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Lung cancer remains the leading cause of cancer death globally, with lung
adenocarcinoma (LUAD) being its most prevalent subtype. Due to the heterogeneity
of LUAD, patients given the same treatment regimen may have different responses
and clinical outcomes. Therefore, identifying new subtypes of LUAD is important for
predicting prognosis and providing personalized treatment for patients. Pyroptosis-
related genes play an essential role in anticancer, but there is limited research
investigating pyroptosis in LUAD. In this study, 33 pyroptosis gene expression profiles
and clinical information were collected from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. By bioinformatics and machine learning
analyses, we identified novel subtypes of LUAD based on 10 pyroptosis-related
genes and further validated them in the GEO dataset, with machine learning models
performing up to an AUC of 1 for classifying in GEO. A web-based tool was
established for clinicians to use our clustering model (http://www.aimedicallab.com/tool/
aiml-subphe-luad.html). LUAD patients were clustered into 3 subtypes (A, B, and C),
and survival analysis showed that B had the best survival outcome and C had the worst
survival outcome. The relationships between pyroptosis gene expression and clinical
characteristics were further analyzed in the three molecular subtypes. Immune profiling
revealed significant differences in immune cell infiltration among the three molecular
subtypes. GO enrichment and KEGG pathway analyses were performed based on
the differential genes of the three subtypes, indicating that differentially expressed
genes (DEGs) were involved in multiple cellular and biological functions, including RNA
catabolic process, mRNA catabolic process, and pathways of neurodegeneration-
multiple diseases. Finally, we developed an 8-gene prognostic model that accurately
predicted 1-, 3-, and 5-year overall survival. In conclusion, pyroptosis-related genes may
play a critical role in LUAD, and provide new insights into the underlying mechanisms
of LUAD.
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INTRODUCTION

Lung cancer is the second most prevalent cancer worldwide, and
remains the leading cause of cancer death globally (Sung et al.,
2021). Non-small cell lung cancer (NSCLC) accounts for 85%
of lung cancers, with lung adenocarcinoma (LUAD) accounting
for half of NSCLC (Herbst et al., 2008; Sivakumar et al., 2017).
Despite immense progress that many therapeutic strategies have
shown, the survival rate of LUAD is still low. Various blocking
immune checkpoint therapies such as programmed cell death
protein 1 (PD1, PDCD1) and T-lymphocyte-associated antigen
4 (CTLA4) have shown significant efficacy in the treatment
of LUAD (Topalian et al., 2016). However, a proportion of
LUAD patients were resistant to chemotherapy, immunotherapy,
or targeted therapy, leading to cancer relapse or death
(Zhang Y. et al., 2020).

The reason why these therapies failed in some patients is
partly due to the heterogeneous of LUAD. Patients given the same
treatment regimen may have different responses and clinical
outcomes (Topalian et al., 2012). Therefore, it is significant
to identify novel subtypes of LUAD, to predict prognosis and
provide personalized treatment for patients.

Pyroptosis, a kind of programmed death, is morphologically
characterized by cell swelling, formation of a large number of
bubble-like protrusions, rupture of the plasma membrane, and
release of cell contents and inflammatory factors such as IL6
and IL8 without causing mitochondrial rupture, which then
activates the inflammatory response (Tan et al., 2021). Recently,
it has been shown that tumor cells that die by pyroptosis
produce large amounts of antigens that stimulate a systemic
immune response and inhibit tumor growth (Tang et al., 2020).
In addition, GSDME, a key protein for pyroptosis, can increase
adaptive immunity of tumors by promoting macrophage-
mediated phagocytosis (Zhang Z. et al., 2020), making it
impossible for tumor cells to evade immune surveillance (Werfel
and Cook, 2018; Tang et al., 2020). Immune cell infiltration is
increased in tumors with high expression of GSDME, whereas
GSDME-deficient tumors have reduced immune cell infiltration
(Zhang Z. et al., 2020). One study knocked out pyroptosis-
related genes in mice and found that these mice were prone
to inflammation-associated colon cancer (Hu et al., 2010). Thus
pyroptosis is an anti-cancer approach with great potential. There
is only one type study related to ovarian cancer and pyroptosis
(Ye et al., 2021), which demonstrated significant differences in
prognosis and tumor immunity based on molecular subtypes
of ovarian cancer identified by pyroptosis-related genes. No
investigators have yet studied the mechanism of pyroptosis
exerting anti-cancer in LUAD and its relationship with patient
treatment and prognosis.

