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ABSTRACT

In trypanosomes, the apparent lack of regulation of
RNA polymerase lI-dependent transcription initiation
poses a challenge to understand how these eukary-
otes adjust gene expression to adapt to the con-
trasting environments they find during their life
cycles. Evidence so far indicates that mRNA turnover
and translation are the major control points in which
regulation is exerted in trypanosomes. However, very
little is known about which proteins are involved, and
how do they regulate the abundance and translation
of different mRNAs in different life stages. In this
work, an RNA-binding protein, TOhDRBD3, has been
identified by affinity chromatography, and its func-
tion addressed using RNA interference, microarray
analysis and immunoprecipitation of mRNA-protein
complexes. The results obtained indicate that
TbDRBD3 binds to a subset of developmentally regu-
lated mRNAs encoding membrane proteins, and that
this association promotes the stabilization of the
target transcripts. These observations raise the pos-
sibility that TO DRBD3-mRNA complexes act as a
post-transcriptional operon, and provide a frame-
work to interpret how trypanosomes regulate gene
expression in the absence of transcriptional control.

INTRODUCTION

Messenger RNA stability and translation are emerging as
important mechanisms to control gene expression (1).
These processes depend largely on RNA-binding proteins
(RBPs). The association of RBPs with mRNAs is deter-
mined by sequence elements located usually within the
3’-untranslated regions (3’-UTRs) of regulated transcripts,
and leads to intense changes in stability and/or translation
of target mRNAs (2). Many reports have shown that RBPs
do not bind to individual mRNAs randomly, but they

associate with specific subsets of mRNAs coding for
functionally related proteins. These observations led to
the hypothesis of the existence in eukaryotes of ‘post-
transcriptional operons’, by which single RBPs would be
able to regulate the fate of multiple mRNAs in a coordinate
manner (3,4). Indeed, an increasing number of instances
exist where mRNA clusters that encode components of
the same macromolecular complex or cellular process
have been found associated with RBPs (4). This is best
exemplified by the Puf family of RBPs in yeast, where
ecach of the five members preferentially associates to
mRNAs coding for membrane-associated proteins (Puflp
and Puf2p), mitochondrial proteins (Puf3p), ribosomal
RNA-processing factors (Puf4p) or components of the
spindle pole body (Puf5p) (5).

Post-transcriptional regulation of gene expression is of
exceptional importance in trypanosomatid protozoa.
These flagellated eukaryotes branched-out very early
in the eukaryotic lineage (6), and some species, like
Trypanosoma brucei, Trypanosoma cruzi or Leishmania
spp., pose an important problem for the economy and
public health in underdeveloped countries (http://www.
who.int/tdr/diseases/). These parasites exhibit complex
life cycles alternating between an invertebrate and a verte-
brate, and are able to undergo intense morphological and
biochemical changes in response to changes in tempera-
ture, pH, nutrients and defenses they encounter within
one or the other host (7). All these adaptations require
major changes in the gene expression program of the para-
site. However, trypanosomatids seem to have completely
lost the ability to regulate transcription initiation by
RNA polymerase II (8). This is due to the unusual arrange-
ment of chromosomes, in which most protein-coding
genes are found in arrays of tens to hundreds units all
orientated on the same strand (9,10). A single region
seems to drive the expression of the whole chromosome
(11,12), producing long polycistronic pre-mRNAs that
are resolved into individual, mature mRNAs by coupled
trans-splicing and polyadenylation reactions (13). Thus,
regulation of gene expression in these parasites needs to
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be exerted posttranscriptionally. Messenger RNA process-
ing and transport seem to be unregulated in trypanoso-
matids; instead, evidence so far indicates that the main
control points of gene expression in these organisms are
at the level of mRNA degradation and translation (8,14).

Trypanosoma brucei, the causative agent of sleeping sick-
ness in man and nagana in cattle, has several life stages
within the Tse-tse fly or the mammal. The two major repli-
cative stages are the procyclic and the bloodstream slender
forms. Transcriptome analysis of these two life forms has
revealed that at least 200 transcripts show developmental
regulation (15), and it is assumed that the differential tran-
script abundance during the parasite’s life cycle is due to
the interaction of RBPs to specific mRNA populations
(14). Indeed, various regulatory sequences have been iden-
tified in trypanosomatids that confer stage-specific mnRNA
destabilization, translation or cell-cycle regulation (14),
and some mRNA-—protein complexes with a possible role
in mRNA turnover have been partially characterized
(16,17). However, virtually nothing is known about the
RBPs involved in the control of mRNA abundance and
translation in trypanosomatids and, to date, no RBP has
been found associated with a specific subset of mRNAs
coding for functionally related proteins.

The present work describes the identification of several
proteins in 7. brucei that bind to the 3’-UTR of a develop-
mentally regulated mRNA in vitro, and the functional
characterization of one of them, 7ThDRBD3. The study
of ThDRBD3-depleted cells by means of RNA interfer-
ence in combination with microarray analysis and immu-
noprecipitation of mRNA-protein complexes, indicates
that this protein controls the abundance of a specific
subset of developmentally regulated mRNAs encoding
membrane proteins.

MATERIALS AND METHODS
Trypanosomes and cell culture

Procyclic-form 427 T. brucei cells were grown at 27°C in
SDM-79 medium (18) containing 10% fetal bovine serum.
Procyclic-form 449 trypanosomes stably expressing the
Tnl0 tet repressor (19) were grown in the presence of
0.5 ug/ml phleomycin. Bloodstream-form 427 cells were
cultured at 37°C and 5% CO, in HMI-9 medium (20)
containing 10% fetal bovine serum.

Purification of RBPs and mass spectrometry

To obtain cytosolic extracts, procyclic 427 cells were har-
vested at a cell density of 5-8 x 10°/ml, washed in phos-
phate-buffered saline, resuspended in 1 mM HEPES, pH
7.4, 1mM DTT and EDTA-free protease inhibitor cock-
tail (Roche Diagnostics, Barcelona, Spain), and disrupted
for 10min in a Potter-Elvehjem homogenizer equipped
with a Teflon pestle. After adding HEPES buffer (pH
7.4) and NaCl to 20 and 100 mM, respectively, the lysate
was centrifuged at 3000g for 10 min. The supernatant was
ultracentrifuged for 1h at 100000g. NP-40, EDTA and
glycerol were added to the final supernatant to 0.1%
(w/v), ImM and 10% (w/v), respectively, and the mixture
was frozen at —80°C until use. The RNA baits used were

