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Summary

Heat acclimation (HA) is the best strategy to improve
heat stress tolerance by inducing positive physiolog-
ical adaptations. Evidence indicates that the gut
microbiome plays a fundamental role in the develop-
ment of HA, and modulation of gut microbiota can
improve tolerance to heat exposure and decrease
the risks of heat illness. In this study, for the first
time, we applied 16S rRNA gene sequencing and
untargeted liquid chromatography–mass spectrome-
try (LC-MS) metabolomics to explore variations in
the gut microbiome and faecal metabolic profiles in
rats after HA. The gut microbiota of HA subjects
exhibited higher diversity and richer microbes. HA
altered the gut microbiota composition with signifi-
cant increases in the genera Lactobacillus (a major
probiotic) and Oscillospira alongside significant
decreases in the genera Blautia and Allobaculum.
The faecal metabolome was also significantly chan-
ged after HA, and among the 13 perturbed metabo-
lites, (S)-AL 8810 and celastrol were increased.
Moreover, the two increased genera were positively
correlated with the two upregulated metabolites and
negatively correlated with the other 11 downregu-
lated metabolites, while the correlations between the
two decreased genera and the upregulated/downreg-
ulated metabolites were completely contrary. In sum-
mary, both the structure of the gut microbiome
community and the faecal metabolome were
improved after 28 days of HA. These findings pro-
vide novel insights regarding the improvement of the
gut microbiome and its functions as a potential

mechanism by which HA confers protection against
heat stress.

Introduction

Hot environmental conditions increase physiological
strain, attenuate performance capabilities and increase
the occurrence of heat illness (Zurawlew et al., 2018).
Heat acclimation (HA) is a ‘within lifetime’ reversible phe-
notypic adaptation that occurs during repeated exposure
to a hot environment (Horowitz, 2007, 2014, 2016). HA
is known to result in numerous positive physiological
adaptations that contribute to improved thermoregulation,
reduce the risk of heat illness and improve thermal toler-
ance and human performance in extreme heat (P�eriard
et al., 2015; Casa, 2018). Many studies have revealed
that human individuals after HA can be characterized by
increased sweating efficiency and plasma volume,
decreased exercising and resting core temperature,
improvements in cardiovascular stability, and whole-body
and skeletal muscle metabolism (Febbraio et al., 1994;
Nielsen, 1998; Lorenzo et al., 2010; P�eriard et al., 2015;
Buono et al., 2018). Moreover, some studies have found
that rodents such as mice and rats exhibit similar physio-
logical responses to HA, including reduced proinflamma-
tory responses, lower heart rats and slower warming
during thermal stress (Sareh et al., 2011; Yang et al.,
2017; Yi et al., 2017; Bittencourt et al., 2020). A general
cellular response to heat stress is the induction of heat
shock proteins (HSPs), which help to protect against
heat-related illness. We and others have shown that HA
leads to a marked upregulation of basal levels of HSP70
and HSP72 in humans and animals (Maloyan et al.,
1999; Sareh et al., 2011; Gibson et al., 2016; Yi et al.,
2017; Nava and Zuhl, 2020). These elevated HSPs
improved tolerance to heat stress by reducing inflamma-
tory responses. Current research on HA, however, has
focused almost exclusively on physiological and molecu-
lar responses, but the molecular mechanisms underlying
these responses are still largely unknown.
Microbes that reside in the human gut play a key role

in host health and disease, and studies of the gut micro-
biota have attracted much attention and provide interest-
ing new perspectives and research avenues (Schmidt
et al., 2018). Hyperthermia or heat stress can adversely
disrupt the intestinal mucosa and augment intestinal

Received 9 August, 2020; revised 26 January, 2021; accepted 30
January, 2021.
*For correspondence. E-mail niuchao601@126.com; Tel. +86-022-
84655427; Fax +86-022-84655018.
†These authors have contributed equally to this work.
Microbial Biotechnology (2022) 15(1), 276–288
doi:10.1111/1751-7915.13772

ª 2021 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

bs_bs_banner

https://orcid.org/0000-0001-7787-8506
https://orcid.org/0000-0001-7787-8506
https://orcid.org/0000-0001-7787-8506
mailto:
http://creativecommons.org/licenses/by/4.0/


permeability by destroying the tight junctions of epithelial
cells, which results in lipopolysaccharide (LPS) and
endotoxin translocation from the intestinal lumen to the
circular system, potentially causing heat illnesses such
as heat stroke (Dokladny et al., 2015; Armstrong et al.,
2018; Karl et al., 2018). Several studies on animals have
documented that heat stress may negatively influence
gut microbiota, including reduced intestinal microbial
diversity and a decreased abundance of probiotics (such
as Lactobacillus and Bifidobacteria) (Chen et al., 2018;
He et al., 2019; Shi et al., 2019).
Growing evidence indicates that elevated intracellular