With the development of high-throughput sequencing, the
understanding of tumor gene expression profiles is more
comprehensive and in-depth, which will help in classifying
tumors and precise treatment. Many studies have been conducted
to identify subtypes, predict prognosis or predict drug resistance
based on the expression of different genes and clinical features
(Chen et al., 2021; Tian et al., 2021; Zhang S. et al., 2021). In this
study, we did a prior study on identifying the pyroptosis-related

molecular subtypes of LUAD, based on the high-throughput
sequencing data. Our study explored the roles that pyroptosis
play in different subtypes, and may shed light on personalized
treatment for LUAD patients.

In our study, the expression profiles of LUAD patients were
downloaded from the TCGA and the GEO databases, and 33
pyroptosis-related genes were obtained from a previous review.
The patients were classified into three subtypes, based on the
expression profile and clinical characteristics of pyroptosis-
related genes in LUAD patients. 10 key pyroptosis-related genes
were then selected by a machine learning algorithm, making the
subtyping more convenient for clinicians to use. We explored the
prognosis, the functional pathways involved in the differential
genes, and the immune infiltration of each subtype. Finally, a
webpage was created to facilitate clinician use.

MATERIALS AND METHODS

Datasets
Firstly, a total of 1577 LUAD samples’ RNA sequencing
(RNA-seq) data and corresponding clinical information were
obtained from The Cancer Genome Atlas database (TCGA)1

and the Gene Expression Omnibus database (GEO)2, respectively
(Supplementary Table 1). To ensure the reliability of survival
results, we included LUAD patients from the TCGA or GEO
databases with complete clinical information. As a result, 535
samples from TCGA database were served as the training
cohort, and 1,042 samples from GEO database (ID: GSE31546,
GSE19188, GSE30219, GSE37745, GSE50081, GSE31210, and
GSE68465) were included in our study as the external
validation cohort.

Construction of Molecular Subtypes
We obtained 33 pyroptosis-related genes from prior studies
(Karki and Kanneganti, 2019; Liu D. et al., 2021; Ye et al., 2021;
Zhou et al., 2021), and they are presented in Supplementary
Table 2. Consensus Clustering, an unsupervised clustering
method, is a common cancer subtype classification method
in which the clustering framework incorporates results from
multiple runs of an inner-loop clustering algorithm on sub-
sampled subjects (Wilkerson and Hayes, 2010; Seymour et al.,
2019). The “ConsensusClusterPlus” R package was used for
consensus clustering and distinguishing different molecular
subtypes based on the mRNA expression data of 33 pyroptosis-
related genes (Tian et al., 2021). Pairwise consensus values are
calculated and stored in a consensus matrix (CM) for each k
(Zheng J. et al., 2020). The empirical cumulative distribution
function (CDF) plots revealed the consensus distributions for
each k, and we used CDF plots and cluster-consensus plots to
help choose a number of clusters and access cluster stability
(Wilkerson and Hayes, 2010; Hong et al., 2021).

Next, in order to simplify the method of LUAD molecular
subtype classification to improve its clinical applicability, we

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Article framework and workflow. TCGA, the cancer genome atlas database; GEO, gene expression omnibus Database; DEG, differentially expressed
genes; CatBoost, categorical boosting; KEGG, kyoto encyclopedia of genes and genomes; GO, gene ontology.

optimized the classification model using a machine learning
approach. CatBoost is an improved implementation of gradient
enhanced decision trees (GDBT) algorithm developed by Yandex.
It has demonstrated excellent performance on many classification
and regression tasks (Kang et al., 2021; Liu S. et al., 2021; Wang
Y. et al., 2021). CatBoost was performed via the Python package
to build a new optimized classification model (CatBoost model).

Characterization of Molecular Subtypes
of Lung Adenocarcinoma
Firstly, we used the entire TCGA dataset as the training set
and all samples from the GEO database as the validation set.
LUAD patients were classified into different molecular subtypes
by using the CatBoost model based on the expression levels
of key pyroptosis-related genes. Furthermore, overall survival
(OS) and progression-free survival (PFS) rate were analyzed

by the Kaplan–Meier method using “survival” R package, and
differences between survival distributions were assessed with
the log-rank test (Wei et al., 2019). In addition, t-distributed
stochastic neighbor embedding (t-SNE) was employed to
explore the distribution of different subtypes and estimate the
classification effect using the “Rtsne” R package. Moreover, by
using the “heatmap” R package, we analyzed the correlation
between the expression levels of pyroptosis-related genes of
different molecular subtypes and clinicopathological features, as
well as the differences in the expression profiles of pyroptosis-
related genes between normal and tumor tissues.