the phosphoglycerate kinase B (PGK-B) 3-UTR and a
modified version thereof in which the U-rich regulatory
element was deleted (21). DNA fragments corresponding
to both 3-UTRs were PCR-amplified from plasmids
pHD869 or pHD1044 (21) and cloned as EcoRI-BamHI
fragments into plasmid pGR24 (a pBluescript SK+
derivative containing the sequence corresponding to the
T. brucei spliced-leader cloned between the Kpnl and the
EcoRI sites). The resulting plasmids, named pGR25
(intact 3’-UTR) and pGR26 (deleted version) were linear-
ized at the BamHI site and in vitro transcribed by T7 RNA
polymerase. Transcribed RNAs were bridged to strepta-
vidin—agarose columns using a biotinylated deoxyoligonu-
cleotide complementary to the spliced-leader sequence.
Cytosolic extracts (30—40 mg of protein) were thawed, sup-
plemented with 50 pg/ml tRNA and 100 U/ml of RNasin
(Promega, Madrid, Spain) and split into two identical
fractions; one was passed through a column containing
the intact version of PGK-B 3-UTR, and the other
through a column containing the deleted version.
Proteins were allowed to bind for 20 min at room tempera-
ture, followed by an incubation of 30 min at 4°C. After
extensive washing in buffer K (20mM HEPES, pH 7.4,
100mM NaCl, ImM DTT, 1mM EDTA, 0.1% NP-40,
10% glycerol), RBPs were eluted in buffer K containing
500mM NacCl, loaded in a 12% SDS-PAGE gel and
visualized by Sypro Ruby staining. Those proteins appear-
ing only in the intact 3’-UTR chromatography eluate were
excised, subjected to MALDI-TOF/TOF and identified
using  MASCOT software (http://www.matrixsicence.
com). Mass-spectrometry analysis was performed in the
Proteomic Unit of the Scientific Park/Madrid
Complutense University (Madrid, Spain).

Antibody production

A fragment of the ThDRBD?3 open reading frame (ORF)
corresponding to the first 83 amino acids, or a fragment of
ThRBP33 corresponding to the last 160 amino acids, were
cloned into pHD1306 (22), expressed as Hise-GST fusions,
purified using glutathione- and nickel-affinity resins,
and buffer exchanged into phosphate-buffered saline.
Immunizations in rabbits were performed according to
standard procedures (23). Polyclonal antibodies were affin-
ity-purified using full-length versions of the proteins
coupled to AffiGel-15 (Bio-Rad Laboratories, Madrid,
Spain). To express full-length ThDRBD3 and ThRBP33
in Escherichia coli for antibody purification, ORFs were
cloned into pGR36 (a pET24a derivative containing a
DNA fragment coding for the calmodulin-binding peptide
and the Hisg tag cloned between the HindIII and Xhol
sites). Bacteria were grown at room temperature to
an ODygyy of 0.2, induced with 1 mM isopropyl-B-p-
thiogalactopyranoside and incubated at the same temp-
erature to an ODggyy of 1.5. Recombinant proteins were
purified using both calmodulin-affinity (Stratagene, La
Jolla, CA, USA) and nickel-affinity (GE Healthcare,
Barcelona, Spain) resins, according to the manufacturers’
instructions. Western blots of total cell extracts were done
as described (24).



Immunofluorescence assays

Immunolocalization studies in bloodstream and procyclic
427 trypanosomes were carried out in cells fixed with
4% paraformaldehyde and permeabilized with 0.2%
Triton X-100 for 20 min (22), using affinity-purified anti-
ThDRBD3 serum and goat anti-rabbit Alexa 488 second-
ary antibody (Molecular Probes, Invitrogen, Barcelona,
Spain). Permeabilization with Igepal CA-630 (25), or
fixation/permeabilization with methanol [using the proto-
col described in ref. (26), but substituting methanol for
ethanol] gave similar results.

RNA interference

A stem-loop strategy was used to generate dsRNA (27).
A fragment of the ThDRBD3 ORF corresponding to
nucleotide positions 2-502 was PCR-amplified and
cloned into pGR19 (27) as two inverted repeats flanked
by an ‘stuffer’ fragment to yield pGR69. There are no
other sequences in the 7. brucei genome that showed sig-
nificant similarity to this dSRNA. Procyclic 449 cells were
transfected with pGR69 linearized with Notl and selected
in the presence of 50pug/ml hygromycin. RNAi was
induced by adding tetracycline to the culture medium at
a concentration of 1 ug/ml.

Microarray analysis

RNAI was induced for 48 h, and total RNA was obtained
from either uninduced or ThDRBD3-depleted cells using
Trizol (Invitrogen, Barcelona, Spain) and treated with
DNase I (Promega). A total of 15 pg of RNA were reverse
transcribed in the presence of 100ng of oligo(dT), is,
0.25mM dATP, 0.25mM dTTP, 0.25mM dGTP,
0.05mM dCTP, 0.05mM Cy3- or Cy5-dCTP, 50 mM
Tris—HCI, pH 8.3, 75mM KCI, 3mM MgCl,, SmM
DTT, 40U of RNaseOUT (Invitrogen) and 400U of
Superscript  III  reverse transcriptase (Invitrogen).
Reactions were incubated for 3 h at 50°C, stopped by heat-
ing at 70°C for 15 min and treated with 5 U of RNase H for
20 min at 37°C. cDNA was purified using the MinElute kit
(Qiagen, Madrid, Spain), ethanol precipitated and resus-
pended in hybridization buffer. Genomic 7. brucei micro-
array glass slides containing ca. 24000 independent
random genomic clones (15) were pre-hybridized and
hybridized as described (28). Four hybridizations (two bio-
logical replicates with a dye swap each) were analyzed.
Slides were scanned using a ScanArray 5000 laser-scanner
(Packard BioScience, Dreieich, Germany). The resulting
images were analyzed using GenePix (Axon Instruments,
Sunnyvale, CA, USA) and MCHIPS software (29,30)
essentially as described (15,28). Only those clones sat-
isfying the following parameters—fitted intensities: at
least 150000; ratio: +2; min/max-separation: 0.1—were
selected. Regulated clones were sequenced from one
end and identified in the 7. brucei genome database
(http://www.genedb.org/genedb/tryp/). Microarray data
have been submitted to GEO under accession number
GSES8734.
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Northern analysis

A 10-15pg of total RNA obtained from three indepen-
dent RNAI experiments were electrophoresed in agarose—
formaldehyde gels, transferred to Nytran membranes
(Millipore, Madrid, Spain), hybridized following standard
procedures (31) and analyzed using Phosphorlmager
screens and ImageQuant software. Transcript signals
were normalized relative to a signal recognition particle
(SRP) probe (32). To rule out unspecific effects on mRNA
abundance due to RNAI, total RNA was also obtained
from a procyclic cell line depleted of the peroxisomal
protein PEX2 by means of RNAi (33) and analyzed
in parallel. Table 1 shows a list of the probes used in
this work.

mRNA degradation experiments

Total RNA was obtained from uninduced or RNAI-
induced samples (48 h in the presence of tetracycline) of
5% 107 cells taken at different times after the addition
of 10 pg/ml actinomycin D (from a stock of Smg/ml in
DMSO). RNA extractions and analysis were performed
as described above from three independent RNAI induc-
tions. mRNA half-lives were estimated after measuring
PhosphorImager signals on northern blots, normalizing
to SRP signal, plotting on semilogarithmic scales and cal-
culating the amount of time required for a transcript to
decrease to 50% of the initial amount. Half-life values
were compared using Student’s z-tests. A P-value < 0.05
was considered statistically significant.

