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Abstract: Derivatives of the new ring systems bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d] 

pyrazine-6,13-dione and its deaza analogue pyrido[4'',3'':4',5']pyrrolo-[1',2':4,5]pyrazino 

[1,2-a]indole-6,13-dione were conveniently synthesized through a four-step sequence. 

Symmetrical derivatives of the former ring system were obtained through self 

condensation. On the other hand, condensation of 6-azaindole carboxylic acid with indole 

2-carboxylic acid afforded the deaza analogue ring system. Derivatives of the title ring 

system were tested by the National Cancer Institute (Bethesda, MD, USA) and four of 

them exhibited modest activity against MCF7 (a breast cancer cell line) and/or UO-31  

(a renal cancer cell line). 

Keywords: diketopiperazines; plinabulin A; bispyrido-pyrrolo-pyrazine; pyrido-pyrrolo-

pyrazino-indole; antiproliferative activity 

 

1. Introduction 

Piperazine-2,5-diones represent a very interesting class of compounds because this heterocyclic 

system is found in many unique natural products [1]. In recent years there has been a growing 

awareness of the diversity and biological roles played by many diketopiperazines among the over  

one-hundred found in Nature. Many derivatives have antiviral (e.g., the gliotoxins and sporidesmins), 

phytotoxic (e.g., cyclo(Pro-Tyr)) and antibiotic (e.g., bicyclomycin) properties, whereas other 
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compounds show antineoplastic activity, in particular phenylahistin (1, Figure 1), a fungal metabolite 

isolated from culture broths of Aspergillus ustus NFC-F038, which is a result of a condensation 

between L-phenylalanine and an isoprenylated dehydrohistidine residue with a quaternary carbon  

at C-5 of the imidazole ring [2]. 

Figure 1. Chemical structures of diketopiperazine derivatives 1‒6.  

 

It is a colchicine-like microtubule binding agent endowed with cytotoxic activity against a wide 

variety of tumor cell lines [2–4], since it is able to competitively inhibit the binding site of colchicine 

to tubuline [3]. Phenylahistin derivatives were synthesized [5] with the aim of finding new antineoplastic 

derivatives, but also to understand the structural features necessary for the anti-microtubule activity. 

One of the most interesting compounds was revealed to be plinabulin (2, Figure 1) [6] a potent 

microtubule-targeting agent; it showed cytotoxic activity (IC50 = 15 nM) against human colon 

adenocarcinoma HT-29 cell line and it is currently in phase II clinical trials [7]. SAR studies revealed 

that the hydrogen bond between N8-H and N3 is crucial, allowing the formation of a rigid uniplanar 

pseudo-three-ring structure necessary for the binding to the microtubules. 

Considering also that some properly decorated 6H,13H-pyrazino[1,2-a:4,5-a']diindole-6,13-diones 

3 that are indolo-diketopiperazines showed cytotoxic activity in the µM range against L1210 cell  

line [8–10] and, in particular, that 2,9-dimethoxy derivative gave complete inhibition of erythrocyte 

differentiation, whether spontaneous or induced by haemin, in leukemia K562 cell line at 50 µM, we 

decided to further explore the biological potential of these compounds. Considering the experience 

acquired in the course of our research on polycyclic nitrogen systems bearing pyrrole [11–13],  

indole [14–18], isoindole [19–22] and indazole [23] moieties with antitumor activity, we have decided 

to synthetize diaza- and aza-analogues of the ring system 3 bearing two (compounds 4, 5) or one 

(compound 6) nitrogen atoms in the aromatic moiety in order to verify the antineoplastic properties of 

this new heterocyclic ring system. 
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Considering that the new compounds have the diketopiperazine core, capable of a colchicine-like 

microtubule binding, molecular docking studies were performed in order to investigate the potential 

binding ability of compounds 4–6 on tubulin. For this purpose, all compounds were docked in two 

different tubulin crystal structures (PDB ID code: 1SA0 [24] and 3HKD [25]) that represent two 

potential binding mode for colchicine site ligands. 

In the 1SA0 crystal structure, colchicine, a tubulin assembly inhibitor, is the co-crystallized ligand 

and its binding site is located at the α,β interface of tubulin subunits [24]. In the crystal structure 

3HKD, TN-16, a pyrrolidine-2,4-dione derivative, is the co-crystallized ligand. It inhibits microtubule 

assembly by competing with colchicine for tubulin binding [25,26]. The TN-16 binding pocket is 

located on the interface between the α and β subunits of the tubulin dimer and slightly extended out of 

the β subunit [25,27]. The X-ray crystal structures were prepared using Protein Preparation Wizard. 

Docking was carried out using Glide software SP mode default parameters [28]. 

An evaluation of the docking score results indicated that compounds 4–6 showed the best Glide 

docking score values in 3HKD (Glide score values between −9.739 and −8.927), compared to those 

obtained in the 1SA0 structure (Glide score values between −6.888 and −4.832) in which they did not 

show a good superimposition to colchicine. The only exception was for compound 4d, that was not 

docked by Glide in 3HKD (Table 1). 