Immune Cells Infiltration Profile and
Chemotherapeutic Response Analysis
The level of immune cell infiltration in the LUAD samples
was quantified by inferencing the infiltrating cells in the
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FIGURE 2 | The construction of pyroptosis-related LUAD subtypes in the TCGA cohort. (A) Three pyroptosis-related molecular subtypes were generated via
unsupervised consensus clustering. (B) The empirical cumulative distribution function (CDF) plots revealed the consensus distributions for each k. (C) The delta area
score displayed the relative growth in cluster stability. A classification CatBoost model was established based on 10 key pyroptosis-related genes. (D) Showed
receiver operating characteristic curves (ROCs) of CatBoost. (E) An example of the web-based tool.

tumor microenvironment (TME). We applied integrated
bioinformatics methods, including MCPcounter, xCell,
quanTIseq, CIBERSORTx, single-sample gene set enrichment
analysis (GSEA) to evaluate differences of immune status among
different molecular subtypes (Finotello et al., 2019; Cai et al.,
2021; Yuan et al., 2021). Furthermore, the “pRRophetic” R
package was used to predict the chemotherapy response of
each sample based on Genomics of Drug Sensitivity in Cancer
(GDSC)3, and the correlation between molecular subtypes and
immune checkpoint genes was analyzed (Geeleher et al., 2014;
Kuang et al., 2021).

Identification of Differentially Expressed
N6-Methyladenosine Regulatory Genes
A total of 12 N6-methyladenosine (m6A) regulatory genes
were selected (ALKBH5, FTO, HNRNPC, METTL3, METTL14,
RBM15, WTAP, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
ZC3H13) as classical regulators of m6A RNA methylation
according to previously published studies (Feng et al., 2021;
Hou et al., 2021; Wang W. et al., 2021; Zheng B. et al., 2021).
We systematically compared the mRNA expression levels of

3https://www.cancerrxgene.org/

these regulatory genes base on RNA-seq transcriptome data and
visualized the analysis results using boxplots.

Functional Enrichment Analysis
Firstly, a “Limma” R package was used to identify differentially
expressed genes (DEGs) among different molecular subtypes
in LUAD. The cutoff value was | log2FC| ≥ 1 and adjusted
P-value < 0.01. Then based on DEGs, the biological function
was analyzed by Gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
using the “clusterProfiler” R package (Pu et al., 2021). GO or
KEGG pathways with adjusted P-value < 0.05 were considered
statistically significant.

Generation of Prognostic Signature
Next, univariate Cox proportional hazard regression analysis
was utilized to assess the relationship between this DEGs and
OS of LUAD patients. Only P < 0.05 was considered as the
valuable prognostic DGEs which were sorted out to perform the
Least Absolute Shrinkage and Selection Operator (LASSO) Cox
regression analysis which depend on the “glmnet” R package
(Kuang et al., 2021). The risk score is equal to the sum of
Lasso regression coefficient of each mRNA multiplied by the
normalized expression levels of each mRNA. Finally, a “rms” R
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package was used to construct a nomogram base on candidate
predicted genes in the TCGA dataset (Zhong et al., 2021).
A calibration chart is constructed to evaluate the consistency
between the predicted survival probability at 1-, 3-, and 5-year
by nomogram and the actual value.

RESULTS

Overall Design of This Study
Article framework and workflow have been systematically
described in Figure 1. Firstly, we downloaded gene expression
profiles and corresponding clinical data of LUAD patients from
the TCGA database and GEO database. Samples with incomplete
information were excluded. Next, LUAD patients in the TCGA
dataset were divided into three different molecular subtypes
(A-, B-, and C-cluster) by consensus clustering analysis based on
33 pyroptosis-related genes. Then, the machine learning method
was used to simplify and optimize the judgment method of the
above molecular subtypes. Based on the CatBoost algorithm,
we developed a new classification model for molecular subtypes
(CatBoost model). The CatBoost model included only 10 key
pyroptosis-related genes with excellent classification effect. We
also established a web-based tool for clinicians to use the compact
model. Furthermore, we used the TCGA cohort and the GEO
cohort as the training set and validation set of the model,
respectively. After judging the molecular subtypes of each LUAD
patient using the CatBoost model, the outcomes corresponding
to the three molecular subtypes and the classification effect
of the CatBoost model were explored by survival analysis and
t-SNE analysis, respectively. In addition, estimation of Immune
Infiltration, chemotherapeutic response prediction, expression
analysis of m6A regulators and analyses of pathway enrichment
were performed in different molecular subtypes of LUAD. Finally,
based on molecular subtype-associated DGEs, we constructed a
new prognostic signature for LUAD, and a nomogram was used
to further assess the robustness and discriminatory ability of this
prognostic signature.