Luciferase constructs and assays

A modified version of plasmid pHD1437 (34), named
pGR86, was constructed by replacing the CAT gene for a
luciferase ORF. The 3’-UTRs of amino acid transporter 11
(AATPI11), glutamine synthetase (GS) and actin (ACT)
genes were cloned downstream the luciferase gene to gen-
erate pGR88, pGRI8 and pGR108, respectively. These
plasmids were digested with NotI and stably integrated in
the tubulin locus of procyclic trypanosomes by electropora-
tion. After selecting in the presence of 1 pg/ml puromycin,
three independent clones from each transfection were
selected for northern and luciferase assays. AATPII
3-UTR was obtained from plasmid pHD1470 (39),
and ACT 3-UTR, from plasmid pHD1034 (36). GS
3’-UTR was obtained by RT-PCR using the anchored
oligo(dT);g primer CZ1584 (36) and GS gene-specific
primers. Total protein extracts from 2 x 10° cells were
assayed for luciferase activity in a Berthold FB 12 lumin-
ometer (Berthold Detection Systems GmbH, Pforzheim,
Germany) using the Luciferase Assay System (Promega)
according to the manufacturer’s instructions.

Immunoprecipitation of mRNA—protein complexes

For each immunoprecipitation, 5 x 107 procyclic 427 cells
were washed in serum-free SDM-79 culture medium
and lyzed in 10mM Tris-HCI, pH 7.4, 2mM DTT,
0.1% (w/v) NP-40, 100 U/ml RNasin (Promega), 2mM
vanadyl ribonucleoside complexes (Sigma-Aldrich,
Madrid, Spain) and EDTA-free protease inhibitor
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Table 1. Probes used in northern hybridizations

Gene ID Protein Probe Poly(A) site®
Tb09.211.0560 DRBD3 ORF + 3-UTR [510-1034]

Tb10.406.0110 GCSl-like ORF [1561-1842]

Tb927.1.2850° Pteridin transporters 3-UTR [1950-2578] 622
Tb927.4.4730 Amino acid transporter 11 3’-UTR [1423-2255]

Tb927.3.4500
Tb927.7.4970
Tb09.244.2510° BARP

Tb10.6k15.1350 Pteridin transporter
Tb927.7.5960¢ MFS

Tb10.6k15.0070 PAG4

Tb927.8.3620° Folate transporters
Tb11.02.2700 Mitochondrial fumarase
Tb09.211.0630 Actin

Tb09.160.5480 NT10

Cytosolic fumarase
Glutamine synthetase

3-UTR [1695-3236]

3-UTR [1256-1614] 351
ORF [370-557]

3-UTR [1919-2240] 976
ORF + 3-UTR [1716-2025]

ORF [8-932]

3-UTR [1902-2177] 793
ORF + 3'-UTR [1629-2380]

ORF [1-1128]

ORF [59-689]

Fragments of open-reading frames (ORF) and/or 3-UTRs were obtained by PCR or restriction endonuclease digestion, and radiolabelled using the
random primer Primelt kit (Stratagene) and [0->>P]dCTP. The start and end positions of the probes relative to the translation start codon are

indicated in brackets.

“Polyadenylation sites were estimated for some mRNAs by nested RT-PCR using two sense transcript-specific primers and the anchored oligo(dT)
Erimer CZ1584 (see Materials and methods section). Nucleotide positions are relative to the stop codon (included).
There are three genes in tandem coding for pteridine transporters in chrosomose I (http://www.genedb.org/genedb/tryp/), and have nearly identical

3-UTRs. The probe was designed to detect all three transcripts.

“There are 14 BARP genes in tandem in chromosome IX (http://www.genedb.org/genedb/tryp/). The probe used shares 60-70% identity with other

BARP genes.

dThere are at least eight MFS genes in tandem in chromosome VII (http://www.genedb.org/genedb/tryp/). The probe used is predicted to hybridize

also to MFS genes 927.7.5960, 927.7.5980 and 927.7.6000.

“There are three folate transporter genes in chromosome VIII with 3’-UTRs nearly identical up to 185-nt downstream to the stop codon (http://www.
genedb.org/genedb/tryp/). The probe used was designed to detect all three transcripts. Mapped polyadenylation site is that of Tb927.8.3620 transcript.

cocktail (Roche Diagnostics) using a Potter-Elvehjem
homogenizer equipped with a Teflon pestle. After adding
NaCl to 150mM, the lysate was centrifuged at 4°C for
15min at 14000g. The supernatant was subjected imme-
diately to immunoprecipitation using protein G beads and
affinity-purified antibodies for 3h at 4°C. After extensive
washing in 10 mM Tris—HCI, pH 7.4, 150 mM NacCl, 0.1%
(w/v) NP-40, the RNA was extracted from the immuno-
precipitated material using TRI-Reagent (Sigma-Aldrich)
and treated with DNase I. One half of the final RNA
sample was reverse transcribed using the anchored
oligo(dT);g primer CZ1584 (36) and Superscript III
reverse transcriptase (Invitrogen); the other half was trea-
ted identically, except that the reverse transcriptase was
omitted (minus RT control). cDNA was amplified using
mRNA-specific primers pairs and 95°C (30s), 55°C (305s)
and 72°C (30s) for 30 cycles, then 5min at 72°C. Total
RNA was also obtained from an equivalent amount of
extract to serve as a positive control (input RNA).
Control immunoprecipitations and RT-PCR experiments
were performed in parallel using either anti-ThRBP33
antibodies or purified rabbit IgGs (Sigma-Aldrich). To
test the effect that deletions in the 3’-UTR of A4TPII
mRNA have on 7hDRBD3 binding, mRNA-protein
complexes were also immunoprecipitated from extracts
obtained from permanent cell lines expressing CAT repor-
ter mRNAs fused to different deletions of AATPII 3'-
UTR (35). In this case, cells were disrupted by vortexing
in the presence of 0.5% Igepal CA-630. PCR reactions
were carried out using the sense oligonucleotide 5-GC
AAGGCGACAAGGTGCTGATGC-3 that hybridizes
close to the 3’-end of CAT ORF, and the antisense

primer  5-GCAGCTCAGTGTCTCTATAAATCAAT
GC-3, which is complementary to a region present in all
deletions (nucleotides 261-289, see Figure 7B).