Table 1. Derivatives 4a–d, 5a–e and 6a–d docking scores for 3HKD and 1SA0. 

Compound 3HKD 1SA0 

4a −8.927 −6.643 
4b −9.562 −6.675 
4c −9.354 −6.007 
4d nd −6.455 
5a −9.289 −6.661 
5b −9.641 −6.700 
5c −9.203 −4.832 
5d −9.739 −6.477 
5e −9.653 −6.122 
6a −9.299 −6.705 
6b −9.648 −6.150 
6c −9.690 −6.380 
6d −9.718 −6.888 

nd: Not determined. 

Analyzing the binding mode of the planned compounds in 3HKD, they showed H-bond interactions 

between the Glu 200 residue and one of the two carbonyl groups, interacting with the binding site in a 

way similar to the native ligand TN-16 (Figure 2). Although all compounds showed similar docking 

score values (Table 1), unsubstituted compounds 4a and 6a showed lower docking score values than 

the corresponding substituted derivatives. Generally the presence of a methoxy group in one of the two 

indole or aza-indole moieties seems to stabilize the tubulin-ligand complex through hydrophobic 

interactions with the Val 238 residue. On the basis of the docking studies we planned the synthesis of 

derivatives 4–6 in order to verify whether they were endowed with interesting biological properties. 
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Figure 2. Wall eyed superimposition of compounds 4a–d, 5a–e and 6a–d with  

TN-16 (red). 

 

2. Results and Discussion 

The key intermediates of the synthetic pathway for the pentacyclic new ring systems are 1H-pyrrolo 

[2,3-c]pyridine-2-carboxylic acids 10a–d (Scheme 1). Commercially available pyridines 7a,b were 

reacted with diethyl oxalate using potassium ethoxide as the base to give the corresponding derivatives 

8a,b in 50 and 45% yield, respectively [29]; pyridines 7c,d were synthetized from the suitable 2-chloro 

derivatives through nucleophilic substitution with sodium methoxide [30,31]. The so-obtained 

methoxypyridines were reacted with diethyl oxalate using t-BuOK as the base allowing the isolation of 

compounds 8c [30] and 8d in good yields (72%–75%). The latter compound was isolated as the enolic 

tautomer. Derivatives 8a,b were reduced with iron in saturated aqueous NH4Cl and THF to avoid 

halogen displacement. On the other hand compounds 8c,d were dissolved in EtOH and hydrogenated 

over 10% Pd on charcoal. After an appropriate work-up of the reaction mixture, derivatives 9a–d were 

obtained in good yields (60%–85%). Carboxylic acid derivatives 10a–d were obtained in excellent 

yields (71%–95%) through alkaline hydrolysis of the corresponding ethyl esters. 

Derivatives 10a–d were cyclized at room temperature in anhydrous THF with 4-dimethylaminopyridine 

(DMAP) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) as activating agents to give the 

new pentacyclic ring systems. Symmetrical derivatives 4a–d were obtained by self-condensation of the 

corresponding 6-aza-indole carboxylic acids 10a–d (Table 2). 
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Scheme 1. Synthesis of derivatives 4a–d, 5a–e and 6a–d. 

 
Reagents and conditions: (i) Diethyl oxalate, potassium ethoxide in diethyl ether and EtOH, rt, 15–72 h 

(8a,b) or t-BuOK, in diethyl ether and ethanol, reflux, 4 h then 24 h rt (8c,d); (ii) Fe, saturated aqueous 

NH4Cl, THF, EtOH, reflux, 2 h (9a,b) or H2/Pd-C, EtOH (9c,d); (iii) NaOH 2M, EtOH, reflux 1–2 h;  

(iv) DMAP, EDCI, THF, rt, 48 h; (v) Indole-2-carboxylic acid, DMAP, EDCI, THF, rt, 48 h. 

Table 2. Derivatives 4a–d, 5a–e and 6a–d. 

Compound R1 R2 R3 R4 Yields(%) 
4a H H H H 25 
4b Cl H H Cl 30 
4c OCH3 H H OCH3 20 
4d H OCH3 OCH3 H 28 
5a H H OCH3 H 40 
5b OCH3 H OCH3 H 55 
5c H H H OCH3 42 
5d Cl H OCH3 H 44 
5e Cl H H OCH3 45 
6a H H - - 33 
6b Cl H - - 65 
6c OCH3 H - - 65 
6d H OCH3 - - 30 

For the synthesis of the asymmetrical compounds 5a–e, the activation of the proper acid 10a–d with 

EDCI was followed by the addition of the suitable carboxylic acid and a further addition of EDCI in 
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order to allow the intramolecular cyclization. In particular, 5a–e were obtained from the condensation 

of 10a with 10d; 10c with 10d; 10a with 10c; 10b with 10d, and 10b with 10c, respectively (Table 2). 

The reaction mixture was particularly difficult to purify because of the presence not only of the 

asymmetrical desired derivatives 5a–e, but also of 4%–6% of the symmetrical ones 4a–d as 

byproducts of the reaction. 