Identification and Verification of
Molecular Subtypes of Lung
Adenocarcinoma
To identify potential molecular subtypes of LUAD, we classified
535 LUAD patients from the TCGA cohort by using a consensus
clustering analysis. In brief, the “ConsensusClusterPlus” package
was applied to divide all tumor samples into k (k = 2–9) different
subtypes according to the expression levels of 33 pyroptosis-
related genes in LUAD. The results of cluster analysis showed that
K = 3 was the optimal number of clusters, and the intragroup
correlations were the highest and the intergroup correlations
were low, indicating that the LUAD patients were accurately
divided into three subtypes (A-, B-, and C-cluster) (Figure 2A).
On the basis of the consensus scores, the CDF curve achieves
the best partition efficiency when k = 3, and the relative change
of the area under the CDF curve indicates a nearly perfect
stable distribution of LUAD patients when divided into three

subtypes (Figures 2B,C). In order to make the above molecular
subtypes more clinically applicable, we optimized the LUAD
classification prediction model using a machine learning method.
Further analysis was performed by using the CatBoost algorithm
to select the key predictors, including GPX4, NLRP7, NLRP1,
NLRP3, NLRP2, NOD1, NOD2, PRKACA, TNF, and CASP9,
which were the main factors affecting the classification of LUAD
patients. Furthermore, we developed a new predictive model—
the CatBoost model, based on these 10 key pyroptosis-related
genes, which had excellent classification prediction ability. As
shown in Figure 2D, the areas under the time-dependent ROC
of molecular subtypes are 1.000, 0.999, and 1.000 for A-, B-, and
C-cluster, respectively, and indicated that this CatBoost model
has achieved excellent partition efficiency. In addition, a web-
based tool was established for clinicians to use the compact
model, and an example was showed in Figure 2E4.

Next, we used the CatBoost model to determine which
molecular subtype each of the 535 LUAD patients from the
TCGA cohort belonged to. The survival analysis was performed
by the Kaplan–Meier method using “survival” R package, and the
results showed that significant differences in survival outcomes
of different subtypes and the survival outcome corresponding
to B-cluster was better, while the survival outcome of C-cluster
was the worst (P = 0.032) (Figure 3A). The t-SNE analysis using
a “Rtsne” R package showed the excellent partition efficiency
when k = 3, indicating the robust and reliable clustering of
the samples (Figure 3B). Furthermore, we used 1042 LUAD
patients from the CEO database as a validation cohort to
further assess the robustness and reliability of the classification
model. Similarly, we first classified LUAD patients from the
GEO database with the CatBoost model, and then verified the
effect of classification by survival analysis and t-SNE analysis.
As shown in Figure 3C, a similar result was validated in the
GEO cohort, and the survival outcome of B-cluster was better
(p < 0.001). Although, t-SNE analysis showed that A- and
B-cluster were not well distinguished, C-cluster, the molecular
subtype with the worst outcome, was distinguished (Figure 3D).
Furthermore, the correlation between gene expression profiles
and the distribution of clinicopathological parameters including
age (≤80 or >80 years), gender (male or female), smoker
(never or ever-smoker) and stage (I, II or III, IV) in each
subtype was showed in Figure 3E. We found differences in the
expression profiles of pyroptosis-related genes between different
molecular subtypes. However, there was no obvious correlation
between molecular subtypes and clinicopathological features
of LUAD patients.

Differential Expression and Prognostic
Value of Pyroptosis-Related Genes
Studies have shown that the expression levels of pyroptosis-
related genes affect a variety of biological processes in cancer cells
and are associated with cancer development and progression.
Cancers are highly heterogeneous diseases, and there are
differences in the expression of certain genes. Thus, we
performed differential expression analysis of pyroptosis-related

4http://www.aimedicallab.com/tool/aiml-subphe-luad.html
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FIGURE 3 | The landscape of pyroptosis-related LUAD subtypes. (A,C) Kaplan Meier analysis of three molecular subtypes in the TCGA and GEO cohort,
respectively. (B,D) t-distributed stochastic neighbor embedding (t-SNE) analysis in the TCGA and GEO cohort, respectively. (E) Heat map of the expression profile of
pyroptosis-related genes and the distribution of clinicopathological parameters in all three subtypes in TCGA cohort.

