
(14–52%)

OverExp (4–30%) Kim et al.,55 Park et al.,58 
Nagatsuma et al.,59 Birkman 
et al.60

VEGF OverExp (39–69%) OverExp (16–43%) Takahashi et al.,61 Oh et al.62

mTOR P-Exp (53–60%) P-Exp (47–64%) Lang et al.,63 Jung et al.64

HER3 OverExp (5–55%) OverExp (26–61%) Zhang et al.,65 Hayashi et al.66

MET OverExp (10–35%),
Amp (0–2%)

OverExp (8–40%),
Amp (1–15%)

Kim et al.,55 Nagatsuma et al.,59 
Peng et al.,67 Kawakami et al.,68 
Lennerz et al.69

FGFR2 Amp (3–4%), OverExp 
(2–29%)

Amp (8–11%), OverExp 
(5–33%)

Ahn et al.,70 Park et al.,71 Minashi 
et al.72

CDH1 LoEX, Mt (2%) LoEX, Mt (33–56%),
Meth (56%)

Kakiuchi et al.,25 Birkman et al.,60 
Machado et al.73

RhoA Mt (0%) Mt (15–25%) Cancer Genome Atlas Research 
Network,18 Kakiuchi et al.,25 Wang 
et al.74

ARID1A Mt (12–16%) Mt (9–15%) Kakiuchi et al.,25 Wu et al.,75 
Garcia-Pelaez et al.76

Claudin 18.2 OverExp (15–46%) OverExp (28–75%) Sahin et al.,77 Dottermusch et al.,78 
Pellino et al.,79 Coati et al.80

MSI-H /dMMR 4–10% 0–4% Kim et al.,55 Birkman et al.,60 Zhang 
et al.81

EBV 1–9% 0–4% Kim et al.,55 Birkman et al.,60 Zhang 
et al.81

PD-L1* OverExp (28–65%) OverExp (19–54%) Fukamachi et al.,82 Liu et al.,83 Gu 
et al.84

Amp, amplification; CDH1, cadherin 1; dMMR, deficient mismatch repair; EBV, Epstein–Barr virus; EGFR, endothelial 
growth factor receptor; FGFR2, fibroblast growing factors receptor-2; HER3, human epidermal growth factor receptor 3; 
LoEx: low expression; Meth: methylation; MSI-H, microsatellite instability-high; Mt: mutation; mTOR, mammalian target 
of the rapamycin; OverExp: overexpression; PD-1, programmed death-1; P-Exp: phospho-expression; VEGF, vascular 
endothelial growth factor.
*The varied percentage of the PD-L1 positive expression was due to the different definitions of PD-L1 positivity and the 
cutoff values.
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phenotype and nonsignet ring cell phenotype 
among DGCs, the nonsignet ring cell phenotype 
had more frequent mutations of TP53, BRAF, 
phosphatidylinositol-4,5-Bisphosphate 3-Kinase 
Catalytic Subunit Alpha (PIK3CA), SMAD 
Family Member 4 (SMAD4), and RHOA, sup-
porting heterogeneity of DGC.30

CDH1 is a tumor suppressor gene that codes for 
E-cadherin, which is a calcium-dependent trans-
membrane glycoprotein that forms the adherens 
junction via the extracellular domains, connects 
to the cytoskeleton via the cytoplasmic domains, 
and mediates cellular signaling.85 Loss of its func-
tion confers diffused cellular morphology, migra-
tory and invasive abilities, metastasis, and the 
EMT process.85,86 In DGC, E-cadherin 

expression is predominantly downregulated via 
somatic mutations or promoter hypermethylation 
of CDH1,18,19,40 and the loss of its expression is 
associated with an increased risk of early invasion 
and metastasis.87 CDH1 germline mutations have 
been identified in patients with hereditary DGC,28 
and abnormal expression of E-cadherin occurs 
even in early gastric carcinomas,88 suggesting that 
loss of CDH1 function is acquired early in the 
pathogenesis of DGC.

RHOA mutations predominantly occur in DGC, 
ranging from 15% to 25%,18,25,74 and the mutant 
RHOA acts as a gain-of-function.25 The GS sub-
type exhibits fusions of ARHGAP6/26, which 
regulates RhoA activity as GTPase-activating pro-
teins.18,20,21 Approximately 30% of GS subtypes 

Figure 1.  Pivotal signaling pathways, including CLDN18.2, TGF-β, FGFR2, and MET, in DGC.
MET and FGFR2 are members of the RTK family. Binding the ligands, such as hepatocyte growth factor (HGF) and fibroblast 
growing factors (FGFs), to the RTK receptor leads to cytoplasmic tyrosine phosphorylation, resulting in the activation of 
MAPK and PI3 K-AKT signaling via the recruitment of various effector molecules, such as growth factor receptor-bound 2 
(GRB2), GRB2-associated binding protein 1 (GAB1) son of sevenless (SOS), and phospholipase C-γ (PLC-γ). FGFR2 activates 
not only MAPK and PI3 K-AKT signaling via FGFR substrate 2 (FRS2) as an adaptor protein, but also FRS2-independent 
cascades, including protein kinase C (PKC)-glycogen synthase kinase 3β (GSK3β)-β-catenin axis, Janus kinase (JAK)-
signal transducer and activator of transcription (STAT) axis, and c-Jun-Yes-associated protein1 (YAP1) axis. Activated ras 
homolog family member A (RhoA) interacts with downstream effectors, including Rho-associated, coiled-coil-containing 
protein kinase (ROCK), and focal adhesion kinase (FAK). CLDN18.2 may interact with the RhoA signaling pathway. YAP1 
is activated by RhoA signaling, in addition to the Hippo and FGFR2 signaling pathways. The canonical TGF-β signaling 
pathway involves ligand-dependent assembly of a heteromeric receptor complex and subsequent accumulation of Smad 
proteins as transcriptional regulators in the nucleus. The mammalian target of the rapamycin (mTOR) pathway is frequently 
dysregulated in DGC via overexpression of phosphorylated mTOR and PI3 K-AKT signaling activated by PTEN loss and RTKs, 
such as MET and FGFR2. ADCs, antibody–drug conjugates; BiTE, bispecific T cell engager; CAR-T, chimeric antigen receptor 
T; DAG, diacylglycerol; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; HSPG, heparan sulfate 
proteoglycan; IP3, inositol-1,4,5-trisphosphate; PIP2, phosphatidylinositol-4,5-biphosphate; TKIs, tyrosine kinase inhibitors.
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have aberrant alterations in the components of the 
Rho signaling pathway. Activated RhoA signaling 
pathway regulates the actin cytoskeleton, cell 
migration, cytokinesis, the cell cycle, resistance to 
anoikis, and CSC phenotype with invasive ability 
and chemoresistance.25,74,89,90 In a mouse model, 
RHOA Y42 C, the most common RHOA hotspot 
mutation in DGC, coupled with loss of CDH1, 
induces metastatic DGC via actin cytoskeletal 
rearrangements and activation of Yes-associated 
protein1 (YAP1), phosphoinositide 3-kinase (PI3 
K)-AKT, and β-catenin signaling pathways.90 In 
288 GC patients who underwent curative surgery, 
increased RHOA activity was an independent 
prognostic factor of OS in DGC patients, but not 
in IGC patients.89 Thus, the aberrant activity of 
the RHOA signaling pathway has been implicated 
in the development and aggressive phenotype of 
DGC.