HSP can improve heat tolerance, increase resistance to
endotoxin translocation and protect from oxidative stress
and inflammation by maintaining the tight junctions of
intestinal epithelial cells (Kuennen et al., 2010; Amorim
et al., 2015; Arnal and Lall�es, 2016). It has been estab-
lished that dietary fibre, prebiotics and probiotics have
beneficial effects on human health by regulating gut
microbiota homeostasis (Arnal and Lall�es, 2016; Plovier
et al., 2017). Specifically, Bacillus subtilis has been used
for the prevention of heat stress by maintaining intestinal
permeability and microbial structure, as well as reducing
bacterial translocation (Moore et al., 2014; Sorokulova
et al., 2016).
Meanwhile, gut microbial metabolic activities play a criti-

cal role in maintaining host homoeostasis and health and
are associated with a variety of diseases (Visconti et al.,
2019). For example, short-chain fatty acids (SCFAs), fatty
acids produced by gut microbial fermentation of indi-
gestible foods, are the main energy source of colonocytes,
regulators of cell proliferation and differentiation, and mak-
ing them anti-inflammatory agents (Parada Venegas
et al., 2019). On the other hand, some gut microbial prod-
ucts can act as toxins to host tissues and may result in
disease (Louis et al., 2014). These findings suggest that
the gut microbiome and its metabolic activities play a fun-
damental role in the development of HA. However, to our
knowledge, no studies have explored the association of
the gut microbiota with HA.
In this study, we applied 16S rRNA gene sequencing

and untargeted liquid chromatography–mass spectrome-
try (LC-MS) to investigate the effects of HA on the gut
microbiome and the faecal metabolic profiles of rats.
This study illustrates a new strategy for advancing our
understanding of the biological mechanism of HA.

Results

Effects of HA on core body temperature and weight

To confirm that HA had a positive effect on health, the
rectal temperature (Tre), the gold standard for measuring
core body temperature (Richmond et al., 2015; Maz-
gaoker et al., 2017), was assessed and compared

between HA and control (CR) subjects. Consistent with
previous studies, it was observed that the Tre profile of
HA subjects significantly increased in response to the
first two weeks after heat exposure, followed by a steady
and slow decrease and ultimately return to the same
level as before heat exposure (Fig. S1A) (Yi et al.,
2017). HA subjects grew more slowly than CR subjects
(Fig. S1B), and the body weight of HA subjects was sig-
nificantly (P < 0.001, Wilcoxon sum test) lower than CR
subjects after our HA experiment had finished.

Quality control of 16S rRNA microbiome profiling

To assess the changes in the gut microbiota during HA,
the gut microbiota were sequenced 1 day before heat
exposure (day 0), and at days 14 and 28 after heat
exposure. From our 16 S rRNA sequencing (V3-V4
region), a total of 4 062 872 reads were obtained, and
3 824 443 reads remained after quality filtering, corre-
sponding to a mean of 79 675 reads per sample (rang-
ing from 60 593 to 82 017). Sequencing-based
rarefaction curves of all samples revealed that the
sequencing depth was sufficient to describe each asso-
ciated gut microbial community (Fig. S2B). A total of
1387 operational taxonomic units (OTUs) were identified,
which has a minimum count of 0.00005 of total reads
across samples. As we expected, no significant differ-
ences were found between CR and HA on day 0 by
comparing the number of OTUs (1038 and 1071 OTUs;
P = 0.6, Wilcoxon sum test; Fig. S2A, D), alpha diversity
(all P > 0.05, Wilcoxon sum test; Fig. S3A) and beta
diversity (Fig. S3B, C). The number of OTUs was signifi-
cant different between CR and HA on day 28 (1207 and
1279 OTUs respectively; P = 0.014, Wilcoxon sum test;
Fig. S2A, F) rather than on day 14 (1313 and 1295
OTUs respectively; P = 0.19, Wilcoxon sum test;
Fig. S2A, E). Interestingly, the number of OTUs of CR
subjects increased at the first stage (from day 0 to day
14) and then decreased to close to the number on day 0
at the second stage (from day 14 to day 28). Further-
more, all the differences in the number of OTUs in CR
rats were not significant (Fig. S2C). We speculated that
the gut microbiome of CR subjects changed due to the
new living environment (at the first stage) and then
recovered to their initial states after a certain period of
adaptation (at the second stage).