Moreover, through the synthetic pathway previously described it was possible to synthesize the 

deaza-analogues 6a–d (Table 2), from the reaction between derivatives 10a–d and commercially 

available indole-2-carboxylic acid (Scheme 1). Also in this case, not only the desired compounds 6a–d 

were isolated from the reaction mixture, but also the symmetrical ones 4a–d (3%–6%) as byproducts 

of the reaction together with 6H,13H-pyrazino[1,2-a:4,5-a']diindole-6,13-dione deriving from the 

indole-2-carboxylic acid self-condensation (7%–9%). 

All the synthesized derivatives of the new ring system 6H,13H-bispyrido[4',3':4,5]pyrrolo 

[1,2-a:1',2'-d]pyrazine-6,13-dione 4a–d, 5a–e and their deaza-analogues 6a–d, were submitted to the 

National Cancer Institute (Bethesda, MD, USA) for screening. All derivatives were prescreened 

according to the NCI protocol at 10−5 M dose on the full panel of 60 human cancer cell lines derived 

from nine human cancer cell types that have been grouped in disease sub-panels including leukemia, 

non-small-cell lung, colon, central nervous system, melanoma, ovarian, renal, prostate and breast 

tumour cell lines.[32] 

None of the prescreened derivatives were selected for the five dose screening (NCI-60 DTP Human 

Tumor Cell Line Screen), since only derivatives 5a and 6a, 6c and 6d showed moderate antineoplastic 

activity at micromolar concentrations. In particular derivative 5a exhibited modest activity against the 

UO-31 renal cancer sub-panel cell line with a growth inhibitory percentage of 47.0; unsubstituted 

deaza analogue 6a and 9-methoxy substituted derivative 6c were shown to be selective against the 

MCF7 breast cancer cell line with growth inhibitory percentages of 50.6 and 39.5, respectively. More 

interesting results were obtained from the 11-methoxy substituted compound 6d which was shown to 

be selective against both the UO-31 renal cancer sub-panel and the MCF7 breast cancer sub-panel cell 

lines with growth inhibitory percentages of 46.6 and 50.9, respectively. 

3. Experimental Section  

3.1. Chemistry  

Anhydrous organic solvents were prepared by the appropriate procedures prior to use. The other 

organic solvents were reagent grade and used as received. Analytical TLC was performed on Merck 

Kieselgel 60-F254 plates. Column chromatography was performed with Merck silica gel 230–400 mesh 

ASTM or with a Büchi Sepacor prepacked cartridge system chromatography module.  

All melting points were taken on a Buchi-Tottoli capillary apparatus and are uncorrected; IR spectra 

were determined in CHBr3, with a Shimadzu FT/IR 8400S spectrophotometer; 1H- and 13C-NMR 

spectra were measured in DMSO-d6 or CDCl3 solutions, at 200 and 50.3 MHz, respectively, using a 

Bruker Avance II series 200 MHz spectrometer. Elemental analyses (C, H, N) were within 0.4% of the 

theoretical values and were recorded with a VARIO EL III elemental analyzer. 
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3.1.1. General Procedure for the Preparation of 2-Methoxy-pyridines 7c,d 

These compounds were synthesized according to the previously described procedure [30,31]. 

2-Methoxy-4-methyl 5-nitropyridine (7c). This compound was obtained in 95% yield. Analytical and 

spectroscopic data are in accordance to those reported in literature [30]. 

2-Methoxy-4-methyl 3-nitropyridine (7d). This compound was obtained in 80% yield. Analytical and 

spectroscopic data are in accordance to those reported in literature [31]. 

3.1.2. General Procedure for the Preparation of Ethyl-3-(nitropyridin-4-yl)-2-oxopropanoates 8a,b  

These compounds were synthesized according to the previously described procedure [29]. 

Ethyl-3-(3-nitropyridin-4-yl)-2-oxopropanoate (8a). This compound was obtained in 50% yield. 

Analytical and spectroscopic data are in accordance to those reported in literature [29]. 

Ethyl-3-(2-chloro-5-nitropyridin-4-yl)-2-oxopropanoate (8b). This compound was obtained in 45% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [29]. 

3.1.3. General Procedure for the Preparation of Ethyl-3-(nitropyridin-4-yl)-2-oxopropanoates 8c,d 

To a stirred solution of t-BuOK (2.4 mmol) in anhydrous EtOH (1 mL) and diethyl ether (10 mL) 

diethyl oxalate (2.4 mmol, 0.3 mL) was added under a nitrogen atmosphere. The reaction mixture was 

kept at room temperature for 15 min, then a solution of the suitable pyridine 7c,d (2.4 mmol) was 

added and the reaction mixture was refluxed for 4 h and stirred at room temperature 24 h. The orange 

residue thus obtained was shaken in diethyl ether, filtered off and air dried. Water (9.2 mL) was added 

and acetic acid was added until pH 4.0. The desired product was filtered off, and dried in the desiccator 

to afford the desired products as cream solids. 

Ethyl 3-(2-methoxy-5-nitropyridin-4-yl)-2-oxopropanoate (8c). This compound was obtained in 72% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [30,33]. 