MET is a member of the RTK family and plays a 
key role in tumor cell proliferation, migration, 
invasion, survival, angiogenesis, and metastasis.91 
In a subset of GC, the MET signaling pathway is 
activated via the overexpression and gene ampli-
fication of MET.92 The positivity rate of MET 
overexpression varies from 6% to 39% of GC,93,67 
and MET gene amplification has been found in 
2% to 7% of GC,67,68,94,95 which confers an unfa-
vorable prognosis.96 MET amplification is pre-
dominantly enriched in DGC compared with 
IGC,67,68,96,97 and is observed in both primary GC 
tissues and their corresponding cancer cells from 
malignant ascites. Thus, MET-amplified GC 
cells may have intrinsic potential for peritoneal 
dissemination, which is a major metastatic pat-
tern of DGC.38,39

TGF-β is a multifunctional cytokine associated 
with tumor progression.98 Approximately half of 
the GS subtype showed activation of the TGF-β 
signaling pathway in the TCGA cohort.99 DGC is 
characterized by a rich fibrous stroma34 and 
exhibits a high stromal super module expression 
with elevated levels of the TGF-β pathway in a 
comprehensive genomic meta-analysis using a 
network-modeling approach.26 TGF-β ligands 
secreted by tumor cells alter normal fibroblasts to 
a myofibroblast-like phenotype, promoting tumor 
growth, vascularization, and metastasis.100 
Furthermore, activation of the TGF-β pathway 
has been observed in cancer-associated fibro-
blasts (CAFs) isolated from human DGCs, and 
the highly motile CAFs induced DGC with 

invasive abilities into the extracellular matrix and 
lymphatic vessels.101 Thus, TGF-β signaling may 
act as a key indicator of a protumorigenic stromal 
environment in DGC.98

Biological features of diffuse-type  
gastric cancer
DGC is often classified into mesenchymal subtype 
with features of CSC in Lei’s classification,44 
MSS/EMT subtype in ACRG cohort,43 and GS 
subtype characterized by activation of RHOA, 
TGF-β, and Wnt pathways in TCGA classifica-
tion,18,99 which have been implicated in the induc-
tion and maintenance of EMT and CSC 
phenotypes.89,102,103 These molecular subtypes 
support the association of DGC with EMT and 
CSC phenotypes. EMT is a cellular process of 
redifferentiation of epithelial cells into mesenchy-
mal ones, which is implicated in embryogenesis, 
wound healing, carcinogenesis, and cancer pro-
gression.103 In a clustering analysis of the TCGA 
cohort using an EMT gene set, the cluster with 
active EMT had an enriched TGF-β signaling 
pathway and MET amplification, which consisted 
of a high proportion (59%) of DGCs.104 
Importantly, EMT programs facilitate gastric CSC 
generation and expansion.105,106 CSCs are a rela-
tively rare population of cancer cells that contrib-
ute to the driving force of tumorigenesis and 
metastasis due to their cancer stemness properties, 
including sphere formation, self-renewal, invasion, 
differentiation, antiapoptosis, immune evasion, 
and drug resistance.102,107,108 Thus, aggressive phe-
notypes of DGC, including chemoresistance, inva-
sive and metastatic abilities, and poor survival 
outcomes, may be partially explained by the bio-
logical features of EMT and CSC phenotypes.

YAP1 is a downstream transcription coactivator 
of the Hippo signaling pathway, which acts not 
only as a prominent molecule for tumorigenesis, 
but also as an oncogenic driver in GC.109–113 
YAP1 plays a crucial role in CSC expansion and 
properties in various tumor types, including 
GC.107,114,115 In fact, genetic knockdown of YAP1 
has been found to suppress gastric CSC traits, 
tumorigenesis, and peritoneal metastasis in vitro 
and in vivo.116 The Hippo pathway was also acti-
vated in the cluster with enriched EMT-related 
signatures in a comprehensive multiomic analysis 
of malignant ascites samples and their corre-
sponding GC cell lines.104 Thus, YAP1 is a prom-
ising target for gastric CSCs.
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Treatment of patients with diffuse-type 
gastric cancer
Systemic chemotherapy includes three types of 
treatment: (1) cytotoxic agents, including fluoro-
pyrimidines, platinum compounds, taxanes, trif-
luridine/tipiracil, and irinotecan; (2) immune 
checkpoint inhibitors (ICIs) targeting PD-1; and 
(3) molecular-targeted agents for HER2 or 
VEGFR2. Although there are different clinico-
pathological and molecular features in DGC and 
IGC, the same approach of treatment with sys-
temic chemotherapy is used, regardless of histol-
ogy types. In this section, the clinical efficacy of 
individual chemotherapy agents is described 
according to histology types.