genes subsequently base on mRNA expression data of LUAD
in TCGA database by using a “Limma” R package, with the
criterion of | log2FC| ≥ 1 and adjusted P-value < 0.01. The
expression profiles of pyroptosis-related genes were showed in
Figure 4A, and we could visually see that there were differences
in the expression of pyroptosis-related genes between tumor and
normal tissues. Moreover, Kaplan–Meier analysis results revealed
that a higher expression of GPX4, NLRC4, NLRP1, NLRP2,
NLRP3, NOD1, PLCG1, and PRKACA was associated with a better
OS (P < 0.05) (Figures 4B–I).

Estimation of Immune Cell Infiltration
Because TIM is important for the development, progression,
and treatment of cancer, we further explored the differences
on immune characteristics among the three molecular subtypes.
We utilized multiple immune deconvolution methods, including
MCPcounter, xCell, quanTIseq, CIBERSORTx, and ssGSEA
algorithms, to quantify the infiltration scores of immune cells
and immune-related functions among the three molecular
subtypes. As shown in Figure 5, all the analysis results revealed
that there were significant differences in infiltration degree of
immune cell. The ssGSEA analysis showed significant differences
of infiltration degree in DCs (P < 0.05), iDCs (P < 0.01),
NK cells (P < 0.05), T helper cells (P < 0.05), and Treg
(P < 0.05). In addition, an immune function score of Type II
IFN Response showed a significant difference among the three
molecular subtypes (P < 0.01) (Figure 5A). For the MCPcounter
analysis, we found differences in the infiltration of NK cells
(P < 0.01), Myeloid dendritic cells (P < 0.05), Neutrophils
(P < 0.001) and endothelial cells (P < 0.001), fibroblasts
(P < 0.001) among different molecular subtypes, and the

correlations between MCPcounter scores and different molecular
subtypes groups showed that C-cluster had the lowest level of
immune cell infiltration, suggesting a low immune response to
C-cluster, consistent with its poor outcome (Figure 5B). For xCell
method, the infiltration scores of common lymphoid progenitor
(P < 0.001), endothelial cell (P < 0.001), cancer associated
fibroblast (P < 0.05), Hematopoietic stem cell (P < 0.01), mast
cell (P < 0.01), T cell NK (P < 0.001), T cell CD4 + Th1
(P < 0.001), and stroma (P < 0.01) were different among three
molecular subtypes (Figure 5C). In addition, the infiltrating
immune cells were also estimated by quanTIseq method, and we
obtained 5 major immune cell subsets with different infiltration
degree, including B cell (P < 0.001), Macrophage M1 (P < 0.001),
NK cell (P < 0.05), T cell CD4+ (P < 0.05) and Myeloid
dendritic cell (P < 0.001) (Figure 5D). The 22 types of infiltrating
immune cells inferred by CIBERSORTx include B cells, T cells,
natural killer cells, macrophages, dendritic cells, eosinophils,
and neutrophils, and 9 of these types had significantly different
degrees of infiltration including Plasma cells (P < 0.05), T
cells CD4 memory resting (P < 0.001), T cells follicular helper
(P < 0.001), Treg (P < 0.05), T cells gamma delta (P < 0.05), NK
cells resting (P < 0.05), NK cells activated (P < 0.05), dendritic
cells resting (P < 0.05), neutrophil (P < 0.05) (Figure 5E).

Expression of N6-Methyladenosine
Regulators and Prediction of
Therapeutic Response to Immune
Checkpoint Inhibitors
As one of the most important RNA modifications, m6A
is involved in regulating gene expression and physiological
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FIGURE 4 | The expressions of the 33 pyroptosis-related genes and prognostic value for LUAD. (A) Heatmap (blue, low expression level; orange, high expression
level) of the pyroptosis-related genes between the normal and the tumor tissues. (B–I) Kaplan–Meier analysis of GPX4, NLRC4, NLRP1, NLRP2, NLRP3, NOD1,
PLCG1, and PRKACA in TCGA cohort. Adjusted P-value < 0.05 is considered significant (High exp., high expression level; Low exp., low expression level).

and pathological processes, such as tumor development and
progression (Dong et al., 2021; Garbo et al., 2021; Han et al.,
2021). Furthermore, m6A regulators play an important role in
lung cancer progression, for example FTOH and ALKBH5 have
been shown to promote the proliferation of lung cancer cells, and
YTHDF2 can regulate tumor metabolism (Khan and Malla, 2021;