RESULTS

Identification of proteins that bind to the 3'-UTR
of PGK-BmRNA

There are very few RNA cis-acting elements identified in
T. brucei that determine regulation of gene expression
(8,14) and that could be used as baits for RNA-affinity
purification. One of them is a sequence located in the
3’-UTR of the PGK-B mRNA, which resembles mamma-
lian regulatory AU-rich elements (21). Versions of this
3’-UTR containing or lacking the regulatory element
were bound to streptavidin—agarose beads (see Materials
and methods section). RBPs able to bind the intact
3-UTR but not the version lacking the regulatory
sequence were affinity-purified from procyclic cytosolic
extracts, resolved in SDS-PAGE gels, stained with
Sypro Ruby (Figure 1A) and identified by MALDI-
TOF/TOF (Figure 1B). The protein band migrating at
approximately 40kDa consisted of a mixture of three
polypeptide  species, ThDRBD3, ThRBP33 and
Th927.6.4440, whereas the protein band migrating at
~22kDa was identified as ThUBP2. The latter is a puta-
tive homolog of TcUBP2, an RBP involved in the regula-
tion of transcript abundance in trypanosomes (17,37).
With the exception of 75927.6.4440, all proteins contain
canonical RNA recognition motifs (RRM) within their
sequences (Figure 1B). This work concentrates in the
characterization of one of these proteins, 7ThADRBD3.
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A B
coverage No. of assigned
Protein kDa MALDI-TOF peptides Motifs
TbDRBD3 TbDRBD3 37 43% 3 RRM
TbRBP33 o
Tb927.6.4440 TbRBP33 34 58% 4 RRM
Tb927.6.4440 38 36% 1 none
THUBP2 — - TOUBP2 20 41% 3 RRM
C
RRM RRM
PQPPQPQPPQPPQQQAQ
QQQPQQQPPPPPQQQQ

Figure 1. Identification of proteins that bind to PGK-B 3’-UTR. (A) Procyclic cytosolic extracts were chromatographed on streptavidin—agarose
columns containing the PGK-B 3'-UTR (lane 1) or a version lacking the regulatory sequence (lane 2), electrophoresed in SDS-PAGE gels and stained
with Sypro Ruby. Proteins appearing only in the intact 3’-UTR chromatography eluate were excised and subjected to mass spectrometry analysis.
(B) Identification of RBPs by MALDI-TOF/TOF. The predicted protein molecular masses, the coverage of tryptic peptides obtained by MALDI-
TOF analysis, the number of peptides identified by peptide fragmentation and the conserved PFAM motifs found in the protein sequences are
indicated. (C) Schematic diagram of ThDRBD3; RRM motifs are shown as black boxes, the C-terminal proline/glutamine-rich region as an
empty box and the protein fragment used to raise antibodies as a thin gray box.

This RBP has two RRM motifs and a proline/glutamine-
rich region near the C-terminus (Figure 1C). Work is
in progress to characterize the other identified proteins
following the experimental approach described in this
article.

Subcellular localization of ThDRBD3 and effects
of RNA interference on trypanosome growth

Polyclonal antibodies were raised in rabbits against
ThDRBD3. The affinity-purified antiserum recognized a
single band of ~40kDa in total cell extracts, which was
similarly expressed in bloodstream and procyclic trypano-
somes (Figure 2A). This protein band decreased clearly in
intensity after induction of RNAI targeting ThDRBD3
mRNA (Figure 3B, see below). ThDRBD3 was found pre-
dominantly in the cytosol of wild-type bloodstream and
procyclic cells, as observed by immunofluorescence micro-
scopy, although some signal could also be observed within
the nucleus (Figure 2B). ThDRBD3 fluorescence signal
decreased to background levels after induction of RNNAI
(Supplementary Figure 1A). Different permeabilization/
fixation protocols gave similar staining patterns (Supple-
mentary Figure 1B). The localization of 7ThDRBD3 was
also analyzed by subcellular fractionation (Figure 2C).
In this case, the protein was found in both the nuclear
and the cytosolic fractions. Taken together, these results
indicate that ThDRBD3 can be found in both compart-
ments, with a predominant cytosolic localization.

To study the function of 7hDRBD3 in procyclic
trypanosomes, the protein was depleted in vivo using
RNA interference in a tetracycline-inducible manner.
A marked reduction of both mRNA and protein levels

A BF PF M, B DIC DRBD3 DAPI Merge
(kDa)
_97 BF PJ?;.‘*\.

- -66
|
e PF
————

—-22
c W N C
- 14 ThbDRBD3 @ === s
CSM e @
p34/37 B &=

)
S (0ad

Figure 2. 7ThDRBD?3 is expressed in bloodstream and procyclic try-
panosomes and localizes in both the cytosol and the nucleus. An
affinity-purified anti-ThDRBD3 antiserum was used to detect the protein
by (A) western blot analysis of total cell extracts or (B) immunofluores-
cence assays. (C) Western blot analysis of samples obtained by cell frac-
tionation. Cytosolic fractions (C) were obtained as described in Materials
and methods section. Nuclear fractions (N) were obtained by resuspend-
ing the 3000g pellet in the original volume. W, whole-cell lysates. To check
for proper fractionation, blots were also decorated with the cytosolic
marker CSM (33) and the nuclear markers p34/37 (67).

was readily observed after 48 h of tetracycline induction
(Figure 3A and B). As seen in Figure 3C, depletion of
ThDRBD3 resulted in a growth arrest phase followed by
cell death.
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Figure 3. Depletion of ThDRBD3 by RNA interference and effects on
growth. A cell line was generated that expressed 7hDRBD3-specific
dsRNA in a tetracycline-inducible manner. The levels of ThDRBD3
mRNA (A) or protein (B) were analyzed in cells incubated with tetra-
cycline for 48h. Loading controls were the signal-recognition particle
RNA or the CSM protein. (C) The 7hbDRBD3 RNAIi cell line was
grown in the absence (open squares and thick lines) or presence
(filled circles and thin lines) of 1pg/ml tetracycline to induce RNAI.
Cultures were followed up to 8 days and diluted to 0.4 x 10°cells/ml
every 2 days as required.