Cytotoxic chemotherapy
The impact of cytotoxic chemotherapy on DGC 
has been evaluated in a few clinical trials and sev-
eral exploratory analyses (Table 3). Generally, 
DGC is associated with low responsiveness to 
cytotoxic chemotherapy and chemoradiation, but 
the mechanisms of resistance are not yet under-
stood. The adenosine triphosphate (ATP)-
binding cassette (ABC) transporters confer 
multidrug resistance to tumor cells through an 
increased efflux of chemotherapy agents, and 
overexpression of ABC transporters has been 
reported predominantly in CSCs.117 In a large-
scale meta-analysis of GC transcriptome data, the 
negative association between stroma and cell pro-
liferation in DGC relevant to a rich fibrous stroma 
may contribute to resistance to chemotherapy tar-
geting active dividing cells. In addition, a high 
proportion of intratumoral stroma may directly 
inhibit the effects of chemotherapy by reducing 
drug delivery to tumor cells118 and protecting 
cells against chemotherapy-induced apoptosis.119

Palliative chemotherapy.  Combination of fluoro-
pyrimidine with platinum is a standard first-line 
backbone regimen in GC, regardless of histology 
type.3,4 In real-world data, including 1303 patients 
who received chemotherapy, from the AGAME-
NON national registry research group, DGC 
patients showed decreased overall response rate 
(ORR) and increased mortality.133 In a meta-
analysis of 33 studies comprising 10,246 patients 
(4888 patients for IGC and 5358 patients for 
DGC) treated with chemotherapy, chemotherapy 
showed significantly improved OS in IGC patients 
compared with DGC patients (HR, 0.76; 95% 
CI, 0.71–0.82; p < 0.001).17 Similar results were 
observed, even when subgroup analyses were 

performed according to the regimen of first-line 
chemotherapy. Among platinum compounds, 
oxaliplatin-based chemotherapy may be more 
efficacious than cisplatin-based chemotherapy for 
DGC patients.130,131

In a second-line setting, including 2311 patients 
in the AGAMENON group, DGC was also more 
refractory to chemotherapy than IGC.134 In a sal-
vage-line setting, a phase III TAGS trial evalu-
ated the efficacy of perioperative trifluridine/
tipiracil versus the best supportive care in 507 
patients with refractory GC treatment and dem-
onstrated more improved survival outcomes in 
IGC compared with DGC.135 Collectively, DGC 
is associated with a poor prognosis and less sensi-
tivity to chemotherapy.

Adjuvant/perioperative chemotherapy.  In a large 
cohort study of 1290 locally advanced GC patients 
who underwent either primary surgery or preop-
erative chemotherapy followed by surgery, preop-
erative chemotherapy resulted in a deterioration of 
survival outcomes compared with primary surgery 
in DGC patients, in contrast to IGC patients, who 
had improved survival rates with preoperative che-
motherapy.136 Similarly, another large cohort 
study that assessed the survival impact of periop-
erative chemotherapy versus primary surgery in 
924 patients with signet ring cell GC showed the 
detrimental effect of perioperative chemother-
apy.137 Thus, inherent chemoresistance may cause 
DGC patients to miss a chance of curative resec-
tion by delaying surgery through preoperative che-
motherapy, especially in patients with signet ring 
cell GC. A phase II/III FREGAT trial (PRODIGE-
19-FFCD1103-ADCI002), which compared 
perioperative chemotherapy (epirubicin, cisplatin, 
and 5-FU) with primary surgery followed by adju-
vant chemotherapy, was conducted to elucidate 
whether primary surgery was a potential option 
for patients with resectable signet ring cell GC.138 
In phase II, the 2-year OS rates as a primary end-
point were met (60% in primary surgery and 54% 
in perioperative chemotherapy), and curative 
resection rates were 88% and 78%, respectively.139 
Currently, phase III is ongoing.

Immune therapy
Antitumor immune escape is often promoted by 
inhibitory immune checkpoint molecules, such as 
PD-1 and its ligand 1 (PD-L1), during the can-
cer-immunity cycle process.140 PD-1 receptors on 
T cells bind to PD-L1, and the activated PD-1/
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PD-L1 signaling axis induces immune tolerance 
in the tumor microenvironment by disrupting the 
functioning of both cytotoxic and effector T 
cells.141,142 Currently, ICIs targeting PD-1/PD-L1 
have dramatically changed therapeutic paradigms 
because of the durable clinical response in GC. 
However, the exploratory analyses of clinical tri-
als suggest a poor response to treatment with ICIs 
in DGC (Table 4).

From the antitumor immunogenic perspective, 
according to the molecular subtypes, DGC has 
several negative factors of sensitivity to ICIs. GS 

tumors exhibit lower PD-L1 expression, a lower 
tumor mutation burden that confers production of 
immunogenic neoantigens, and a lesser degree of 
immune cell signaling pathway as a tumor immu-
nogenicity compared with MSI and EBV tumors,18 
leading to antitumor immune tolerance and eva-
sion. In fact, DGC exhibits frequent heterozygous 
deletion of chromosome 9p24 involving PD-L1,40 
and consequently, low frequency of PD-L1 expres-
sion.157–159 Expression of major histocompatibility 
complex (MHC) class II is also low in DGC, 
which impairs antigen presentation.160 In addition, 
DGC is associated with a mesenchymal-like 

Table 3.  Results of phase III trials of cytotoxic agents according to histology types.