Ethyl 3-(2-methoxy-3-nitropyridin-4-yl)-2-oxopropanoate (8d). Title compound 8d was isolated as the 

enolic tautomer. Rf = 0.33 (CH2Cl2); mp 78.4–79.6 °C; yield 75%; IR: 3426 (OH), 1706 (CO) cm1;  
1H-NMR (DMSO-d6) δ: 1.28 (3H, t, J = 6.0 Hz, CH3), 3.97 (3H, s, OCH3), 4.28 (2H, q, J = 6.0 Hz, 

CH2), 6.00 (1H, s, CH), 7.86 (1H, d, J = 6.00 Hz, H-5), 8.34 (1H, d, J = 6.0 Hz, H-6), 11.30 (1H, bs, 

OH). 13C-NMR (DMSO-d6) δ: 13.9 (q), 54.4 (q), 62.2 (t), 97.2 (d), 116.4 (d), 132.7 (s), 136.3 (s), 148.3 (d), 

148.8 (s), 154.3 (s), 163.0 (s). Anal. Calcd for C11H12N2O6 (268.22): C, 49.26; H, 4.51; N, 10.44. 

Found: C, 49.21; H, 4.75; N, 10.16. 

3.1.4. General Procedure for the Preparation of Ethyl 1H-pyrrolo[2,3-c]pyridine-2-carboxylates 9a,b 

These compounds were synthesized according to the previously described procedure [29,34]. 
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Ethyl 1H-pyrrolo[2,3-c]pyridine-2-carboxylate (9a). This compound was obtained in 60% yield. 

Analytical and spectroscopic data are in accordance to those reported in literature [29]. 

Ethyl 5-chloro-1H-pyrrolo[2,3-c]pyridine-2-carboxylate (9b). This compound was obtained in 60% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [34]. 

3.1.5. General Procedure for the Preparation of Ethyl 1H-pyrrolo[2,3-c]pyridine-2-carboxylates 9c,d 

Derivatives 8c,d (2.9 mmol) were dissolved in EtOH (40 mL) and hydrogenated over 10% Pd on 

charcoal. The catalyst was removed by filtration under argon and the solvent was evaporated in vacuo. 

Ethyl 5-methoxy-1H-pyrrolo[2,3-c]pyridine-2-carboxylate (9c). This compound was obtained in 85% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [33]. 

Ethyl 7-methoxy-1H-pyrrolo[2,3-c]pyridine-2-carboxylate (9d). Title compound 9d was purified by 

flash-chromatography using CH2Cl2/ethyl acetate 96:4. Rf = 0.63 (CH2Cl2/ethyl acetate 95:5) as a 

white powder; mp 134.1–135.0 °C; yield 75%; IR: 3435 (NH), 1708 (CO) cm1; 1H-NMR (CDCl3) δ: 1.41 

(3H, t, J = 6.0 Hz, CH3), 4.09 (3H, s, OCH3), 4.43 (2H, q, J = 6.0 Hz, CH2), 7.13–7.17 (2H, m, H-3, 

H-4), 7.77 (1H, d, J = 6.0 Hz, H-5), 9.61 (1H, bs, NH). 13C-NMR (CDCl3) δ: 14.3 (q), 53.3 (q), 61.4 (t), 

107.7 (d), 110.8 (d), 122.3 (s), 129.3 (s), 133.0 (s), 135.9 (d), 151.9 (s), 161.4 (s). Anal. Calcd for 

C11H12N2O3 (220.22): C, 59.99; H, 5.49; N, 12.72. Found: C, 60.14; H, 5.66; N, 12.57. 

3.1.6. General Procedure for the Preparation of 1H-pyrrolo[2,3-c]pyridine-2-carboxylic Acids 10a–d 

To a stirred solution of 9a–d (1.3 mmol) in EtOH (12 mL) 2M NaOH was added (1.7 mmol, 1.1 mL). 

The reaction mixture was heated under reflux for 1h (10a) or 2h (10b) and the solvent was evaporated. 

Water (10 mL) was added and acetic acid was added until pH 4.0. The desired product was filtered off, 

dried into the desiccators to afford the desired product. 

1H-Pyrrolo[2,3-c]pyridine-2-carboxylic acid (10a). This compound was obtained in 95% yield. 

Analytical and spectroscopic data are in accordance to those reported in literature [29]. 

5-Chloro-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (10b). This compound was obtained in 71% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [29]. 

5-Methoxy-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (10c). This compound was obtained in 80% 

yield. Analytical and spectroscopic data are in accordance to those reported in literature [35]. 