Xu F. et al., 2021; Xu R. et al., 2021). Therefore, we further
analyzed the expression levels of m6A regulatory genes in
different molecular subtypes (Figure 6A). The results showed
that the expression profiles of eight m6A regulators (ALKBH5,
FTO, HNRNPC, METTL14, RBM15, YTHDC1, YTHDC2, and
ZC3H13) were significantly different among the three different
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FIGURE 5 | The immune landscape of three pyroptosis-related molecular subtypes. (A) The results of single-sample gene set enrichment analysis (ssGSEA):
boxplots of ssGSEA scores among three molecular subtypes. (B) The results of MCPcounter analysis: boxplots comparing the abundances of immune cell subsets
among three molecular subtypes. (C) The results of xCell analysis: boxplots comparing the abundances of immune cell subsets among three molecular subtypes.
(D) The results of quanTIseq analysis: boxplots comparing the abundances of immune cell subsets among three molecular subtypes. (E) The results of
CIBERSORTx analysis: boxplots comparing the abundances of immune cell subsets among three molecular subtypes. Adjusted P-values were showed as: ns, not
significant; *P < 0.05; **P < 0.01; ***P < 0.001.

lung cancer subtypes (P < 0.01). Besides, immune checkpoint
inhibitors have been shown to have durable efficacy in some
patients with non-small cell lung cancer (NSCLC), and we
investigate the relationship between subtypes and expression
levels of immune checkpoint genes. As shown in Figure 6B, the
analysis results showed that there were significant differences in

the expression profiles of immune checkpoints among the three
different molecular subtypes, Including BTN2A1 (P < 0.001),
BTN3A1 (P < 0.05), BTNL9 (P < 0.05), CD209 (P < 0.001),
CD226 (P < 0.05), CD28 (P < 0.05), CD40 (P < 0.01), CD47
(P < 0.01), HLA.DMA (P < 0.05), HLA.DOA (P < 0.05), ICOSLG
(P < 0.001), KIR2DL1 (P < 0.05), KIR3DL2 (P < 0.05), PVR
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FIGURE 6 | The relationship between LUAD subtypes and m6A regulators and immune checkpoints. (A) Differences in expression of m6A regulators among three
pyroptosis-related molecular subtypes. (B) Differences in expression of immune checkpoint blockade genes among three pyroptosis-related molecular subtypes.
Adjusted P-values were showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.

(P < 0.01), SIRPA (P < 0.01), TNFRSF14 (P < 0.001), TNFRSF18
(P < 0.001), TNFRSF4 (P < 0.01) and TNFRSF9 (P < 0.001),
which indicated that these three molecular subtypes may respond
differently to immune checkpoint inhibitors.

Functional Enrichment Analysis and
Identification of a New Prognostic
Signature Base on Molecular Subtypes
of Lung Adenocarcinoma
To further investigate potential gene functions and signaling
pathways among different molecular subtypes, we extracted
5,233 DEGs in TCGA cohort (P < 0.01 and | log2FC| ≥ 1).
Then, GO enrichment analysis and KEGG pathway analysis were
performed based on these DEGs and biological processes with
significant enrichment were presented in Figure 7. The analysis
results showed that DEGs are involved in a variety of cellular

and biological functions, including RNA catabolic process,
mitochondrial inner membrane, small GTPase binding, Ras
GTPase binding, ribosome, oxidative phosphorylation, protein
processing in endoplasmic reticulum, and so on.

There are differences in the gene expression profiles of
different cancer molecular subtypes, in addition to different
characteristics in tumor progression, treatment and prognosis.
Therefore, based on the DEGs among these three molecular
subtypes, we selected eight key DEGs (ZSCAN5B, E2F7, OR2A7,
GLI2, EIF2AK3, SRGAP1, RUBCNL, and EMC6) associated with
LUAD prognosis and constructed a new prognostic signature
for LUAD by univariate cox regression analysis and LASSO
regression algorithm. According to this prognostic signature,
we used a special formula (Supplementary Calculation 3) to
calculate the risk score of each sample. LUAD patients were
divided into low-risk and high-risk groups based on the median
of risk score. The area under the ROC curve (AUCs) were
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FIGURE 7 | Functional analysis based on the molecular subtype-related DEGs in TCGA cohort. (A) Kyoto Encyclopedia of Genes and Genomes pathways. (B) The
significant categories as determined by Gene ontology analysis. The figure represents biological process (BP), cellular component (CC), and molecular function (MF)
genes from top to bottom. The bigger bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious. qvalue,
the adjusted P-value.