Trials Line Phase Treatment No. of DGC 
(%)

HR (95% CI) of OS 
in DGC

HR (95% CI) of 
OS in IGC

Reference

FLOT4-AIO Peri III Peri FLOT versus ECF 191 (26.7) 0.85 (N/A) 0.75 (N/A) Al-Batran et al.120

PRODIGY Peri/adj III Pre DOS and adj S-1 
versus Adj S-1

189 (63.0) 0.81 (0.48–1.37)* 0.38 (0.16–0.88)* Kang et al.121

RESOLVE Peri/adj III Peri SOX versus
Adj CAPOX

344 (50.4) 0.70 (0.50–0.96)* 0.90 (0.64–1.29)* Zhang et al.122

RESOLVE Adj III SOX versus CAPOX 344 (50.2) 0.82 (0.59–1.12)* 0.89 (0.64–1.25)* Zhang et al.122

ACTS-GC Adj III S-1 versus
Surgery alone

608 (59.0) 0.67 (0.51–0.89) 0.67 (0.48–0.94) Sakuramoto 
et al.123

JACCRO
GC-07

Adj III DTX plus S-1 versus 
S-1

544 (59.6) 0.79 (0.61–1.02) 0.62 (0.40–0.94) Yoshida et al.124

ARTIST Adj III XP + RT versus XP 274 (59.8) 0.83 (0.54–1.26) 0.44 (0.23–0.85) Park et al.125

ARTIST-2 Adj III S-1/SOX versus 
SOX + RT

260 (61.2) 1.00 (0.65–1.54) 1.32 (0.69–2.50) Park et al.126

ARTIST-2 Adj III SOX/SOX + RT versus 
S-1

260 (61.2) 0.81 (0.54–1.24) 0.45 (0.25–0.80) Park et al.126

SPIRITS 1st III SP versus S-1 alone 192 (64.6) 0.79 (0.59–1.06) 0.76 (0.50–1.14) Koizumi et al.127

FLAGS 1st III SP versus FP 590 (57.3) 0.83 (0.70–0.99) N/A Ajani et al.128

DIGEST 1st III SP versus FP 361 (100) 0.99 (0.76–1.28) – Ajani et al.38

JCOG1013 1st III DCS versus CS (SP) 241 (65.1) 0.98 (0.81–1.18) 1.06 (0.81–1.39) Yamada et al.129

G-SOX 1st III SOX versus SP 351 (54.8) 0.85 (0.67–1.07) 1.09 (0.83–1.42) Yamada et al.130

SOX-GC 1st III SOX versus SP 362 (65.6) 0.71 (0.57–0.90) – Xu et al.131

TAGS 3rd III TAS102 versus BSC 74 (29.5) 0.69 (0.36–1.31) 0.58 (0.39–0.87) Tabernero et al.132

Adj, adjuvant chemotherapy; BSC, best supportive care; CAPOX, capecitabine + oxaliplatin; CI, confidence interval; DCS, docetaxel + cisplatin + S-
1; DGC, diffuse-type gastric cancer; DOS, docetaxel + oxaliplatin + S-1; DTX, docetaxel; ECF, epirubicin + cisplatin + fluorouracil; FLOT, 
fluorouracil + leucovorin + oxaliplatin + docetaxel; FP, 5-fluorouracil + cisplatin; HR, hazard ratio; IGC, intestinal-type gastric cancer; N/A: 
not assessment; OS, overall survival; Peri, perioperative chemotherapy; Pre, preoperative chemotherapy; SOX, S-1 + oxaliplatin; SP (CS), 
S-1 + cisplatin; TAS102, Trifluridine/tipiracil; XP, capecitabine + cisplatin.
*Disease-free survival (DFS).
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phenotype,43–45 resulting in immune exhaustion 
due to the high expression of immune checkpoint 
T-cell immunoglobulin mucin receptor 3 (TIM3), 
its ligand galectin-9, another immune checkpoint 
V-domain Ig suppressor of T-cell activation 
(VISTA), and TGF-β1.40 In the tumor microenvi-
ronment in DGC, there are low levels of tumor-
infiltrating lymphocytes (TILs)159 and frequent 
dysfunction of intratumoral CD8+ T cells.161 
Recently, multiplex profiling of the immune and 
stromal cell composition from peritoneal metasta-
sis tissues has shown a distinct tumor microenvi-
ronment with lower levels of cytotoxic lymphocytes, 
monocytes, natural killer (NK) cells, and myeloid 
dendritic cells in DGC compared with IGC.40 As 
other key components of the tumor microenviron-
ment in DGC, abundant M2 tumor-associated 
macrophages (TAMs) play a pivotal role in pro-
moting immunosuppressive signals.46,162 
Collectively, DGC may be a ‘cold tumor’ with low 
TILs and low PD-L1 expression,142 and the immu-
nologically ignorant phenotype may have a poor 
response to ICIs. Therefore, novel treatment strat-
egies to turn immunologically ‘cold’ tumors with 
poor immune activation into ‘hot’ tumors with 
strong immune infiltration are needed.

Molecular-targeted therapy
Based on the comprehensive molecular profiling 
of GC, many molecular-targeted agents have 
been developed. Unfortunately, most have failed 
to demonstrate treatment efficacy regardless of 
histology type in clinical trials (Table 4). 
Currently, clinically validated targeted molecules 
are HER2 and VEGFR2 in GC.

HER2 monoclonal antibody trastuzumab, in 
combination with chemotherapy, is now a pre-
ferred first-line treatment regimen for patients 
with HER2-positive GC.3,4 However, in a phase 
III ToGA trial, the survival benefit appeared to be 
limited in DGC patients (HR, 1.07; 95% CI, 
0.56–2.05) in contrast to IGC patients (HR, 
0.69; 95% CI, 0.54–0.88).11 Recently, trastu-
zumab deruxtecan, an antibody-drug conjugate 
consisting of an anti-HER2 and a cytotoxic topoi-
somerase I inhibitor, showed remarkable improve-
ment in ORR and OS compared with the 
physician’s choice of standard chemotherapy in a 
phase II DESTINY-Gastric01 trial.12 A greater 
benefit for OS was found in DGC (HR, 0.38; 
95% CI, 0.17–0.86) than in IGC (HR, 0.65; 95% 
CI, 0.39–1.07), along with that of ORR in DGC 
(66.7% versus 0%) compared with IGC (47.8% 

versus 21.6%). Trastuzuamb deruxtecan may be 
effective even for DGC, which is characterized by 
a scattered growth pattern5 and a high incidence 
of intratumoral HER2 heterogeneity,163 via a 
potent bystander effect due to a highly mem-
brane-permeable payload.164 However, the rate of 
HER2 positivity is rare in DGC, and the positive 
rates were 6.1% and 31.8% in DGC and IGC, 
respectively,52 suggesting the limited benefits of 
HER2-targeted therapy in DGC patients.