HA induces changes in the gut microbiota

We then compared the composition of the gut micro-
biome between different groups by measuring microbial
alpha and beta diversities. Alpha diversity, measured by
four indices, ACE, Observed, Shannon and Simpson,
showed a significant increase in the HA subjects
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compared to the CR subjects on day 28 (Fig. 1A, all
P < 0.05, Wilcoxon sum test), and no significant differ-
ences were observed in alpha diversity indices on day
14 (all P > 0.05, Wilcoxon sum test; Fig. S4A). Principal
coordinate analysis (PCoA), based on Bray–Curtis and
Jaccard dissimilarity, showed that HA subjects were
clearly separated from CR subjects on day 28 (all
P < 0.05, Anosim and multi-response permutation pro-
cedure (MRPP) analysis, for Bray and Jaccard dis-
tances respectively) (Fig. 1B, C). Moreover, no
significant differences were found for samples from day
14 (Fig. S4B, C).

Since population differences in the gut microbiota
were only observed between HA and CR subjects on
day 28, only subjects on day 28 were considered in sub-
sequent analyses. To explore the taxa that were relevant
to HA, we performed differential abundance analysis at
the phylum and genus levels comparing between these
two groups.
At the phylum level, the dominant bacteria in all sam-

ples were Firmicutes, followed by Bacteroidetes, Pro-
teobacteria, Cyanobacteria and Actinobacteria (Fig. 2A;
see also Fig. S4D). There were subtle but not significant
differences in the bacterial community composition

Fig. 1. Diversity analysis on day 28.A. Alpha diversity assessed by richness (ACE, Observed) and diversity (Shannon, Simpson). Box plots
showing significantly different alpha diversity between HA and CR subjects by Wilcoxon rank sum test. Beta diversity assessed by principal
coordinate analysis (PCoA) based on the Bray–Curtis (B) and Jaccard (C) distances. Anosim and multi-response permutation procedure
(MRPP) tests show statistically significant differences between HA and CR groups. P values: *P < 0.05, **P < 0.01.
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between HA and CR subjects at the phylum level (all
P > 0.05, Wilcoxon sum test; Fig. S4D and Table S1).
The genus level analysis showed that the genera Lacto-
bacillus (a major probiotic) and Oscillospira were signifi-
cantly increased, while the genera Blautia and
Allobaculum were significantly decreased in HA subjects
(Table S2). The genera abundance distributions in differ-
ent groups were quite different (Fig. 2C).
We next performed differential abundance analysis

using DESeq2 (Love et al., 2014), a method using nega-
tive binomial GLM to obtain maximum likelihood esti-
mates between two conditions, so that we could more
accurately explore the bacterial taxa that contributed to
the differentiation of the gut microbiota composition
between HA and CR groups. Then, a heat map from
hierarchical clustering analysis based on the top 40

different taxa was used to summarizes the intersample
changes in HA and CR groups. We found a clear sepa-
ration of the gut microbiota from HA and CR subjects
(Fig. 2B; see also Table S3). Differentially abundant taxa
(Table S4) were further confirmed by LEfSe analysis
(Segata et al., 2011). The results are shown in Fig. 3,
and 20 taxa, including 8 genera, were significantly differ-
ent between the HA and CR groups. Consistent with the
above results, the genus Lactobacillus was enriched in
HA subjects.

HA harbours a modified microbial ecological network

To examine the changes in the HA microbial community
structure and how HA affects the microbial interactions,
we utilized Sparse InversE Covariance estimation for

Fig. 2. Composition analysis on day 28. A. Relative abundance at the phylum level. B. Heat map based on hierarchical clustering analysis
shows the relative abundance of the top 40 different representative taxa between HA and CR on day 28. Differential abundance analysis was
performed using DESeq2. The taxonomy of taxa included phylum and family. C. Heatmap tree showing genera significantly different in HA com-
pared to those in CR, and their phylogenetic relationships on day 28. The abundance profiles are expressed by z-scores.
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Ecological Association (SPIEC-EASI) (Kurtz et al., 2015)
to infer two microbial ecological networks in HA and CR
subjects. In general, there were more positive correla-
tions than negative correlations in both ecological net-
works (Fig. 4A, B). Correlations between two OTUs in
the same genus tended to be positive, whereas correla-
tions between two OTUs in different genera involved
both positive and negative correlations.
The degree distributions of the vertices were similar

between the two networks (Fig. 4C). We first compared
the degrees of OTUs in the four significantly different
genera, Blautia, Oscillospira, Lactobacillus and Allobacu-
lum. The degree of Lactobacillus in the HA network was
significantly lower than in the CR network (P = 0.0396,
Wilcoxon sum test), while the degrees of the OTUs in
other three genera were similar in the two networks
(Fig. S5). We then compared the robustness of these
networks against attacks by sequentially removing hubs
(nodes with high degree centrality). The results showed
that the HA network was more robust than the CR net-
work by removing high degree nodes (Fig. 4D).