7-Methoxy-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (10d). This compound was obtained after 1 h 

reflux as a white powder. Rf = 0.40 (CH2Cl2/MeOH 9:1); mp 269.3–271.1 °C; yield 82%; IR: 3550 

(NH), 3311 (OH), 1718 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 4.02 (3H, s, OCH3), 7.07 (1H, s, H-3), 

7.21 (1H, d, J = 6.0 Hz , H-4), 7.68 (1H, d, J = 6.0 Hz, H-5), 9.61(1H, bs, NH), 12.30 (1H, bs, OH). 
13C-NMR (DMSO-d6) δ: 52.7 (q), 106.8 (d), 110.5 (d), 122.0 (s), 131.5 (s), 132.6 (s), 134.8 (d), 151.6 (s), 

162.3 (s). Anal. Calcd for C9H8N2O3(192.17): C, 56.25; H, 4.20; N, 14.58. Found: C, 56.29; H, 4.24; 

N, 14.37. 
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3.1.7. General Procedure for the Preparation of 6H,13H-Bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d] 

pyrazine-6,13-diones 4a–d 

To a stirred solution of 10a–d (2.3 mmol) in anhydrous THF (20 mL) dimethylaminopyridine 

(DMAP, 2.3 mmol) was added, followed by EDCI (4.8 mmol) addition after 10 min; the reaction 

mixture was stirred for 48h at room temperature. The solid was collected by filtration and 

recrystallizated from CH2Cl2 and MeOH, affording the desired products as yellow solids. Compounds 

4a–d were characterized only by 1H-NMR spectroscopy. The poor solubility of the title compounds 

prevented the 13C-NMR spectra from being recorded. 

6H,13H-Bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (4a). Rf = 0.34 (CH2Cl2/MeOH 

95:5); mp 352.3–353.9 °C; yield 25%; IR: 1722 (CO) cm1; 1H-NMR (DMSO-d6) δ: 7.91 (2H, d,  

J = 6.0 Hz, H-4 and H-11), 7.92 (2H, s, H-5 and H-12), 8.60 (2H, d, J = 6.0 Hz, H-3 and H-10), 9.71 

(2H, s, H-1 and H-8). Anal. Calcd for C16H8N4O2 (288.26): C, 66.67; H, 2.80; N, 19.44. Found: C, 

66.62; H, 2.84; N, 19.39. 

3,10-Dichloro-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (4b). Rf = 0.60 

(CH2Cl2/MeOH 98:2); mp 380.6–381.9 °C; yield 30%; IR: 1716 (CO) cm1; 1H-NMR (DMSO-d6) δ: 7.88 

(2H, s, H-4 and H-11), 8.05 (2H, s, H-5 and H-12), 9.47 (2H, s, H-1 and H-8). Anal. Calcd for 

C16H6Cl2N4O2 (357.15): C, 53.81; H, 1.69; N, 15.69. Found: C, 53.89; H, 1.78; N, 15.97. 

3,10-Dimethoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (4c). Rf = 0.57 

(CH2Cl2/MeOH 98:2); mp 343.0–344.2 °C; yield 20%; IR: 1710 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 

3.95 (3H, s, OCH3), 7.26 (2H, s, H-4 and H-11), 7.73 (2H, s, H-5 and H-12), 9.27 (2H, s, H-1 and H-8). 

Anal. Calcd for C18H12N4O4 (348.31): C, 62.07; H, 3.47; N, 16.09. Found: C, 61.92; H, 3.53; N, 15.95. 

1,8-Dimethoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (4d). Rf = 0.45 

(CH2Cl2/MeOH 98:2); mp 380.6–381.9 °C; yield 28%; IR: 1723 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 

4.06 (3H, s, OCH3), 7.44 (2H, d, J = 6.0 Hz, H-4 and H-11), 7.79 (2H, s, H-5 and H-12), 8.12 (2H, d,  

J = 6.0 Hz, H-3 and H-10). Anal. Calcd for C18H12N4O4 (348.31): C, 62.07; H, 3.47; N, 16.09. Found: 

C, 61.83; H, 3.66; N, 16.05. 

3.1.8. General Procedure for the Preparation of 6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d] 

pyrazine-6,13-diones 5a–e 

To a stirred solution of 10a–d (2.3 mmol) in anhydrous THF (20 mL) dimethylaminopyridine 

(DMAP, 2.3 mmol) was added, followed by EDCI (1.2 mmol) after 10 min; the reaction mixture was 

stirred at room temperature for 1h. The suitable acid 10a–d (1.0 mmol) and EDCI (1.2 mmol) were 

added and the reaction mixture was stirred for 48 h. The solid was collected by filtration, purified by 

flash chromatography using CH2Cl2/MeOH 98:2 and recrystallized from CH2Cl2 and MeOH, affording 

the desired product as a yellow solid. Compounds 5a–e were characterized only by 1H-NMR spectroscopy. 

The poor solubility of the title compounds prevented 13C-NMR spectra from being recorded. 
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8-Methoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (5a). This product 

was obtained by reaction of 10a with 10d. Rf = 0.46 (CH2Cl2/MeOH 98:2); mp 328.4–329.0 °C; yield 

40%; IR: 1712 (CO), 1694 (CO) cm1; 1H-NMR (DMSO-d6) δ: 4.06 (3H, s, OCH3), 7.45 (1H, d,  

J = 6.0 Hz, H-11), 7.82 (1H, s, H-12), 7.89–7.92 (2H, m, H-5 and H-4), 8.14 (1H, d, J = 6.0 Hz,  

H-10), 8.60 (1H, d, J = 4.0 Hz, H-3), 9.67 (1H, s H-1). Anal. Calcd for C17H10N4O3 (318.29): C, 64.15; 

H, 3.17; N, 17.60. Found: C, 63.87; H, 3.13; N, 17.75. From this reaction derivatives 4a (yield 4%) and 

4d (yield 6%) were also isolated. 