Angiogenesis contributes to the progression of 
gastric tumorigenesis and metastasis by providing 
nutrition, growth factors, and an oxygen supply.165 
VEGF and its receptor VEGFR are one of the 
molecules responsible for angiogenesis, and func-
tional genomic analysis has shown notably high 
expression of angiogenesis-related genes in 
DGC.45 However, the dependency on angiogene-
sis is likely to be higher in IGC than in DGC.166 
Anti-VEGFR2 monoclonal antibody ramu-
cirumab is the first molecular-targeted agent with 
survival benefits as a monotherapy in GC, as dem-
onstrated in a phase III REGARD trial of ramu-
cirumab versus placebo as a second or latter line in 
355 GC patients.13 Although the OS benefit of 
ramucirumab was better in DGC patients than in 
IGC patients, the PFS benefit was similar between 
DGC (HR, 0.49; 95% CI, 0.32–0.75) and IGC 
patients (HR, 0.46; 95% CI, 0.27–0.78). In a 
phase III RAINBOW trial that established ramu-
cirumab plus paclitaxel over paclitaxel alone as a 
standard second-line regimen,14 the addition of 
ramucirumab showed less benefit in DGC than 
IGC in terms of PFS (HR, 0.70; 95% CI, 0.52–
0.93 versus HR, 0.53; 95% CI, 0.41–0.69) and OS 
(HR, 0.86; 95% CI, 064–1.15 versus HR, 0.71; 
95% CI, 0.53–0.93). Similar findings were found 
in a phase III RAINFALL trial, which assessed 
whether the addition of ramucirumab to first-line 
chemotherapy prolonged OS in 645 patients.149 
These preclinical and clinical data suggest a lower 
efficacy of ramucirumab in DGC patients com-
pared with IGC patients.

MET gene amplification is associated with DGC, 
and several MET inhibitors have been investi-
gated in clinical trials. Onartuzumab is a fully 
humanized, monovalent monoclonal antibody. A 
randomized phase III METGastric trial of onar-
tuzumab versus placebo in combination with first-
line chemotherapy in MET expression-positive 
GC patients, assessed by immunohistochemistry 
(IHC), was conducted.146 Enrollment was 
stopped early due to a lack of efficacy, and the 
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clinical benefit was not observed even in a subset 
with an MET intensity of 2+ /3+. However, 
DGC showed a favorable HR of OS (HR, 0.82) 
compared with that of IGC (HR, 1.23). 
Rilotumumab is a fully human immunoglobulin 
(Ig) G2 monoclonal antibody. In a phase III 
RILOMET-1 trial of first-line chemotherapy plus 
rilotumumab versus chemotherapy plus placebo 
in MET expression-positive GC patients,94 the 
addition of rilotumumab in combination with 
chemotherapy showed no effective clinical out-
comes. Both the HR of OS and PFS showed poor 
trends in DGC compared with IGC. The main 
issues are coamplification of other RTKs such as 
HER2 and EGFR in MET-amplified GC, and 
heterogeneous MET amplification status between 
primary and metastatic lesions, leading to possi-
ble treatment resistance to MET inhibitors.167

Promising targetable molecules in  
diffuse-type gastric cancer
Recently, two phase II trials demonstrated promising 
results of anti-CLND18.2 antibody (zolbetuximab) 

in the FAST trial22 and anti-FGFR2-IIIb antibody 
(bemarituzumab) in FIGHT23 (Table 5). Thus, 
CLDN18.2 and FGFR2-IIIb will be relevant thera-
peutic targets for DGC patients. This section focuses 
on CLND18.2 and FGFR2 in GC from both basic 
and preclinical viewpoints (Figure 1).

Claudin 18.2 inhibitor
CLDNs are structural components of tight junc-
tion strands in the paracellular region that play 
critical roles in barrier function, permeability, par-
acellular transport, cell polarity, and signal trans-
duction.169 CLDN18 forms a paracellular barrier 
in the normal stomach, and its deficiency causes 
atrophic gastritis.170 Two major CLDN18 iso-
forms, CLDN18.1 and CLDN18.2, are expressed 
almost exclusively in normal lungs and stomachs, 
respectively.77 In the normal stomach, the expres-
sion of CLDN18.2 is strictly confined to differen-
tiated epithelial cells in the gastric mucosa as a 
highly selective gastric lineage molecule. In GC, 
CLDN18.2 expression remains in primary and 
metastatic sites, and the high expression levels of 

Table 5.  Results of phase II FAST and FIGHT trials.

FAST22 FIGHT23,168

Phase II II

Inclusion CLDN18.2 positive ⩾70% tumor cells 
with CLDN18.2

FGFR2b positive ⩾10% tumor cells with FGFR2b 
overexpression

Treatment EOX EOX + Zolbe EOX EOX + Zolbe mFOLFOX + placebo mFOLFOX + Bema mFOLFOX + placebo mFOLFOX + Bema

Number of 
patients

84 77 59 57 78 77 52 44

ORR (%) 25.0 39.0 - - 33.0 44.0 - -

DCR (%) 76.2 83.1 - - 96.6 96.2 - -

DOR (months) 5.4 8.2 - - 7.1 12.2 - -

PFS

 � Median 
(months)

5.3 7.5 5.7 9.0 7.4 9.5 7.3 14.1

  HR (95% CI) 0.44 (0.29–0.67) 0.38 (0.23–0.62) 0.68 (0.44–1.04) 0.44 (0.25–0.77)

OS

 � Median 
(months)

8.3 13.0 8.9 16.5 13.5 19.2 11.1 NR

  HR (95% CI) 0.55 (0.39–0.77) 0.50 (0.33–0.74) 0.60 (0.38–0.94) 0.41 (0.22–0.79)