HA induces changes in the metabolite profiles in faecal
samples

Since 16S rRNA sequencing revealed that the gut micro-
biome had significantly changed after 28 days of HA, we
further examined whether the faecal metabolome was

perturbed after 28 days of HA using untargeted LC-MS
in both positive ion (ES+) and negative ion (ES-) modes.
A total of 2588 and 1715 features were identified in the
ES + and ES- modes respectively. The partial least
squares discriminant analysis (PLS-DA) score plots
showed a clear separation between the HA and CR
groups (Fig. 5A, B). Ten-fold cross-validation was
employed to evaluate the quality of these two PLS-DA
components, giving an R2 of 0.901 (0.935) and Q2 of
0.403 (0.349) in the ES + and ES- modes respectively.
Overall, the faecal metabolome was significantly chan-
ged after HA.
To identify the differential metabolites associated with

HA, we calculated fold changes (FCs), P values and
PLS-DA variable importance in the projection (VIP)
scores for all metabolic features in HA vs. CR. In total, 9
and 34 significant metabolic features (FC ≥ 2 or ≤ 0.5,
P ≤ 0.05, and VIP > 2) were found in the ESI + and
ESI- analysis modes respectively. As we expected, there
was a clearly separation in the faecal metabolome from
HA and CR subjects using hierarchical clustering based
on differential metabolites (Fig. 5C).
To further understand these metabolic changes at the

pathway level, we performed pathway enrichment analy-
sis using MetaboAnalystR (Chong et al., 2019). A total
of nine metabolic pathways were significantly changed
after HA, including glycine, serine and threonine meta-
bolism, lysine degradation, tyrosine metabolism,

Fig. 3. Cladogram by LEfSe analysis showing the biomarker taxa associated with HA. Green indicates taxa enriched in the HA group, while
red indicates the taxa enriched in the CR group.
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aminoacyl-tRNA biosynthesis, steroid hormone biosyn-
thesis, nicotinate and nicotinamide metabolism, glyc-
erolipid metabolism, amino sugar and nucleotide sugar
metabolism (Table S5). Finally, there were 13 significant
differential metabolites by overlapping between the puta-
tively annotated features in our pathway enrichment
analysis and the significant metabolic features found in
univariate statistical analysis. Of these 13 metabolites,
two metabolites were upregulated in HA subjects, includ-
ing (S)-AL 8810 and celastrol. Additionally, 11 other
metabolites were downregulated, including hexobarbital,

cytosine, L-aspartic acid, adenine, oxazolidinone, DL-
lactic acid, leucyl-leucyl-norleucine, methionylleucine,
capryloylglycine and ethyl levulinate ethirimol. Celastrol
has been shown to be capable of inducing heat shock
factor 1 (HSF1)-mediated HSP genes, such as HSP30
and HSP70, which play an important role in protection
against heat stress (Walcott and Heikkila, 2010; Ma
et al., 2015). Targeted metabolomics was employed to
validate the expression of celastrol, and the results cor-
roborated the increased level of celastrol after HA
(Fig. S6).

Fig. 4. Ecological networks inferred using SPIEC-EASI in the HA (A) and CR (B) groups. Nodes represent OTUs and are coloured according
to phyla; red edges represent positive correlations, and green edges represent negative correlations. C. Degree distributions of the two net-
works were similar. D. Natural connectivity was used to measure the robustness of networks by sequentially removing high degree nodes. The
result showed that the HA network was more robust than the CR network.
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Correlation between differential gut microbes and
metabolites

Since both gut microbiota and metabolites were per-
turbed after HA, we utilized correlation analysis to
explore the functional correlations between the four per-
turbed genera and the 13 altered faecal metabolites
using Spearman’s correlation coefficient. As shown in
Fig. 5D, the increases in the genera Lactobacillus and
Oscillospira were positively correlated with the two
upregulated metabolites (S)-AL 8810 and celastrol and
negatively correlated with the other 11 downregulated
metabolites. However, the two decreased genera

showed a contrary correlation. These data indicated that
the gut microbiota contributes to changes in the faecal
metabolome.

Discussion and conclusions

Heat acclimation results in physiological adaptations that
can improve heat tolerance and performance, and
reduce physiological strain and the risk of heat illness in
hot conditions. Previous studies have revealed that heat
stress and heatstroke increased gut permeability and
impaired barriers to bacteria, leading to a significant per-
turbation in the gut microbial community in animals