ThDRBD3 regulates the abundance of a specific subset of
mRNAs coding for membrane transporters and
intermediate metabolism enzymes

In order to analyze whether ThDRBD3 has a role in the
regulation of mRNA turnover, the transcriptome of pro-
cyclic trypanosomes depleted of ThDRBD3 was compared
to that of uninduced cells using genomic microarrays.
RNA samples were isolated from cells harvested after
48h of induction with tetracycline. At this point, cell
growth was barely affected (Figure 3C) and trypanosomes
remained highly motile (data not shown). Thirty-four
regulated spots showed reproducible regulation in
ThDRBD3-depleted cells (see Supplementary Figure 2
and Materials and methods section), which already sug-
gested that ThDRBD3 was involved in the regulation of
the abundance of a small group of mRNAs. All clones
were sequenced and found to encode 22 proteins, includ-
ing ThDRBD?3 itself (Figure 4A). Regulation was con-
firmed by northern analysis for all tested mRNAs
(Figure 4B). With the exception of a transcript encoded
by the procyclin-associated gene 4 (PAG4, see below),
all regulated mRNAs decreased 2- to 5-fold in abundance

upon depletion of 7hDRBD3. To rule out unspecific
effects on mRNA abundance due to RNAi, RNA was
obtained from a control RNAIi cell line depleted of the
peroxisomal protein PEX2 (33) and analyzed in parallel.
There was no apparent effect on the abundance of any
mRNA in these cells (Figure 4B).

Interestingly, the majority (64%) of the regulated
transcripts were found to encode membrane proteins
(indicated in bold face in Figure 4A). These included the
amino acid transporters AATP11 and Tb927.8.7740,
transporters belonging to the major facilitator superfamily
(MFS), surface protein BARP (38), a putative membrane
protein with high similarity to plant generative cell-specific
protein 1 (GCSI) (39), trans-sialidase TbTS (40), three
receptor-type adenlyate cyclases, thimet oligopeptidase
A and two different pteridine transporters. There are
four genes encoding pteridine transporters in the genome
of T. brucei. Three are found as nearly identical tandem
repeats in chromosome I, whereas a single gene is present
in chromosome X that is 57% identical to its chromosome
I counterparts. The mRNAs transcribed from both
loci were downregulated upon depletion of ThDRBD3
(Figure 4B). Other regulated mRNAs encoded the inter-
mediate metabolism enzymes G'S and cytosolic fumarase
(cFUM).

Notably, some of these mRNAs are upregulated in
procyclic forms, such as the transcripts coding for
pteridin transporter 7b510.6k15.1350, AATPII, trans-
sialidase ThTS, thimet oligopeptidase A, GS and ¢cFUM
[(15,40,41), see also http://www.zmbh.uni-heidelberg.de/
Clayton/pc_bs_OligoArray.xls, and data not shown],
which suggests that 7ThDRBD3 is involved, at least in
part, in the developmental regulation of these transcripts
during the parasite’s life cycle. Although not detected in the
microarray analysis, the abundance of 7hNT10, a purine
nucleoside transporter also known to be developmentally
regulated (15,42), was checked for regulation by northern
analysis and found to be decreased by 2.4-fold after deple-
tion of ThDRBD3 in procyclic forms (Figure 4B). It is also
worth mentioning that mRNAs for folate transporters,
which encode proteins similar to pteridine transporters
(41% identical), were barely affected by ThDRBD?3 deple-
tion (Figure 4B). Likewise, the abundance of the mRNA
encoding mitochondrial fumarase (mFUM), which is also
upregulated in procyclic forms (41), was not affected by
ThDRBD3 RNAI (Figure 4B). The differential regulation
of both fumarases was also confirmed by western blot ana-
lysis using monoclonal antibodies (41) (Figure 4C).
ThDRBD3 depletion did not affect the levels of either
PGK-B mRNA or protein (Figure 4B and D). Moreover,
PGK-B transcript was not detected in ThDRBD3 mRNP
complexes (see below). These results were unexpected, since
ThDRBD?3 was identified based on its ability to bind PGK-
B mRNA in vitro (Figure 1A), and suggest that ThDRBD3
is not likely to be involved in the regulation of PGK-B
mRNA abundance. The different behavior of 7hDRBD3
in vitro and in vivo could be due to posttranslational mod-
ifications, RNA secondary structure or association to other
protein factors. Differential binding abilities in vitro and
in vivo have been described for other RBPs (16,43).
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Figure 4. Effect of ThDRBD3 depletion on the transcriptome of 7. brucei. (A) Genomic clones showing the highest regulation in microarray
hybridizations after depletion of ThDRBD3. Systematic names and predicted protein products are shown according to GeneDB T. brucei
genome database annotations (http://www.genedb.org/genedb/tryp). The number of independent regulated microarray spots is shown in the
second column. Regulation factors obtained for each spot after analyzing microarray data with the MCHIPS software (29,30) (see Materials and
methods section) are indicated in the last column. Predicted membrane proteins are indicated in boldface. In the case of Tb927.3.1860/1870, the
genomic clone sequence spanned two ORFs; Tb927.3.1870 gene encodes a putative membrane protein. (B) Northern analysis was performed to
confirm microarray results, and to analyze the effect of ThDRBD3 depletion on the levels of other mRNAs. Total RNA was obtained from procyclic
parasites grown in the absence (—) or the presence (+) of tetracycline for 48 h, transferred to nylon membranes and hybridized with specific probes.
Representative blots are shown; the average fold regulation & SEM is indicated below individual panels, and was calculated after analyzing samples
from three independent RNAI experiments and normalizing to signal-recognition particle RNA levels (load). Total RNA was also obtained from a
control cell line expressing a dsSRNA targeting an mRNA encoding the peroxisomal protein PEX2, which was used as a control in all hybridizations
(labeled as ‘C* above each blot). The transcripts analyzed were GCS/; pteridine transporters (P7); folate transporters (F1); AATPI1; cytosolic and
mitochondrial fumarases (cFUM and mFUM); GS; brucei alanine-rich protein (BARP); MFS; PAG4; purine nucleoside transporter 10 (NT10); ACT
and PGK-B. (C and D) The effect of ThDRBD3 depletion on the levels of cFUM, mFUM and PGK proteins were also assessed by western blot
analysis. Blots were decorated with anti-CSM antibodies to confirm equal loading.
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Figure 5. Effect of ThDRBD3 depletion on the stability of transcripts encoding (A) AATPI1, (B) GS, (C) GCS1, (D) cFUM, (E) mFUM, (F) ACT and
(G) PAG4. Actinomycin D was added to ThDRBD3-depleted (empty circles) or uninduced trypanosomes (filled circles). RNA samples were obtained at
various time points and analyzed by northern blotting. 7ThDRBD?3 depletion significantly decreased the half-lives of AATPI1, GS, GCS-1 and cFUM
transcripts (Student’s -test, *P < 0.02, **P <0.002). SRP transcript was used to normalize northern signals. Representative blots are shown in (H).