Bema, bemarituzumab; CI, confidence interval; CLDN18.2, claudin-18 isoform 2; DCR, disease control rate; DOR, duration of response; EOX, 
epirubicin plus oxaliplatin plus capecitabine; FGFR2b, fibroblast growing factor receptor-2b; FOLFOX, fluorouracil + leucovorin + oxaliplatin; HR, 
hazard ratio; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; Zolbe, zolbetuximab.
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CLDN18.2 (staining intensity of ⩾2+ in ⩾60% 
of tumor cells by IHC) were more frequently 
observed in DGC (75%) compared with IGC 
(46%). CLDN18-ARHGAP fusions are also pre-
dominantly detected in DGC.20 In normal tissue, 
epitopes within the tight junction are generally 
inaccessible to intravenous antibodies. However, 
epitopes of CLDN18.2 may be exposed on the 
cell surface, possibly due to perturbations in cell 
polarity through malignant transformation and 
cell–cell detachment in DGC, leading to accessi-
ble drug targets.77

Zolbetuximab (IMAB362) is a first-in-class chi-
meric IgG1 monoclonal anti-CLDN18.2 anti-
body. The two isoforms of CLDN18 are different 
in the N-terminal 69 amino acids, and the differ-
ences of amino acids in the first extracellular loop 
are only eight of the 51 amino acids. Nevertheless, 
zolbetuximab selectively binds to CLDN18.2, 
but not CLDN18.1, indicating lower cross-reac-
tivity of zolbetuximab with CLDN18.1. In pre-
clinical studies, treatment with zolbetuximab 
resulted in an antitumor effect by activating anti-
body-dependent cytotoxicity (ADCC) and com-
plement-dependent cytotoxicity (CDC) via 
immune effector stimulation.171 Furthermore, 
zolbetuximab acts as a synergistic agent in combi-
nation with cytotoxic agents and enhances T-cell 
infiltration into the tumor microenvironment as 
an immunomodulator.171

A phase II FAST trial was conducted to assess the 
clinical benefit of adding zolbetuximab to first-line 
epirubicin, oxaliplatin, and capecitabine (EOX) 
chemotherapy in recurrence or metastatic patients 
with CLDN18.2-positive GC, defined as moder-
ate-to-strong CLDN18.2 expression in ⩾40% of 
tumor cells by IHC (Table 5).22 A total of 334 
(48.7%) of the 686 patients assessed by IHC had 
positive CLDN18.2 expression. Finally, 161 
patients were randomly assigned to EOX (n = 84) 
and EOX plus zolbetuximab (n = 77). The pri-
mary endpoint, PFS, was met (HR, 0.44; 95% CI, 
0.29–0.67; p < 0.001), and median OS as the sec-
ondary endpoint was 8.3 months for EOX and 
13.0 months for EOX plus zolbetuximab (HR, 
0.55; 95% CI, 0.39–0.77; p < 0.001). In terms of 
adverse events (AEs), nausea (81.8%) and vomit-
ing (67.5%) were the most common, possibly due 
to the targeted effect on the normal stomach. 
Subgroup analyses of PFS and OS were per-
formed according to the histology types, in which 
DGC was included in 49.3% of a total population 
with known histology (Table 4). The PFS benefit 

of zolbetuximab was higher for DGC (HR, 0.29; 
95% CI, 0.14–0.59) than for IGC (HR, 0.61; 
95% CI, 0.31–1.21). Addition of zolbetuximab 
also resulted in improved OS for DGC (HR, 0.44; 
95% CI, 0.26–0.74) compared with IGC (HR, 
0.73; 95% CI, 0.41–1.30). The survival benefits 
were more remarkable for patients with ⩾ 70% of 
tumor cells positive for CLDN18.2, especially in 
DGC, with HRs of 0.28 for PFS (95% CI, 0.13–
0.60) and 0.33 for OS (95% CI, 0.17–0.63) in 
DGC patients versus HRs of 0.55 for PFS (95% 
CI, 0.22–1.36) and 0.87 for OS (95% CI, 0.41–
1.88) in IGC patients.22 Thus, DGC frequently 
exhibits CLDN18.2-positive expression, and zol-
betuximab in combination with first-line chemo-
therapy will be a promising treatment approach 
for patients with CLDN18.2-positive DGC. 
Currently, two global phase III trials, 
SPOTLIGHT (NCT03504397) and GLOW 
(NCT03653507), are ongoing to compare the 
treatment efficacy of first-line chemotherapy plus 
zolbetuximab with chemotherapy plus a placebo 
in recurrent or metastatic CLDN18.2-positive 
GC.

Considering the high frequency of CLDN18.2 
overexpression in primary and metastatic tumors 
but its restricted expression in short-lived differen-
tiated epithelial cells of gastric mucosa,77 
CLDN18.2 could be a promising molecule not 
only for a monoclonal antibody but also for an 
antigen targeted by antibody-drug conjugates 
(ADCs), bispecific T-cell engager (BiTE), and 
chimeric antigen receptor (CAR) T cells. ADCs 
comprise a cytotoxic payload conjugated by a 
linker to a monoclonal antibody against tumor-
specific surface molecules, thereby enabling effi-
cient drug delivery to tumor cells with minimum 
systemic exposure and off-target toxicity.172 The 
redirection of T cells against tumors using CAR T 
cells or BiTEs has been demonstrated as a promis-
ing strategy for cancer treatment by activating T 
cells to kill tumor cells.173,174 Currently, several 
early phase trials of agents targeting CLDN18.2 
are ongoing in CLDN18.2-positive tumors: (1) 
monoclonal antibodies including AB011 
(NCT04400383), LM-102 (NCT05008445), 
TST001 (NCT04495296), MIL93 (NCT04 
671875), and NBL-015 (NCT05153096); (2) 
bispecific antibody targeting both CLDN18.2 and 
PD-L1 (Q-1802, NCT04856150); (3) anti-
CLDN18.2 ADCs including CMG901 
(NCT04805307), CPO102 (NCT05043987), 
SYSA1801 (NCT05009966), and LM-302 
(NCT05161390); (4) BiTE targeting both 
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CLDN18.2 and CD3 (AMG 910, NCT04260191); 
and (v) CAR T cells including CAR-CLDN18.2 
T cells (NCT03874897), CT041 (NCT0440 
4595), LY011 (NCT04966143), and LCAR-C18 
S cells (NCT04467853).