Fig. 5. PLS-DA score plot of faecal metabolome in the ESI+ (A) and ES- modes (B). C. Heatmap tree showing faecal metabolites significantly
different in HA compare to those in CR. D. Correlations between perturbed gut-bacterial families and altered faecal metabolites. Spearman’s
rank correlation coefficients and P values for the correlations of faecal bacteria and their metabolites.
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(Vargas and Marino, 2016; Armstrong et al., 2018; He
et al., 2019; Zhu et al., 2019). In addition, probiotics,
such as Bacillus subtilis, may protect people or animals
against the effects of heat stress, allowing them to
recover more quickly to full health by enhancing gut
integrity and improving the gut microbiome (Moore et al.,
2014; Song et al., 2014). Based on these studies, we
inferred that gut microbiota play an important role in the
response to HA. Our study aimed to investigate the
impacts of HA on the gut microbiome and metabolome
using 16S rRNA gene sequencing and LC-MS.
To establish an HA model, we held rats in a chamber

at 35 � 1°C and 60 � 5% humidity for 120 min per day
for 28 days and explored the effect of HA on core body
temperature and weight. The core body temperature was
significantly decreased after HA, consistent with previous
findings (Shmeeda et al., 2002; P�eriard et al., 2015). We
then determined whether HA influenced the faecal micro-
biota in rats by comparing the microbial communities in
HA and CR subjects. Microbiome diversity analysis
showed that population differences in the gut microbiota
could only be observed between HA and CR subjects on
day 28, rather than on day 0 or day 14 after treatment.
HA subjects exhibited higher diversity and richer
microbes compared with CR subjects on day 28. It has
been proposed that rich and diverse microbiomes are
more stable and more healthy (Lozupone et al., 2012).
These findings suggested a clear HA in rats could be
established after 28 days of heat exposure, similar to
previous research (Umschweif et al., 2013; Yi et al.,
2017).
To further explore more accurately the bacterial taxa

that contributed to the differentiation of the gut micro-
biota composition between different groups, we per-
formed differential analysis at the phylum and genus
levels. At the phylum level, Firmicutes, Bacteroidetes,
Proteobacteria, Cyanobacteria and Actinobacteria were
the five dominant phyla, in agreement with previous
studies (Hu et al., 2016; Khan et al., 2016). There were,
however, subtle but not significant differences in the bac-
terial community compositions. Our genus level analysis
indicated that Lactobacillus and Oscillospira were signifi-
cantly increased in HA subjects. It has been reported
that Lactobacillus is very important for mediating innate
and adaptive immune defences against microbial patho-
gens and preventing stress-induced dysfunction of the
colonic epithelial barrier function in adult animals (Gar-
eau et al., 2010). Bacterial taxa showing significantly dif-
ferent abundances were further confirmed by LEfSe
analysis. Probiotics such as Lactobacillus may someday
be selectively prescribed to attenuate heat stress-in-
duced intestinal permeability and provide cytoprotection
against heat stress. The level of Oscillospira showed a
positive association with human health, while a decrease

in Oscillospira may lead to diseases that involve inflam-
mation (Gophna et al., 2017).
To examine how HA affects the microbial interactions

in the gut microbiome, we inferred two ecological net-
works using the SPEIC-EASI algorithm. There were
more co-occurrence correlations than co-exclusion corre-
lations in both networks. Consistent with a previous
study, correlations between OTUs in the same genus
tended to be positive, and correlations between OTUs in
different genera were involved in both positive and nega-
tive correlations (Leung et al., 2018). In addition, we
showed that the HA network displayed more robustness
against simulated attack by sequentially removing high
degree nodes, compared to our CR network.
Next, an untargeted metabolomics approach, LC-MS,

was used to reveal the effect of 28 days of HA on the fae-
cal metabolome. In total, 43 metabolites were changed as
a result of HA using differential analysis. Pathway enrich-
ment analysis revealed that metabolites involved in lysine
degradation, aminoacyl-tRNA biosynthesis, and glycine,
serine and threonine metabolism were significantly altered
after HA. Finally, 13 significant differential metabolites
were obtained by overlapping the putatively annotated
metabolites in enriched pathways and the significant
metabolic features found by differential analysis, of which
(S)-AL 8810 and celastrol were significantly increased.
Previous studies have shown that celastrol, a natural pro-
duct derived from the roots of Tripterygium wilfordii, exhi-
bits antioxidant, anti-inflammatory, antiobesity and
anticancer activities and is a pharmacologically active reg-
ulator of the heat shock response (Westerheide et al.,
2004; Kannaiyan et al., 2011; Liu et al., 2015). Thus, we
infer that celastrol makes an important contribution to the
protect effect of HA in hot environments.
Finally, Spearman’s correlation analysis was con-

ducted to explore the relationships between significantly
changed genera and metabolites. The results showed
that the two increased genera were positively correlated
with the 2-upregulated metabolites and negatively corre-
lated with the 11-downregulated metabolites, while the
correlations between two decreased genera and the
upregulated/downregulated metabolites were completely
contrary. These findings suggest that gut microbiota
modification induced by HA was correlated with faecal
metabolites.
This study did have limitations. To characterize the

