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Abstract: Endometriosis is a condition that is influenced by hormones and involves stroma and
glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding,
and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression
of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some
of which not only affect the process of cell invasion but also participate in other physiological
and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted
molecules and their expression can be regulated by numerous factors such as estrogen, oxidative
stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs
may become effective biomarkers of endometriosis in the future. In the present review, we summarize
the current literature on MMPs regarding their classification, function, and potential value for
endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
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1. Introduction

Endometriosis is a benign, hormone-dependent disease characterized by the presence
of endometrial glands and stroma outside the uterus and affects at least 10–15% of women
of reproductive age [1]. Several characteristics, such as infertility, dysmenorrhea, and
dyspareunia, are associated with endometriosis [2]. Moreover, estrogen, matrix remodeling,
inflammation, and oxidative stress have been shown to be involved in endometriosis
progression from early to advanced stages [3].

Based on the hypothesis of the retrograde transplantation theory proposed by Samp-
son in 1927, we recognize the significance of matrix regrading and matrix remolding.
Endometriosis is established when endometrial cells (influenced by hormone fluctuations)
break off and travel via the fallopian tubes to new sites, where they implant and grow. The
extracellular matrix (ECM) is a complex network of macromolecular structures, such as
collagens, proteoglycans, glycoproteins, and elastin [4]. The matrix metalloprotease (MMP)
family is devoted to maintaining ECM homeostasis, and the dysregulation of its expression
leads to the disease. Since the 1960s, the MMP family has drawn much attention, and its
functions have been further determined [5] and systematically reviewed. [6].

In this review, we propose a role for MMPs in endometriosis and describe their differ-
ent functions in various biological processes, such as invasion, angiogenesis, and fibrosis.
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More importantly, we further discuss the potential treatment options for endometriosis,
especially anti-MMP interventions.

2. The MMP Family

MMPs belong to a large family of calcium-dependent, zinc-containing endopeptidases
that are known for their ability to cleave nonmatrix proteins, as well as several ECM con-
stituents (e.g., collagens, proteoglycan, and glycoproteins). In 1949, MMPs were discovered
to be depolymerizing enzymes that could promote the proliferation of malignant cells
by remolding connective tissue stroma such as blood vessels [7]. A decade later, the first
vertebrate MMP was isolated and identified to act as a collagenase [5]. At least 28 MMPs
have been identified in mammals to date [8].

2.1. Classification of MMPs

How MMPs should be classified remains controversial. A previous report classified
them into the following five groups based on their substrate-specificity and location: colla-
genases, gelatinases, stromelysins, matrilysins, and membrane-type metalloproteinases [9].
However, Garcia-Fernandez et al. and Kapoor et al. both divided MMPs into six groups
depending on their different substrates. Compared with the previous five groups, the latter
researchers added an “other MMPs” group, which included those that did not fit into any
other category [7,10]. Beyond that, MMPs can also be divided into two groups: secreted
MMPs and anchor MMPs. Of the known MMPs, MMP14, 15, 16, 17, 23, 24, and 25 are
membrane-anchored [11,12].

2.2. Structure of MMPs

The sophisticated structure of MMPs has been known for some time and has been
described in significant detail [13]. The compositions of most MMPs are the same: they
involve a pro-peptide domain, a signal peptide, a cysteine switch motif, a catalytic do-
main, and a hemopexin-like domain [7]. However, some MMPs have different structural
characteristics that enable them to perform special activities. For example, MMP2 and
MMP9 can interact with collagen via three fibronectin type-II domains. Moreover, MMP7,
MMP23, and MMP26 have no C-terminal hemopexin-like domain, which usually consists
of 190 amino acids. Additionally, MMP23 is the only MMP that possesses a cysteine-rich
and Ig domain. Some researchers have designed MMP inhibitors according to the specific
structures. Ilomastat (GM-6001), a first-generation collagen peptidomimetic, is a broad-
spectrum MMP inhibitor [14,15]. However, due to its poor bioavailability, clinical trials of
ilomastat have failed. However, Tanomastat (BAY 12-9566) has been shown to potently and
selectively inhibit MMP13, gelatinase A, and gelatinase B. It is an analog of biphenyl non-
peptide butanoic acid and was first developed by Bayer, Inc. (Leverkusen, Germany) [16].
However, no anti-MMP inhibitors with few side effects and strong specificity have been
used in clinical anti-tumor therapy to date.