FGFR2-IIIb inhibitor
The FGFR family consists of four highly con-
served receptors (FGFR1, FGFR2, FGFR3, and 
FGFR4). The FGFR pathway is cancer-specifi-
cally dysregulated by their overexpression and 
genetic alterations in various tumor types, driving 
cancer development and progression.175,176 In 
GC, FGFR2 amplification is the most frequent 
genetic alteration among FGFR family members, 
ranging from 3% to 15% of GC, which confers an 
unfavorable prognosis.70,109,177–179 FGFF2 ampli-
fication is predominantly enriched in the GS 
molecular subtype in TCGA18 or MSS/EMT 
subtype in ACRG,43 indicating a key alteration in 
DGC.70,178 DGC also exhibits frequent FGFR2 
overexpression with prognostic relevance, but 
IGC does not.70,180 FGFR2 isoforms (FGFR2-IIIb 
and IIIc) are determined by alternative splicing of 
a ternary extracellular immunoglobulin domain 
III, of which FGFR2-IIIb is predominantly over-
expressed in GC, especially in DGC.70,180,181 In 
addition, FGFR ligands are overproduced in DGC 
cells and CAFs, leading to ligand-dependent 
FGFR2 activation through the paracrine and auto-
crine loops.182,183 Detailed information about the 
FGFR2 signaling pathway in GC has been 
reviewed elsewhere.177 Preclinical studies have 
shown the antitumor efficacy of FGFR2 inhibitors 
in FGFR2-amplified DGC models.184 Thus, the 
FGFR signaling pathway has attracted considera-
ble attention as a targetable molecule, especially in 
DGC with FGFR2 aberrations.

A major area of drug development targeting 
FGFR is small molecule tyrosine kinase inhibitors 
(TKIs), and the therapeutic efficacy of FGFR-
selective TKIs has been demonstrated for cholan-
giocarcinoma with FGFR2 fusions or 
rearrangements185 and urothelial carcinoma with 
FGFR2/3 fusions or FGFR3 mutations.186 
Although several trials of FGFR-TKIs have been 
conducted in a subset of GC patients with FGFR 
aberrations, they have failed to demonstrate their 
clinical benefit.177,187 High-level clonal FGFR2 
amplification may be an important predictive bio-
marker for selecting patients who would benefit 
from FGFR-TKIs.188

Anti-FGFR2 monoclonal antibodies competi-
tively bind to the extracellular domain of FGFR2 
and block the activation of FGFR2 signaling, 
which has preclinical antitumor effects and less 
toxicity.189 Bemarituzumab (FPA144) is a first-
in-class humanized IgG1 monoclonal FGFR2-
IIIb isoform-selective antibody glycoengineered 
for enhanced ADCC activity.190 A randomized, 
double-blind, placebo-controlled phase II 
FIGHT trial was conducted to evaluate the clini-
cal benefits of adding bemarituzumab to first-line 
modified oxaliplatin, 5-FU, and leucovorin 
(mFOLFOX6) chemotherapy in patients with 
FGFR2b-positive GC, defined as FGFR2-IIIb 
overexpression using IHC or FGFR2 gene ampli-
fication determined by circulating tumor DNA 
(ctDNA) (Table 5).23 Of 910 patients who under-
went prescreening, 275 (30.2%) were FGFR2b 
positive. Finally, 155 patients were randomly 
treated with bemarituzumab (n = 77) or a placebo 
(n = 78) in combination with mFOLFOX6. The 
primary endpoint, PFS, was met, with an 
improvement in median PFS of 9.5 months for 
bemarituzumab versus 7.4 months for the placebo 
(HR, 0.68; 95% CI, 0.44–1.04; p = .073). After 
an updated follow-up period of a median of 
12.5 months, treatment with bemarituzumab 
resulted in prolonged OS, with a median OS of 
19.2 months for bemarituzumab versus 
13.5 months for placebo (HR, 0.60; 95% CI, 
0.38–0.94).168 The survival benefits increased 
with more homogeneous FGFR2-IIIb overex-
pression, with HRs of 0.44 for PFS (95% CI, 
0.25–0.77) and 0.41 for OS (95% CI, 0.22–0.79) 
in GC patients with FGFR2-IIIb overexpression 
in ⩾10% of tumor cells. Stomatitis (31.6% versus 
13.0%) and corneal AEs (67.1% versus 10.4%) 
were more common in bemarituzumab than the 
placebo. It remains unclear whether bemaritu-
zumab has better treatment efficacy for patients 
with FGFR2-IIIb overexpressing DGC than 
IGC. However, considering the association of 
DGC with FGFR2-IIIb overexpression and 
FGFR2 amplification, bemarituzumab will be the 
main therapeutic pillar for patients with FGFR2-
IIIb overexpressing DGC. A phase III study is 
warranted to confirm these results in a larger pop-
ulation of FGFR2b-positive GC.

Other potent molecular-targeted inhibitors
Although CDH1 is frequently mutated in 
DGC,18,19,40 it is not a conventional druggable 
molecule because of its function as a tumor 
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suppressor gene and its loss of expression. 
Recently, synthetic lethality has been attracting 
attention as having the potential to target tumor 
cells that carry CDH1 mutations. The integrated 
genetic and drug screens, using breast tumor cells 
with CRISPR/Cas9-engineered CDH1 muta-
tions or with homozygous deletion of CDH1, 
identified synthetic lethality between E-cadherin 
and the ROS proto-oncogene 1, receptor tyrosine 
kinase (ROS1).191,192 Because E-cadherin defi-
cient tumor cells are dependent on ROS1, which 
is likely related to cytokinesis, ROS1 inhibitor cri-
zotinib elicited synthetic lethality in the E-cadherin 
deficient GC cell models.191 These preclinical 
findings provide the rationale for assessing the 
efficacy of ROS1 inhibitors. There is an ongoing 
phase II trial of crizotinib in E-cadherin negative 
DGC or CDH1 mutated solid tumors 
(NCT03620643).