1,10-Dimethoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (5b). This product 

was obtained by reaction of 10c with 10d. Rf = 0.34 (CH2Cl2/MeOH 95:5); mp 309.1–309.4 °C; yield 

55%; IR: 1712 (CO), 1689 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 3.94 (3H, s, OCH3), 4.05 (3H, s, 

OCH3), 7.25 (1H, s, H-12), 7.42 (1H, d, J = 4.0 Hz, H-4), 7.79 (1H, s, H-11), 7.84 (1H, s, H-5), 8.12 

(1H, d, J = 4.0 Hz, H-3), 9.24 (1H, s, H-8). Anal. Calcd for C18H12N4O4 (348.31): C, 62.07; H, 3.47; 

N, 16.09. Found: C, 62.20; H, 3.42; N, 16.25. From this reaction derivatives 4c (yield 5%) and 4d 

(yield 6%) were also isolated. 

3-Methoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (5c). This product 

was obtained by reaction of 10a with 10c. Rf = 0.37 (CH2Cl2/MeOH 98:2); mp 271.1–271.8 °C; yield 

42%; IR: 1718 (CO), 1707 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 3.95 (3H, s, OCH3), 7.26 (1H, s, H-12), 

7.78 (1H, s, H-5), 7.87 (1H, s, H-4), 7.90 (1H, d, J = 6.0 Hz, H-11), 7.59 (1H, d, J = 6.0 Hz, H-10), 

9.28 (1H, s, H-8), 9.68 (1H, s, H-1). Anal. Calcd for C17H10N4O3 (318.29): C, 64.15; H, 3.17; N, 17.60. 

Found: C, 64.06; H, 3.08; N, 17.89. From this reaction derivatives 4a (yield 4%) and 4c (yield 5%) 

were also isolated. 

10-Chloro-1-methoxy-6H,13H-bispyrido[4',3':4,5]pyrrolo-[1,2-a:1',2'-d]pyrazine-6,13-dione (5d). 

This product was obtained by reaction of 10b with 10d. Rf = 0.47 (CH2Cl2/MeOH 98:2); mp  

292.2–293.0 °C; yield 44%; IR: 1712 (CO), 1690 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 4.06 (3H, s, 

OCH3), 7.45 (1H, d J = 6.0 Hz, H-4), 7.75 (1H, s, H-5), 7.92 (1H, s, H-12), 8.05 (1H, s, H-11), 8.14 

(1H, d, J = 6.0 Hz, H-3), 9.44 (1H, s, H-8). Anal. Calcd for C17H9ClN4O3 (352.73): C, 57.89; H, 2.57; 

N, 15.88. Found: C, 57.60; H, 2.48; N, 15.96. From this reaction derivatives 4b (yield 6%) and 4d 

(yield 5%) were also isolated. 

3-Chloro-10-methoxy-6H,13H-bispyrido[4',3':4,5]-pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione (5e). 

This product was obtained by reaction of 10b with 10c. Rf = 0.56 (CH2Cl2/MeOH 98:2); mp  

312.0–312.5 °C; yield 45%; IR: 1720 (CO), 1705 (CO) cm−1; 1H-NMR (DMSO-d6) δ: 3.96 (3H, s, 

OCH3), 7.26 (1H, s, H-11), 7.80 (1H, s, H-12), 7.82 (1H, s, H-5), 8.04 (1H, s, H-4), 9.27 (1H, s, H-8), 

9.46 (1H, s, H-1). Anal. Calcd for C17H9ClN4O3 (352.73): C, 57.89; H, 2.57; N, 15.88. Found: C, 57.80; 

H, 2.49; N, 16.16. From this reaction derivatives 4b (yield 5%) and 4c (yield 5%) were also isolated. 
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3.1.9. General Procedure for the Preparation of 6H,13H-Pyrido[4'',3'':4',5']pyrrolo[1',2':4,5]pyrazino 

[1,2-a]indole-6,13-diones 6a–d 

To a stirred solution of the suitable 10a–d (1.2 mmol) in anhydrous THF (20 mL) 

dimethylaminopyridine (DMAP) (1.2 mmol) was added, followed by EDCI (1.2 mmol) after 10 min; 

the reaction mixture was stirred at room temperature for 1h. Indole 2-carboxylic acid (1.0 mmol) and 

EDCI (1.2 mmol) were added and the reaction mixture was stirred for 48 h. The solid was collected by 

filtration, purified by flash chromatography using using CH2Cl2/MeOH 98:2 and recrystallized with 

CH2Cl2 and MeOH, affording the desired products as yellow solid. Compounds 6a–d were 

characterized only by 1H-NMR spectroscopy. The poor solubility of the title compounds prevented  
13C-NMR spectra from being recorded. 