ThDRBD3 acts by stabilizing regulated mRNAs

A possible role of ThDRBD3 could be the stabilization of
target mRNAs, given the predominant cytosolic localiza-
tion of the protein and the fact that most regulated tran-
scripts decreased in abundance in ThDRBD3-depleted
cells. To test this hypothesis, the decay of four regulated
transcripts coding for AATPII, GS, cFUM and GCSI,
was monitored in RNAi-induced cells using actinomycin

D to block transcription. Degradation kinetics of the tran-
script coding for mFUM and ACT mRNAs, whose abun-
dance is not altered by ThDRBD3 ablation (Figure 4B),
were also analyzed as a control. As shown in Figure 5, the
decreased AATPI11, GS, cFUM and GCSI mRNA steady-
state levels were due, at least in part, to the lower stability
of these mRNAs in cells with reduced levels of 7ThADRBD3.
The half-lives of mFUM, ACT mRNAs were unaffected by
ThDRBD3 RNAI, as expected (Figure 5E and F).



The decay of PAG4, the only transcript whose abun-
dance increased upon 7HDRBD3 ablation (Figure 4A
and B), was also analyzed. As seen in Figure 5G, no appar-
ent changes in the stability of PAG4 transcript could be
detected in ThDRBD3-depleted cells. PAG4 gene is located
at the end of a polycistronic unit transcribed by RNA
polymerase I (in trypanosomes there are a few protein-
coding genes that are transcribed by this polymerase).
This unit also contains three other PAG genes, and
begins with two genes coding for main surface proteins in
the procyclic stage, the procyclins EP1 and EP2 (44). The
steady-state levels of PAG transcripts are over two orders
of magnitude lower than those of EPs (45). Depletion
of ThDRBD3 in procyclic forms also resulted in an
increase in the abundance of the other PAG transcripts,
but EP/ and EP2 mRNA levels remained unchanged
(Figure 4B and data not shown). Since EPs and PAGs
genes are transcribed in the same polycistronic unit, these
results suggest that 7ThDRBD3 depletion affects pre-
mRNA processing or transcription elongation. However,
PAG4 mRNA could not be detected in 7ADRBD3—
mRNA complexes (see below), and therefore the increase
in the abundance of this transcript could be an indirect
effect of ThDRBD3 depletion, for example, due to a
drop in the intracellular levels of amino acids or other
metabolites transported by the membrane proteins whose
mRNAs are regulated by 7hDRBD3 (see Discussion
section).
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ThDRBD3-dependent regulation is mediated through
sequences localized in the 3'-UTR

Regulation of mRNA abundance is usually determined by
sequences found in the 3'-UTR of target transcripts (46).
To investigate whether the same is true for 7TODRBD3, the
3’-UTRs of two regulated transcripts, AATPII and GS,
were placed downstream of a luciferase reporter gene and
stably integrated in the 7hADRBD3 RNAI cell line. As
shown in Figure 6, a ca. 3-fold reduction in the steady-
state abundance of luciferase mRNA could be observed
upon depletion of THDRBD3. As expected, the levels of a
reporter mRNA bearing ACT 3’-UTR were unaffected by
ThDRBD3 ablation. Reduction in luciferase activity,
although evident, was not as marked as for mRNA
levels, which could be due to the high stability of luciferase
within 7. brucei cells (47) or to a more efficient translation
of decreased mRNA levels to sustain the overall levels of
the protein. Decay kinetics of LUC-AATPII and LUC-
ACT reporter mRNAs were also analyzed (Figure 6C and D).
The half-life values of both mRNAs measured in unin-
duced cells were lower than those observed for the respec-
tive endogenous mRNAs (i.e. compare Figure 5A with
Figure 6C and Figure 5F with Figure 6D), which could
be due to intrinsic instability of luciferase transcript in
trypanosome cells. Importantly, the half-life of LUC-
AATPI] mRNA was significantly decreased in cells with
reduced levels of ThDRBD3 (Figure 6C). Decay of LUC-
G S reporter mRNA could not be analyzed due to the very
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Figure 6. 7ThDRBD3 knockdown affects the abundance of reporter mRNAs bearing A47TP11 and GS 3-UTRs. Expression vectors containing a
luciferase gene (LUC) fused to 3’-UTRs of AATPI11, GS or ACT mRNAs were stably integrated into ThDRBD3 RNAI procyclic cells. Cultures were
treated with tetracycline for 48 h to deplete ThDRBD3 protein (which was confirmed by western analysis, data not shown). (A) The levels of the
different reporter mRNAs were analyzed by northern blotting using a probe complementary to the luciferase gene. Luciferase activity was assayed
enzymatically. Both the average fold decrease in mRNA abundance and luciferase activity were calculated after analyzing three independent clones
from each stable transfection. (B) Representative northern blot. Hybridization with an SRP probe (load) was included for normalization. The effect
of ThDRBD3 knockdown on the half-lives of (C) LUC-AATPI1 and (D) LUC-ACT reporter mRNAs was analyzed as described in Figure 5 legend.
ThDRBD3 depletion significantly decreased the half-life of LUC-AATPI11 reporter mRNA (Student’s #-test, P = 0.01). Insets, representative blots;