changes in the gut microbiota during HA, faecal samples
were collected and sequenced on the day 0, 14 and 28
after heat exposure. However, HA is a longer-term
chronic process. The gut microbiomes at additional time
points may have been explored for more reliable and pre-
cisely results using both comparative and longitudinal
analyses. Although 16S rRNA gene sequencing technol-
ogy is highly useful for microbiome studies, it provides
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low resolution at the species level and poor discrimina-
tory power for some genera (Janda and Abbott, 2007).
Ideally, whole-metagenome shotgun sequencing can pro-
vide higher strain-level resolution and more accurate
information related to the composition and function of a
microbial community. Additionally, although we found sig-
nificant correlations between differential gut microbiota
and differential metabolites, more work needs to be per-
formed in future studies to explore the mechanism of
these correlations. Finally, findings in this study were cor-
relational and do not support causal relationship between
gut microbiota and HA, indicating a lack of sufficient evi-
dence to distinguish the gut microbiota as a cause or
consequence of HA. Future studies using strategies such
as faecal microbiota transplantation (FMT) are needed to
elucidate the underlying causality. Nevertheless, our
study demonstrates for the first time that HA has a signifi-
cant effect on the gut microbiome and faecal metabo-
lome, and this may be a potential mechanism by which
HA confers protection against heat stress.

Experimental procedures

Animals and experimental conditions

This study was conducted in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the US National Institutes of
Health. The protocol was approved by the Ethics Com-
mittee of Laboratory Animals, Tianjin Institute of Environ-
mental and Operational Medicine. Adult SD rats
(8 weeks of age, male, 190–210 g) were fed laboratory
chow ad libitum. All rats were held under a 12-h light/-
dark cycle at 23 � 1°C and 50 � 10% humidity. Rats
were randomly divided into two groups (8 animals per
group), heat acclimated (HA) and normothermia (CR).
Rats in the CR group were maintained at an ambient
temperature of 23 � 1°C, and rats in the HA group were
kept in a chamber under 35 � 1°C and 60 � 5% humid-
ity for 120 min per day for 28 days. Tre was measured
every two days, and the body weight was measured
weekly during heat exposure.

Sample collection and processing

Fresh faeces from each animal were collected on day 0,
14 and 28 after heat exposure. The samples were imme-
diately frozen in liquid nitrogen and then stored at
�80°C until DNA extraction.

16S rRNA gene sequencing

Total faecal DNA was extracted using the CTAB/SDS
method. DNA concentration and purity were measured
using agarose gels (1%). DNA was diluted to 1 ng µl-1

using sterile water. 16S rRNA genes of V3-V4 region
were amplified with primers (515F and 806R) and were
tagged with a barcode. All PCR reactions were carried
out in 30 µl reactions, containing 15 µl of Phusion�
High-Fidelity PCR Master Mix (New England Biolabs,
Ipswich, MA, USA), 10 ng template DNA and 0.2 µM of
each primer. Thermal cycling began with an initial denat-
uration for 1 min at 98°C, followed by 30 cycles of
denaturation for 10 s at 98°C, annealing for 30 s at
50°C and elongation for 30 s at 72°C, followed by exten-
sion for 5 min at 72°C.
The same volume of PCR products and 1 9 loading

buffer containing SYB green were mixed and detected by
agarose gel electrophoresis (2%). The PCR products
were mixed, and then, the mixture of PCR products was
purified with the GeneJETTM Gel Extraction Kit (Thermo
Scientific, Waltham, MA, USA). Sequencing libraries were
generated using Ion Plus Fragment Library Kit (Thermo
Scientific, Waltham, MA, USA) following the manufac-
turer’s instructions. The quality of libraries was determined
using the Qubit@ 2.0 Fluorometer (Thermo Scientific,
Waltham, MA, USA). These high-quality libraries were
sequenced on the Ion S5TM XL platform and single-end
400 (600) bp raw reads were generated at Novogene
(Tianjin, China).

Metagenomic data analysis

Based on each unique barcode, single-end reads were
assigned to different samples. To obtain high-quality
clean reads, these assigned reads were cleaned by
removing adaptors, primers and low quality reads using
Cutadapt (Martin, 2011). Chimeric sequences were
detected by aligning clean reads to the Greengenes
database (v 13_5) (DeSantis et al., 2006) using the
UCHIME algorithm (Edgar et al., 2011), and the effective
reads were obtained by removing chimeric sequences.
QIIME1 (v1.9.1) (Caporaso et al., 2010) was used to
cluster the effective reads into OTUs based on 97% sim-
ilarity using Uparse (Edgar, 2013). Representative
sequences for each OTU were screened for further
annotation. OTUs were then annotated using the Green-
genes database (v13_5). OTUs at low abundance (frac-
tion of the total OTU observation lower than 0.00005)
were discarded.
Four alpha diversity indices were calculated to mea-

sure the diversity within samples. Two indices, the Chao
and the ACE estimator, were taken to measure the
microbial community richness, while two indices, the
Shannon and Simpson index, were taken to measure
the microbial community diversity. Comparative analysis
of the group-specific a-diversity indices was performed
using a Wilcoxon rank sum test. Beta diversity was used
to evaluate the diversity among samples. First, taxa
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abundance was normalized according to the sequence
number of the lowest sample. Then, the beta diversity
was assessed by PCoA using Bray–Curtis and Jaccard
distances. Beta diversity was tested using Anosim and
MRPP. The functions adonis and mrpp from the vegan
package (Dixon, 2003) were taken to calculate pairwise
distances and 999 permutations. Both alpha diversity
and beta diversity in our samples were calculated with
phyloseq (McMurdie and Holmes, 2013) and were visu-
alized with ggplot2 (Wickham, 2016).
Heatmap tree was used to compare the abundances