0.705, 0.717, and 0.721 for 2-, 3-, and 5-year survival times,
respectively, which demonstrated that this gene signature has
a good performance in prediction for the survival of LUAD
(Figure 8A). The Kaplan–Meier analysis presented difference
of OS between the high-risk and low-risk groups (Figure 8B).
Subsequently, to quantitatively predict the survival probability of
each LUAD patient, a nomogram for 1-, 3-, and 5-year survival
rates was plotted based on the gene signature risk model in
TCGA database (Figure 8C). Moreover, the calibration curve
result showed a high consistency in the probability of 1-, 3-, and
5-year overall survival between the nomogram prediction and the
actual observation (Figure 8D).

DISCUSSION

In this study, 33 pyroptosis gene expression profiles and clinical
information were collected from the TCGA and GEO datasets.
Through a series of bioinformatics and machine learning
analyses, we identified novel subtypes of LUAD based on 10
pyroptosis-related genes and further validated them in the GEO
dataset, with machine learning models performing up to an
AUC of 1 for classifying in GEO. We classified LUAD patients
into three subtypes (A-, B-, and C-cluster), and survival analysis
showed that B- had the best survival outcome and C- had
the worst survival outcome. We then further analyzed the
relationship between pyroptosis gene expression and clinical
characteristics in the three molecular subtypes. Immune profiling
revealed significant differences in immune cell infiltration
among the three molecular subtypes. We further performed
GO enrichment analysis and KEGG pathway analysis based

on the differential genes of the three subtypes, and the results
showed that DEG is involved in multiple cellular and biological
functions, including RNA catabolic process, mRNA catabolic
process, pathways of neurodegeneration-multiple diseases, and
other functions and pathways. Finally, we developed an 8-
gene prognostic model that accurately predicted overall survival
at 1, 3, and 5 years in high- and low-risk groups. In
conclusion, these results provide new insights into the underlying
mechanisms of LUAD.

LUAD is clinically challenging due to the difficulty of early
diagnosis, the ease of tumor recurrence, and poor prognosis.
Studies have shown that pyroptosis is a potential therapeutic
target for a variety of diseases, including infectious diseases
and cancer (Fang et al., 2020). Although many prognostic-based
signature bioinformatics studies of LUAD have made significant
progress, the existing molecular subtype-specific identification
methods are still limited. The subtyping of LUAD based on
pyroptosis can provide a more comprehensive understanding of
LUAD and can fill the gap of LUAD bioinformatics studies. In
addition, pyroptosis affects the tumor microenvironment and
tumor immunotherapy. Studying the role of pyroptosis in LUAD
will help to identify potential therapeutic targets for different
subtypes. In LUAD, a novel pyroptosis-related gene signature has
been identified to predict prognosis (Lin et al., 2021). However,
the role of a pyroptosis-related gene signature in LUAD has
not been elucidated, and our study aims to elucidate this role.
Our analysis of LUAD patients provides an alternative line
of research and complements current bioinformatics research
insights into LUAD.

In this study, further analysis using the CatBoost algorithm
in machine learning identified GPX4, NLRP7, NLRP1, NLRP3,
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FIGURE 8 | The identification of a new prognostic signature base on the molecular subtype-related DEGs for LUAD in TCGA cohort. (A) Areas under curves (AUCs)
of the risk scores for predicting 1-, 2-, and 3-year overall survival time. (B) Kaplan–Meier analysis presenting difference of overall survival between the high-risk and
low-risk groups. (C) Nomogram for predicting the probability of 1-, 3-, and 5-year overall survival time for LUAD. (D) Calibration plot of the nomogram for predicting
the probability of overall survival at 1-, 3-, and 5-year.

NLRP2, NOD1, NOD2, PRKACA, TNF, and CASP9 as key
genes affecting the classifying of LUAD. It has been found
that GPX4 is closely related to tumor size and classifying in
LUAD, and the higher the malignancy the lower the degree
of lipid peroxidation of the tumor is. And CREB can bind to
the promoter region of GPX4 to inhibit lipid peroxidation, so
GPX4 may be a new target for the treatment of LUAD (Wang
Z. et al., 2021). NLR family is an inflammation-related family,
and they contain a caspase recruitment domain (CARD). NLR
plays a key role in apoptosis, cell autophagy, inflammation, and
cancer, but its relationship with pyroptosis needs to be further
investigated. NLR family contains 6 of 10 key pyroptosis genes
(NLRP7, NLRP1, NLRP3, NLRP2, NOD1, and NOD2), where one
study found that LUAD with low NLRP1 expression had low
immune cell infiltration and a poorer prognosis (Shen et al.,
2021), and in another study, it was also found that LUAD
patients with low expression of NLRP7, NLRP1, NLRP2, NOD1
had a poorer prognosis. It was also found that polymorphisms