6H,13H-Pyrido[4'',3'':4',5']pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-6,13-dione (6a). Rf = 0.28 

(CH2Cl2/MeOH 98:2); mp 347.4–347.8 °C; yield 33%; IR: 1701 (broad, CO) cm−1;1H-NMR (DMSO-d6) 

δ: 7.48 (1H, td, J = 6.0 2.0 Hz, H-9), 7.67 (1H, td, J = 6.0 2.0 Hz, H-10), 7.85 (1H, s, H-12), 7.88–7.93 

(3H, m, H-4, H-5 and H-8), 8.48 (1H, d, J = 6.0 Hz, H-11), 8.58 (1H, d, J = 6.0 Hz, H-3), 9.71 (1H, s, 

H-1). Anal. Calcd for C17H9N3O2 (287.27): C, 71.08; H, 3.16; N, 14.63. Found: C, 71.29; H, 3.29; N, 

14.84. From this reaction derivatives 4a (yield 5%) and 6H,13H-pyrazino[1,2-a:4,5-a']diindole-6,13-dione 

(yield 8%) whose analytical and spectroscopic data are in accordance to those reported in literature 

were also isolated [36]. 

3-Chloro-6H,13H-pyrido[4'',3'':4',5']pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-6,13-dione (6b). Rf = 0.63 

(CH2Cl2/MeOH 98:2); mp 306.3–306.7 °C; yield 65%; IR: 1700 (broad, CO) cm−1; 1H-NMR  

(DMSO-d6) δ: 7.49 (1H, t, J = 8.0 Hz, H-9), 7.67 (1H, t, J = 8.0 Hz, H-10), 7.77 (1H, s, H-12), 7.92 

(1H, d, J = 8.0 Hz, H-8), 7.95 (1H, s, H-5), 8.02 (1H, s, H-4), 8.48 (1H, d, J = 8.0 Hz, H-11),  

9.48 (1H, s, H-1). Anal. Calcd for C17H8ClN3O2 (321.72): C, 63.47; H, 2.51; N, 13.06. Found: C, 

63.68; H, 2.46; N, 13.30. From this reaction were also isolated derivatives 4b (yield 3%) and  

6H,13H-pyrazino[1,2-a:4,5-a']diindole-6,13-dione (yield 7%) whose analytical and spectroscopic data 

are in accordance to those reported in literature [36]. 

3-Methoxy-6H,13H-pyrido[4'',3'':4',5']pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-6,13-dione (6c). Rf = 0.65 

(CH2Cl2/MeOH 98:2); mp 279.0–279.4 °C; yield 65%; IR: 1727 (CO), 1702 (CO) cm−1; 1H-NMR 

(DMSO-d6) δ: 3.95 (3H, s, OCH3), 7.24 (1H, s, H-4), 7.47 (1H, t, J = 8.0 Hz, H-9), 7.65 (1H, t, J = 8.0 Hz, 

H-10), 7.71 (1H, s, H-12), 7.87 (1H, s, H-5), 7.91 (1H, d, J = 8.0 Hz, H-8), 8.46 (1H, d, J = 8.0 Hz, H-11), 

9.29 (1H, s, H-1). Anal. Calcd for C18H11N3O3 (317.30): C, 68.14; H, 3.49; N, 13.24. Found: C,  

68.09; H, 3.70; N, 13.13. From this reaction were also isolated derivatives 4c (yield 4%) and  

6H,13H-pyrazino[1,2-a:4,5-a']diindole-6,13-dione (yield 7%) whose analytical and spectroscopic data 

are in accordance to those reported in literature [36]. 

1-Methoxy-6H,13H-pyrido[4'',3'':4',5']pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-6,13-dione (6d). Rf = 0.63 

(CH2Cl2/MeOH 98:2); mp 283.8–283.9 °C; yield 30%; IR: 1712 (CO), 1690 (CO) cm−1; 1H-NMR 

(DMSO-d6) δ: 4.05 (3H, s, OCH3), 7.41–7.50 (2H, m, H-4 and H-9), 7.64 (1H, t, J = 8.0 Hz, H-10), 7.81 

(2H, s, H-5 and H-12), 7.90 (1H, d, J = 8.0 Hz, H-8), 8.10 (1H, d, J = 6.0 Hz, H-3), 8.43 (1H, d, J = 8.0 Hz, 
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H-11). Anal. Calcd for C18H11N3O3 (317.30): C, 68.14; H, 3.49; N, 13.24. Found: C, 68.39; H, 3.45; N, 

12.95. From this reaction were also isolated derivatives 4d (yield 6%) and 6H,13H-pyrazino[1,2-a:4,5-a'] 

diindole-6,13-dione (yield 9%) whose analytical and spectroscopic data are in accordance to those 

reported in literature [36]. 

3.2. Docking 

Docking studies were performed for all designed compounds by Glide 5.9 (Schrödinger Inc.,  

New York, NY, USA, 2013). The X-ray crystallographic structures of tubulin (PDB code 3HKD [24] 

and 1SA0 [23]) were downloaded from Protein Data Bank [37]. For Glide docking studies, the 

stathmin-like domain and chains B, C were removed. The proteins were minimized by Protein 

Preparation Wizard. Partial atomic charges were assigned according to the OPLS_2005 force field. A 

radius of 20 Å was selected for active site cavity during receptor grid generation with the center 

defined by the co-crystallized ligand TN-16 and colchicine. All compounds used in the docking study 

with Glide were built within Maestro by using the build module of Schrödinger Inc. (2013). Docking 

calculations were performed using standard mode of Glide Program. To validate the Glide docking 

protocol, TN-16 was redocked into the binding site. The docking structure was compared to the crystal 

structure showing that this protocol successfully reproduces the crystal TN-16 tubulin complex. 