(expressed by z-scores) of all taxa between HA and CR
subjects, and this was visualized using ComplexHeatmap
(Gu et al., 2016). A Wilcoxon rank sum test with Benjamin
and Hochberg false discovery rate (FDR) correction was
used for differential abundance analysis at the phylum
and genera levels, and an FDR-corrected P value < 0.1
was considered significantly different. Moreover, differen-
tially abundant taxa were identified using DESeq2 (Love
et al., 2014). A heat map based on hierarchal clustering
analysis was used to show the relative abundance of the
top 40 different taxa, which was visualized with ggtree (Yu
et al., 2017). Statistically significant bacterial differences
(LDA > 2, P < 0.05) associated to HA were explored
using linear discriminant analysis (LDA) effect size
(LEfSe) (Segata et al., 2011).

Microbial ecology network construction

To minimize the interference from low confidence OTUs,
OTUs that were less than 100 reads over all samples or
those that were present in less than 30% of samples were
filtered out. The remained OTUs were selected for infer-
ring a microbial ecology network using SPIEC-EASI (Kurtz
et al., 2015). The SpiecEasi parameters were set to
method = “mb”, lambda.min.ratio = 1e-2, nlambda = 10,
pulsar.params = list(rep.num = 100). Only correlations
whose magnitudes were above 0.05 were considered as
significant correlations. Networks were visualized using
Cytoscape (v3.7.1) (Shannon et al., 2003). Two general
network properties, including degree distribution and natu-
ral connectivity, were determined for network robustness
comparison.

Faecal metabolomics profiling

Sample preparations. Faecal samples from day 28 after
heat exposure from the two groups were taken for LC-
MS. Samples were homogenized, and 200 ll of each
sample was dried using a vacuum. Then the faecal
sample and prechilled methanol (400 ll) were mixed by
vortexing. The mixtures were incubated on ice for 5 min
and then were centrifuged at 15 000 rpm at 4°C for
5 min. Some of the supernatant was diluted to its final

concentration containing 53% methanol by LC-MS grade
water. The samples were subsequently transferred to a
fresh Eppendorf tube and then were centrifuged again at
15 000 rpm at 4°C for 10 min. Finally, the supernatant
was injected into the LC-MS/MS system analysis.

HPLC-MS experiments. LC-MS analyses were
performed using a Vanquish UHPLC system (Thermo
Fisher, Waltham, MA, USA) coupled with an Orbitrap Q
Exactive series mass spectrometer (Thermo Fisher,
Waltham, MA, USA). Samples were injected onto a
Hyperil Gold column (100 9 2.1 mm, 1.9 lm) using a
16-min linear gradient at a flow rate of 0.2 ml min-1. The
eluents for the positive polarity mode were (A) 0.1%
formic acid in water and (B) methanol. The eluents for
the negative polarity mode were (A) 5 mm ammonium
acetate, pH 9.0 and (B) methanol. The solvent gradient
was set as follows: 2% B, 1.5 min; 2–100% B, 12.0 min;
100% B, 14.0 min; 100–2% B, 14.1 min; 2% B, 17 min.
The Q-Exactive series mass spectrometer was operated
in positive/negative polarity mode with spray voltage of
3.2 kV, a capillary temperature of 320°C, a sheath gas
flow rate of 35 arb and an aux gas flow rate of 10 arb.

Data analysis. The raw data files generated by UHPLC-
MS/MS were processed using Compound Discoverer 3.1
(CD3.1; Thermo Fisher) to perform peak alignment, peak
picking and quantitation for each metabolite. The main
parameters were set as follows: retention time tolerance,
0.2 min; actual mass tolerance, 5 ppm; signal intensity
tolerance, 30%; signal/noise ratio, 3; and minimum
intensity, 100 000. After that, peak intensities were
normalized to the total spectral intensity. The normalized
data were used to predict the molecular formula based on
additive ions, molecular ion peaks and fragment ions.
Then, peaks were matched with the mzCloud (https://
www.mzcloud.org/), mzVault and MassList databases to
obtain accurate qualitative and relative quantitative results.
All metabolites were annotated using the KEGG (http://
www.genome.jp/kegg/), HMDB (http://www.hmdb.ca/) and
Lipidmaps (http://www.lipidmaps.org/) databases. PLS-DA
was used to characterize the metabolic changes induced
by HA, and pathway enrichment analyses were performed.
We applied univariate analysis (t-test) to calculate the
statistical significance (P value). The metabolites with
P < 0.05, FC ≥ 2 or FC ≤ 0.5, and VIP > 2 obtained from
PLS-DA analysis were considered to be significant
differential metabolites. For clustering heat map
generation, the data were normalized using z-scores of the
intensity areas of differential metabolites and were
visualized using ComplexHeatmap. Pathway activity
analysis was predicted with both mummichog and gene
set enrichment analysis (GSEA) methods using
MetaboAnalystR (Chong et al., 2019).
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Targeted metabolomics of celastrol