SRP transcript (load) was used to normalize northern signals.
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Figure 7. ThDRBD?3 associates with target transcripts in vivo. (A) mRNA—protein complexes were immunoprecipitated from 7. brucei extracts using
anti-ThDRBD3 antibodies. The presence of different transcripts in the complexes was assessed by RT-PCR, and the reaction products were loaded in
agarose gels. Immunoprecipitation analyses using antibodies against 7hRBP33 (another RBP bearing an RRM motif, Figure 1) or purified rabbit
1gGs (Sigma-Aldrich) were performed in parallel to monitor for nonspecific binding. Total RNA was also isolated from an equivalent amount of
extract before immunoprecipitation (input). Immunoprecipitated RNA was converted to cDNA in the presence of oligo(dT) and reverse transcrip-
tase, and PCR reactions were performed using mRNA-specific primer pairs. RT-PCR reactions were also performed with immunoprecipitated
ThDRBD3 RNA in the absence of reverse transcriptase (—RT). Transcripts names are as in Figure 4. (B) Effect of deletions in the 3'-UTR of
AATPI11 mRNA on ThDRBD3 binding. mRNA-protein complexes were immunoprecipitated from extracts obtained from cell lines stably expressing
CAT reporter mRNAs fused to different deletions of A4ATP11 3’-UTR (35), which are schematically shown in the figure. PCR reactions were carried
out using a sense oligonucleotide that hybridizes in the CAT ORF and an antisense primer (indicated by an arrow) complementary to a region
present in all deletions (see Materials and methods section). The 3’-UTR with deletion A620-833 also has its first 39 nucleotides removed.
Immunoprecipitation + RT-PCR reactions were also carried out using extracts from a cell line expressing the CAT ORF fused to the ACT
3-UTR (CAT-ACT), which served as a negative control. In this case, the antisense primer was complementary to the ACT 3’-UTR. The presence

of endogenous A4TP11 mRNA was assessed in all samples to check for immunoprecipitation efficiency.

short half-life of this transcript (<5 min, data not shown).
The half-life of LUC-ACT mRNA was unaffected by
ThDRBD3 RNAI, as expected (Figure 6D).

ThDRBD3 is found in a ribonucleoprotein complex
containing target mRNAs

Proteins that regulate the degradation and translation of
mRNAs are found associated with their target mRNAs to
form ribonucleoprotein complexes (mRNPs) (4), and
indeed it was also the case for ThDRBD3, as judged by
immunoprecipitation assays and RT-PCR analysis. As
shown in Figure 7A, most of the downregulated
mRNAs were effectively amplified from 7ThDRBD3 immu-
noprecipitated material. These include transcripts coding
for AATPI11, both pteridine transporters, the adenosine
transporter NT10 and the GCS/ protein. c¢FUM mRNA
was barely detectable in the 7ThDRBD3 sample, whereas
GS mRNA) could not be amplified; therefore, the
observed changes in the abundance of ¢FUM and GS
mRNAs upon 7hDRBD3 depletion could be explained

by loose association to the mRNP complex or by indirect
effects due to changes in cell metabolism (see Discussion
section). PGK-B and PAG4 mRNAs were not detected in
this assay either, indicating that 7ThDRBD3 does not inter-
act with these mRNAs in vivo. Immunoprecipitation ana-
lyses using either an antiserum raised against a different
RBP, ThRBP33, or purified rabbit IgGs, yielded undetect-
able or low-level amplification signals (Figure 7A).

No signal could be detected for transcripts encoding
mFUM and ACT, two transcripts that were not regulated
by ThDRBD3 (see above), underscoring the specificity of
ThDRBD3-mRNA interactions. In addition, a chloram-
phenicol acetyl transferase (CAT) reporter mRNA could
be immunoprecipitated if fused to the 3’-UTR of AATPI1,
but not when ACT 3-UTR was used (Figure 7B). Most
importantly, when reporter CA7T mRNAs bearing different
deletions of 4ATPI1 3-UTR were tested (35), it was
observed that a region encompassing nucleotides 290-618
was required to immunoprecipitate the reporter mRNA
(Figure 7B), indicating that 7ThDRBD?3 binds specifically to
sequences and/or structural elements within this particular



region. Deletion of nucleotides 260618 did not result in
changes in the abundance of the mRNA [Figure 7C, (35)
and data not shown]. Since the analyzed CAT reporter
transcripts seem to have altered polyadenylation patterns
(35), the transcription of a reporter mRNA with deletion
290-618 could result in the production of an mRNA
with an aberrant 3’-UTR that makes it less prone to
degradation.

DISCUSSION

There have been major advances in elucidating the
mechanism of mRNA degradation in trypanosomes
in vivo (36,48-51). However, information about RBPs
responsible for the differential abundance of mRNAs
during the parasite’s life cycle is still very scarce. In this
work, an RBP, ThDRBD3, was identified based on its
ability to bind the 3'-UTR of PGK-B mRNA in vitro.
Depletion of ThDRBD3 by means of RNAIi resulted in
a decrease in the steady-state abundance of a specific
group of mRNAs encoding membrane proteins and inter-
mediate metabolism enzymes, as seen by microarray and
northern analysis. The small number of regulated tran-
scripts, and the fact that the abundance of other
mRNAs encoding similar proteins was not apparently
affected, highlights the specificity of ThDRBD3-depen-
dent regulation. The results obtained from reporter
mRNAs bearing different 3'-UTRs, from the decay rates
of several regulated transcripts, and from the immunopre-
cipitation analysis all suggest that 7ThDRBD?3 binds target
mRNAs and protects them from degradation. The
fact that a reporter mRNA fused to the 3-UTR of
AATPII could be efficiently immunoprecipitated using
anti-7ThDRBD3 antibodies (Figure 7B) suggests that
ThDRBD3-binding site/s localize within the 3’-UTR of
regulated transcripts. In the case of A4ATPI1 3-UTR,
the binding region seems to be located within nucleotides
290 and 618 (Figure 7B). Interestingly, this region was
shown to be important for developmental regulation of
AATPII transcript, but shorter sequence motifs could
not be identified (35). All regulated mRNAs found to be
associated with 7ThDRBD3 contain the UAUUUUUU
element shown to be overrepresented among mRNAs
that are more abundant in the procyclic stage (52). Since
the motif is also present in the PGK-B regulatory sequence
used to identify 7ThDRBD3 (Figure 1) (21), it is possible
that this protein has affinity towards U-rich elements.
Indeed, there is an UAUUUUUU motif within nucleo-
tides 290 and 618 in 4ATPII 3'-UTR (35). However,
this motif is also found in many other transcripts that
were not detected in the microarray analysis. Moreover,
two of these mRNAs, encoding GS and mFUM, contain
UAUUUUUU sequences within their 3’-UTRs, and they
do not bind to 7ThDRBD3, as shown in Figure 7A. Taken
together, these observations suggest that there are addi-
tional sequence and/or secondary structure determinants
that are required for 7ThDRBD3 to bind to its target
mRNAs. This is a likely possibility, since 7DDRBD3 con-
tains two RNA-binding domains (Figure 1), and some of
such RBPs are able to recognize a long binding platform
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or to bind simultanecously to distantly positioned sequence
motifs within the same RNA molecule (53).