of NOD1/CARD4 may affect the diagnosis and treatment of
lung cancer (Ozbayer et al., 2015), while polymorphisms of
NOD2 were also associated with an increased risk of lung
cancer (Liu J. et al., 2014). Wang Y. et al. (2016) found that
activation of NLRP3 inflammasomes by LPS + ATP enhanced
the proliferation and migration of A549 cells and that NLRP3
inflammasomes play a crucial role in regulating the proliferation
and migration of A549 cells, and it may be a potential target for
the treatment of lung cancer. The aberrant fusion of PRKACA
with DNAJB1 produces a protein called PKA-CDNAJB1, a
protein that has been suggested to be a major driver of fibrous
lamellar hepatocellular carcinoma and is associated with other
tumors whose molecular mechanisms are unclear (Olivieri et al.,
2021). TNF is the promoter of pyroptosis, and it has been
demonstrated that the TNF-α/HMGB1 inflammatory signaling
pathway plays an important role in pyroptosis during acute
liver failure and acute kidney injury (Nagashima et al., 2020).
Previous studies showed that Caspase 6 plays an important role
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in apoptosis, and it was demonstrated that Caspase 6 can mediate
innate immunity and activation of the inflammatory vesicle, and
also promote activation of programmed cell death pathways,
including activation of pyroptosis. In addition, Caspase 6 also
plays an important role in infectious diseases and cancer (Zheng
M. et al., 2020).

The regulation of inflammatory responses caused by
pyroptosis is crucial in the tumor microenvironment. The
present study showed significant differences in the degree of
immune cell infiltration in the three subtypes, particularly NK
cells, CD4 + Th1, macrophage M1, B cells, myeloid dendritic
cells, and common lymphoid progenitor cells. In addition,
immune function scores for type II interferon response differed
significantly among the three molecular subtypes. The correlation
between the MCP counter scores and the different molecular
subtype groups indicated that the C-cluster had the lowest level of
immune cell infiltration, indicating a low immune response to the
C-cluster, consistent with its poor outcome. This indicates that
the immune response differs among subtypes and reflects that our
subtypes can be used as a prognostic indicator of the response to
immunotherapy. Also, the analysis of the expression levels of
m6A regulatory genes and immune checkpoint genes in different
molecular subtypes showed different clinical responsiveness
and heterogeneity of LUAD patients in different clusters. We
further explored the relevant signaling pathways involved in
each subtype of DEGs, and the results of KEGG and GO
analysis indicated that DEGs are involved in a variety of cellular
and biological functions, including RNA catabolic processes,
mitochondrial endosomes, small GTPase binding, Ras GTPase
binding, ribosomes, oxidative phosphorylation, and protein
processing in the endoplasmic reticulum. In addition to the
analysis of each of these subtypes, we have also established a
nomogram for predicting prognosis at 1, 3, and 5 years by
differential genes, which helps clinicians to further understand
the prognosis of patients.

In this study, LUAD patients were clustered based on
pyroptosis genes, and 10 key genes could be used as markers for
subtyping. However, the present study also has some limitations.
Initially, we only used the datasets from the online databases
TCGA and GEO for the analysis, and more patient data from
different regions are needed for validation. Moreover, because the
dataset was derived from databases and lacked data on response
to treatment, further analysis of the response to treatment of the
three different subtypes is needed to help guide clinical treatment.
Ultimately, the functions and pathways involved in the pyroptosis
we identified, and how they regulate immune cell infiltration,
need further molecular biology experiments to validate.

In summary, this study clustered LUAD based on 33
pyroptosis genes with three different subtypes (A-, B-, and
C-cluster). The model was then simplified to 10 pyroptosis

genes based on a machine learning approach. And a web
tool was created to help clinicians use it. Survival analysis
and immune characterization revealed that C-cluster had the
worst survival outcome and the least immune cell infiltration.
This study contributes to the understanding of the underlying
molecular mechanisms of LUAD and provides some suggestions
for the individualized treatment of tumor patients. The subtypes
of LUAD based on pyroptosis genes may help to guide
clinical treatment, assess prognosis, and predict the efficacy
of immunotherapy.
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