Two hundred mg of each faecal sample and 1 ml of
ethyl acetate were mixed by vortexing. The mixtures
were incubated on ice for 30 min and were then cen-
trifuged at 12 000 rpm at 4°C for 10 min. Then, 800 µl
of supernatant was extracted and concentrated to dry-
ness in vacuum at room temperature. The residue was
reconstituted with 200 ll of methanol and filtered using a
0.22-lm filter membrane. 10 ll of the resulting solution
was aspirated for analysis.
The analysis was performed using a Shimadzu LC30A

coupled with a Hybrid Quadrupole-TOF LC/MS/MS Mass
Spectrometer (AB SCIEX, Framingham, MA, USA) in the
positive mode. A waters ACQUITY UPLC Xbridge C18
Column (2.5 µm, 2.1 mm 9 150 mm) was used with a
flow rate at 0.2 ml min-1 and a column temperature of
55°C. The eluents were (A) 0.1% FA in water and (B)
acetonitrile. The gradient was set as follows: 5% B at
0 min, 50% B at 7 min, 100% B at 10 min, 100% B at
15 min, 5% B at 16 min and 5% B at 18 min.

Correlation analysis between the gut and microbiota and
faecal metabolome

Spearman’s correlation analysis was performed between
significant changed gut microbiota and faecal metabo-
lites using R.
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Fig. S1. Mean rectal temperature (A) and body weight (B)
during 28 days of heat exposure.
Fig. S2. Quality control of 16S rRNA V3-V4 reads. Number
of OTUs (A) after quality filtering on day 0, 14, and 28. Wil-
coxon test was used to compare CR and HA. (B) Rarefac-
tion curves for all samples with the X axis representing the
number of sequences and the Y axis representing the num-
ber of observed taxa. (C) The number of OTUs from the CR
group on day 0, 14, and 28. Venn diagram showing the
number of OTUs exclusively identified in each group on day
0 (D), 14 (E), and day 28 (F). P value: *P < 0.05; ns, no
significance P > 0.05.
Fig. S3. Diversity analysis on day 0. (A) Alpha diversity
assessed by richness (ACE, Observed) and diversity (Shan-
non, Simpson). Boxes represent the interquartile ranges,
and the inside black plots represent the median and circles
are outliers. P values are from Wilcoxon rank sum test. Beta
diversity assessed by principal coordinate analysis (PCoA)
based on the Bray-Curtis (B) and Jaccard (C) distances. P
values are from Wilcoxon rank sum test. P values: ns, no
significance P > 0.05.
Fig. S4. The degrees of OTUs in the four significant differ-
ent genera of inferred ecological networks. P values are
from Wilcoxon rank sum test. P value: *P < 0.05; ns, no
significance P > 0.05.
Fig. S5. Targeted metabolomics profiling of celastrol. P val-
ues are from Wilcoxon rank sum test. P value: *P < 0.05.
Fig. S6. Diversity analysis on day 14. (A) Alpha diversity
assessed by richness (ACE, Observed) and diversity (Shan-
non, Simpson). Boxes represent the interquartile ranges,
and the inside black plots represent the median and circles
are outliers. P values are from Wilcoxon rank sum test. Beta
diversity assessed by principal coordinate analysis (PCoA)
based on the Bray-Curtis (B) and Jaccard (C) distances.
Significant P-values of Anosim and multi-response permuta-
tion procedure (MRPP) between groups emphasize the dif-
ferences in microbial community structure. (D) Relative
abundance of bacterial phyla. P values: ng, no significance
P > 0.05.
Table S1. Wilcoxon rank-sum test comparison of bacterial
relative abundances at the phylum level.
Table S2. Wilcoxon rank-sum test comparison of bacterial
relative abundances at the genus level.
Table S3. Significantly different OTUs between HA and CR
subjects which identified using DESeq2.
Table S4. Differentially abundant taxa between HA and CR
subjects which identified using LEfSe.
Table S5. Significantly changed pathways after HA. Path-
way activity analyses were predicted with both mummichog
and GSEA methods using MetaboAnalystR.
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