Due to its cytosolic localization, 7ThDRBD3 could inhi-
bit deadenylation (the first step in the mRNA degradation
pathway) by modulating the affinity of the poly(A)-bind-
ing protein to the poly(A) tail of regulated transcripts (1).
Since ThDRBD3 was also detected in the nucleus of try-
panosomes, this protein could additionally facilitate the
transport of target transcripts from the nucleus to the
cytoplasm, as it has been proposed for ELAV/Hu stabiliz-
ing proteins (54).

AATPII1, PTX, NTI10, ThTS and ¢FUM mRNAs are
abundant in the procyclic (insect) form of the parasite and
downregulated in bloodstream forms. Therefore,
ThDRBD3-mediated stabilization could be responsible,
at least in part, for the developmental regulation of the
abundance of these transcripts during 7. brucei life cycle.
Interestingly, ThDRBD3 is similarly expressed in both
life forms. Thus, downregulation of the aforementioned
transcripts in bloodstream trypanosomes cannot be due
to a drop in the levels of 7ThDRBD3 in the mammalian
stage. Instead, ThDRBD3 binding ability could be modu-
lated in different life forms as the result of stage-specific
posttranslational modifications, differential RNA second-
ary structure or association with distinct protein partners.

Importantly, 7ThDRBD3 was found to be associated
with regulated transcripts in mRNA-protein complexes
in vivo, which indicates that the stability of all bound tran-
scripts is coordinately regulated, and that ThDRBD3-
mRNA particles act as an posttranscriptional operon, as
it has been proposed for other RBPs in yeast and mam-
mals (4). The presence of RNA operons in such divergent
eukaryotes suggests that this kind of complexes were ben-
eficial and ancient modules that conferred additional and
advantageous flexibility in the regulation of gene expres-
sion early in the eukaryotic lineage.

Yeast Puf proteins are probably the best example of a
posttranscriptional operon (4,5). Interestingly, 52-57% of
the mRNAs identified in yeast Puflp and Puf2p mRNPs
complexes were found to encode membrane proteins, and
over 60% of the mRNAs regulated by 7ThDRBD?3 deple-
tion also code for membrane proteins. Some of them are
known to be involved in the transport of small molecules
such as amino acids, biopterin or adenosine nucleosides.
Th927.7.5960 protein is probably involved in metabolite
transport as well, since it contains the MFS motif present
in a great variety of small molecule transporters (55).
Protein 7510.406.0110 is similar to plant GCSI, a mem-
brane protein involved in pollen tube guidance and ferti-
lization (39,56). The role of this protein in trypanosomes is
unknown, but it might transduce environmental cues, as it
has been proposed for plants (56). There are about sixty
genes that encode putative receptor-type adenylate
cyclases in the 7. brucei genome. Three of them, sharing
identities of 44-48%, seem to be regulated by 7ThDRBD3
depletion, according to microarray data. Receptor-type
adenylate cyclases in trypanosomes appear to function
as enzyme-linked cell surface receptors involved in
cAMP signalling (57). All these observations give reason
to think that ThDRBD3 regulates at the mRNA turnover
level a group of membrane proteins involved in signal
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transduction and transport in an orchestrated and stage-
specific manner. Whether or not the transported molecules
converge in a common metabolic pathway is a matter of
future research. The amino acid specificity of AATPI11
transporter is not known. Since GS mRNA is also down-
regulated in procyclic ThDRBD3-depleted cells, and
this enzyme catalyzes the interconversion of glutamate
and glutamine, it is possible that AATP11 transports glu-
tamine, glutamate or both. Glutamate and glutamine are
the sources of all cellular nitrogen (58), and in trypano-
somes they could act as precursors of pyrimidines,
polyamines, folylpolyglutamates and trypanothione
(a thiol equivalent to glutathione in trypanosomes).
Interestingly, a proposed role for cFUM in trypanosomes
is to provide fumarate for the de novo synthesis of pyrimi-
dines (41,59), so the possibility exists that 7ThHDRBD3 not
only regulates nutrient transport but also the biosynthesis
of nitrogen compounds. However, the mRNA coding
for GS could not be detected in 7ThADRBD3-mRNA com-
plexes, and the transcript encoding ¢FUM was barely
detectable. Although these results can be explained by a
lower affinity of ThDRBD3 towards these particular
mRNAs, it is also plausible that (as in the case of PAGs
transcripts described in the Results section) the reduction
in the levels of both mRNAs in ThDRBD3-depleted cells
is the indirect consequence of nutrient starvation due to
reduced transport activities. Interestingly, the expression
of GS is controlled by the intracellular concentration of
glutamine in yeast (58). Alternatively, ThDRBD3 could
regulate the abundance of an mRNA (not necessarily
any of those shown in this work), which in turn would
control GS, ¢cFUM and PAG4 transcripts. Be what it
may, regulation of the expression of GS and cFUM
seems to be exerted, at least in part, at the mRNA degra-
dation level, since the half-lives of both transcripts
decreased upon depletion of ThDRBD3 (Figure 95).

The apparent absence of RNA polymerase II-dependent
transcriptional regulation, the very unusual chromosomal
organization and the pre-mRNA processing mechanism
involving coupled frans-splicing and polyadenylation
reactions all pose a challenge to understand how trypano-
somes regulate gene expression. The functional character-
ization of ThDRBD3 described in this work illustrates
how it can be achieved, and provides a framework to
study posttranscriptional regulation in these parasites.
Thus, trypanosome genes could be simultancously con-
trolled at the mRNA level by association of transcripts
encoding stage-specific, functionally linked or cytotopi-
cally related proteins to regulatory RBPs, as per the post-
transcriptional operon hypothesis (3,4).

The finding that 7hADRBD3 is an essential protein,
which associates with a specific group of mRNAs under-
scores the importance of this RBP in posttranscriptional
regulation of gene expression in trypanosomes, and opens
up the realistic possibility of discovering additional
mRNA-protein complexes with a role in the control of
transcript abundance and/or translation. Due to the high
degree of conservation of RBPs among different organ-
isms, the potential of these proteins as antitrypanosomal
drug targets is dubious, but that might not be the case
for the proteins encoded by the regulated mRNAs.

In fact, pteridine transporters, trans-sialidase and ¢cFUM,
whose transcripts show 7hDRBD3-dependent regulation,
are known to be important in cell viability, virulence and
infectivity in trypanosomatids (41,60-62). Thus, the study
of RNA operons in trypanosomes should be of great
help in the identification of essential proteins amenable
to drug inhibition.

With over 100 predicted RBPs of unknown function in
the trypanosomes genomes (14,63), new cis-acting motifs
discovered (52,64-66) and the experimental approaches
described in this work, the identification of RBPs acting
as ‘posttranscription factors’ in trypanosomes should be a
feasible task.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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