The AT-rich interaction domain 1A (ARID1A), 
a subunit of the switch/sucrose nonfermentable 
(SWI/SNF) chromatin remodeling complex, is 
one of the most commonly mutated genes across 
various tumor types. ARID1A mutations com-
promise diverse gene programs and cellular pro-
cesses through the dysregulation of transcription, 
DNA repair, and chromatin segregation, thereby 
promoting tumorigenesis.193,194 In GC, ARID1A 
mutations are prevalent in the GS subtypes next 
to the EVB subtypes.18 DGC are classified into 
early-onset and late-onset cancers, and ARID1A 
mutations were observed in 15–18% of early-
onset DGC.48 Several preclinical studies have 
reported crucial targets that induce synthetic 
lethality with ARID1A deficiency, such as 
enhancer of zeste homolog 2 (EZH2) histone 
methyltransferase that is a catalytic subunit of the 
polycomb repressive complex 2 (PRC2) that 
antagonizes the function of ARID1A,195 BIRC5/
Survivin that is a transcriptional regulatory mod-
ule induced by ARID1A mutation,194 and the 
glutamate-cysteine ligase synthetase catalytic sub-
unit that is a rate-limiting enzyme for antioxidant 
glutathione synthesis.196 Thus, the inhibition of 
molecules that create therapeutic vulnerability of 
the ARID1A-deficient tumor cells may be of clin-
ical importance. In addition, ARID1A deficiency 
impairs the mismatch repair (MMR) system that 
plays a key role in correcting DNA replication 
errors, thereby resulting in an increased mutation 
burden, MSI-H genomic signature, TILs, and 
PD-L1 expression.197 In xenograft models, 
ARID1A-deficient tumors, but not ARID1A-
wild-type, were regressed by treatment with 

ICI.197 GC patients with ARID1A mutation are 
likely to benefit from treatment with ICI.

Recurrent mutations of RHOA are a hallmark in 
DGC development.18,25,74,90 The genetic knock-
down of RHOA repressed spheroid formation as 
a CSC phenotype and sensitized diffuse-type 
CSC cells to 5-FU and cisplatin chemotherapy.89 
RHOA inhibition also decreased the expression 
of EMT-related molecules.198 In addition, ROCK 
is a downstream effector of RHOA, and treat-
ment with the ROCK inhibitor (HA-1077) 
resulted in tumor regression in a transgenic GC 
mouse model.199 As RHOA mutations promoted 
the activation and dependency of focal adhesion 
kinase (FAK), the small molecule inhibitors of 
FAK, including GSK-2256098, VS-6063, CEP-
37440, VS-6062, VS-4718, and BI-853520, are 
considered to be a promising cancer therapy in 
RHOA mutant GC.200 Furthermore, FAK may 
also serve as a target even for DGC without 
RHOA mutation.90 These preclinical findings 
support the clinical utility of targeting the RHOA 
signaling pathway.

DGC are characterized by a rich fibrous stroma, 
which has been associated with overexpression in 
TGF-β signaling.34 As TGF-β signaling contrib-
utes to tumor progression, metastasis, and drug 
resistance,98 the TGF-β pathway has been phar-
macologically targeted using monoclonal anti-
bodies (SAR439459), small molecule inhibitors 
(vactosertib and galunisertib), ligand traps, and 
vaccines.201 Based on a key immunosuppressive 
role of TGF-β signaling in the tumor microenvi-
ronment by restricting T-cell penetration in 
tumors,202 a phase I trial of bintrapfusp alfa 
(M7824), a bifunctional fusion protein composed 
of a human anti-PD-L1 IgG1 monoclonal anti-
body fused with the extracellular domain of TGF-
β receptor II, was conducted in patients with 
heavily pretreated GC. The ORR was 16%, and 
median duration of response was 8.7 months.203 
Furthermore, a rationale for dual blockade of 
TGF-β signaling and immune checkpoint mole-
cules has been assessed in early phase trials using 
treatment with TGF-β inhibitor plus ICI 
(NCT03192345, NCT03724851), a bispecific 
antibody targeting both TGF-β and PD-L1 
(Y101D, NCT05028556), and anti-CD73/TGF-
β trap bifunctional antibody (GS-1423, NCT 
03954704).

Previous phase III trials have highlighted that bio-
marker selection for the specific molecular 
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alteration is mandatory to enrich the efficacy of 
MET inhibitors.94,146 Savolitinib is a reversible 
MET-selective TKI,204 and it has showed prom-
ising efficacy for MET-amplified GC patients 
assigned by targeted next-generation sequencing 
(NGS) using tissue DNA in a prospective bio-
marker-driven VIKTORY trial.95 The ORR was 
50% (10 in 20 GC patients) despite the second-
line setting. Importantly, in the VIKTORY trial, 
the treatment efficacy was greater in GC patients 
with gene amplification detected by ctDNA than 
in tissue DNA.95 Thus, the assessment of ctDNA 
is likely a strict approach to predicting treatment 
response to molecular-targeted agents by identi-
fying high-level and clonal amplified tumors 
among GCs with intratumoral heterogeneity. A 
multicenter phase II trial to evaluate the efficacy 
and safety of savolitinib in MET-amplified GC 
patients is ongoing (NCT04923932).

Conclusion
DGC is associated with less chemosensitivity and 
an unfavorable prognosis through EMT and CSC 
phenotypes. There are no established therapeutic 
agents for DGC, so the development of novel 
treatment strategies for DGC is the most urgent 
need. The impressive results of two phase II trials 
demonstrate proof-of-concept, suggesting that 
anti-CLDN18.2 antibodies (zolbetuximab) and 
FGFR2-IIIb antibodies (bemarituzumab) are 
promising approaches for patients with 
CLDN18.2-positive and FGFR2b-positive GC, 
respectively. A new era of precision medicine for 
patients with DGC is dawning.
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