3.3. Biology 

Methodology of the in Vitro Cancer Screen 

In vitro cancer screens were done according to the NCI protocol at 10−5 M dose on the full panel of 

60 human cancer cell lines derived from nine human cancer cell types that have been grouped in 

disease sub-panels including leukemia (CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226, SR), 

non-small-cell lung (A549/ATCC, EKVX, HOP-62, HOP-92, NCI-H226, NCI-H23, NCI-H322M, 

NCI-H460, NCI-H522), colon (COLO 205, HCC-2998, HCT-116, HCT-15, HT29, KM12, SW-620), 

central nervous system (SF-268, SF-295, SF-539, SNB-19, SNB-75, U251), melanoma (LOX IMVI, 

MALME-3M, M14, MDA-MB-435, SK-MEL-2, SK-MEL-28, SK-MEL-5, UACC-257, UACC-62), 

ovarian (IGROV1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, NCI/ADR-RES, SK-OV-3), renal 

(786-0, A498, ACHN, CAKI-1, RXF 393, SN12C, TK-10, UO-31), prostate (PC-3, DU-145) and 

breast tumour (MCF7, MDA-MB-231/ATCC, HS 578T, BT-549, T-47D, MDA-MB-468) cell lines [32]. 

The human tumor cell lines of the cancer screening panel are grown in RPMI 1640 medium 

containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, cells are 

inoculated into 96 well microtiter plates in 100 µL at plating densities ranging from 5000 to  

40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the 

microtiter plates are incubated at 37 °C, 5% CO2, 95% air and 100% relative humidity for 24 h prior to 

addition of experimental drugs. After 24 h, two plates of each cell line are fixed in situ with TCA, to 

represent a measurement of the cell population for each cell line at the time of drug addition (Tz). 

Experimental drugs are solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test 

concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen 

concentrate is thawed and diluted to twice the desired final maximum test concentration with complete 
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medium containing 50 µg/mL gentamicin. Aliquots of 100 µL of drug are added to the appropriate 

microtiter wells already containing 100 µL of medium, resulting in the required final drug 

concentration. Following drug addition, the plates are incubated for an additional 48 h at 37 °C, 5% 

CO2, 95% air, and 100% relative humidity. For adherent cells, the assay is terminated by the addition 

of cold TCA. Cells are fixed in situ by the gentle addition of 50 µL of cold 50% (w/v) TCA (final 

concentration, 10% TCA) and incubated for 60 min at 4 °C. The supernatant is discarded, and the 

plates are washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 µL) 

at 0.4% (w/v) in 1% acetic acid is added to each well, and plates are incubated for 10 min at room 

temperature. After staining, unbound dye is removed by washing five times with 1% acetic acid and 

the plates are air dried. Bound stain is subsequently solubilized with 10 mM trizma base, and the 

absorbance is read on an automated plate reader at a wavelength of 515 nm. For suspension cells, the 

methodology is the same except that the assay is terminated by fixing settled cells at the bottom of the 

wells by gently adding 50 µL of 80% TCA (final concentration, 16% TCA). Using the seven 

absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug 

(Ti)], the percentage growth is calculated. Percentage growth inhibition is calculated as: − −⁄ × 100 for concentrations for which Ti ≥ Tz (1)− ⁄ × 100 for concentrations for which Ti ˂ Tz (2)

For further information to see NCI website [38]. 

4. Conclusions  

In conclusion, we have reported the synthesis of derivatives of the new ring systems  

6H,13H-bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d]pyrazine-6,13-dione 4, 5 and 6H,13H-pyrido[4'',3'':4',5']-

pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-6,13-dione 6 using a simple and versatile synthetic pathway. 

All derivatives were prescreened according to the NCI protocol at 10−5 M dose on the full panel of 60 

human cancer cell lines derived from nine human cancer cell types. Only derivatives 5a and 6a, 6c and 

6d showed a moderate antineoplastic activity at micromolar concentration. In particular derivative 5a 

exhibited modest activity against the UO-31 renal cancer sub-panel cell line; deaza analogue 6a and 

the 9-methoxy substituted derivative 6c were shown to be selective against the MCF7 breast cancer 

cell line. More interesting results were obtained from the 11-methoxy substituted compound 6d which 

showed selectivity against both the UO-31 renal cancer sub-panel and the MCF7 breast cancer sub-panel 

cell lines. Unfortunately the moderate activity showed by derivatives 5a and 6a, 6c and 6d against a 

limited number of cell lines could not allow a reliable SAR evaluation. However, the antiproliferative 

activity shown by derivatives 5a and 6a, 6c and 6d, although modest, encourages further studies 

directed toward the synthesis of new compounds with an improved growth inhibitory effect. 
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