2.3. The Expression of MMPs (Natural MMP Inhibitors)

MMPs are generally poorly expressed in humans due to their specific endogenous
inhibitors, known as the tissue inhibitor of metalloproteinase (TIMP) family, which includes
four known proteins: TIMP-1, 2, 3, and 4 [17]. TIMPs can bind to the catalytic domains
of MMPs with a 1:1 stoichiometric ratio and then block their enzymatic activity [18,19].
The TIMP family includes proteins with specific substrates; for example, TIMP-1 can only
regulate the membrane-type MMPs, but the other three members have wider ranges of
biological activity [9]. In addition to MMPs, TIMPs can suppress other enzymes, such as
those of the disintegrin and metalloproteinase (ADAM) family [20–22].
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3. MMP Expression in Endometriosis
3.1. Summary of Clinical Studies

Aside from MMP7, which is only expressed in epithelial endometrial cells, MMPs are
present in both the stromal and epithelial tissue compartments of the endometrium [23].
As an invasive disorder, endometriosis involves increased MMP activity. Several studies
have reported that the levels of MMPs are elevated in the ectopic tissue, peritoneal fluid,
or sera of patients with endometriosis, especially MMP2 and MMP9 [24–26]. In addition,
Borghese et al. shared gene expression profiles of eutopic. vs. ectopic endometrium in 2008
and provided a list of more than 5600 genes related to endometriosis. The overexpressed
extracellular matrix genes (such as MMP23 and MMP26) showed significant expression
differences [27]. However, the potential mechanism of the dysregulation of MMP23 and
MMP26 expression still needs further research. Considering their key roles in endometrio-
sis, MMPs have been considered potential therapeutic targets for this disease. As presented
in Table 1, accumulating evidence has demonstrated that MMPs play significant roles in
promoting the development of endometriosis.

Table 1. Changes in MMPs in endometriosis.

Classification MMPs Location
Change

(Endometriosis. vs.
Control)

Reference

Collagenases MMP1 Eutopic endometrium
Peripheral blood

up
down

[28]
[29]

MMP13 Ectopic endometrium
Peritoneal fluid

up
down

[30]
[31]

Gelatinases
MMP2

Ectopic endometrium
Eutopic endometrium

Peripheral blood
Peritoneal fluid

up
up

down
ns
up
up

[24,32–35]
[36]
[37]

[25,34]
[24,38]
[24,38]

MMP9
Ectopic endometrium
Eutopic endometrium

Peripheral blood

up
ns

down
up

[32,33,39]
[25]
[28]
[40]

Stromelysins
MMP3

Ectopic endometrium
Eutopic endometrium

Peripheral blood

up
down

ns

[34,35,41,42]
[34]
[29]

MMP10 Ectopic endometrium up [35]

MMP11 Ectopic endometrium
Eutopic endometrium

up
down

[43,44]
[34]

Matrilysins MMP7 Ectopic endometrium
Peripheral blood

up
up

[43,45,46]
[45]

MMP26 Ectopic endometrium up [27]

Membrane-type MMPs MT1-MMP
Ectopic endometrium
Eutopic endometrium

Peritoneal fluid

up
up

down

[33,37]
[36]
[31]

MT5-MMP Eutopic endometrium up [47]

Other MMPs
MMP12 Ectopic endometrium up [30]
MMP23 Ectopic endometrium up [27]

MMP, matrix metalloproteinase; ns, no significant difference.

3.2. Complexity of MMP Regulation in Endometriosis

Over the past few years, evidence has shown that MMPs play an important role
in the mechanisms involved in the occurrence and treatment of endometriosis. The epi-
dermal growth factor receptor (EGFR)-MMP7 signaling pathway has been shown to be
involved in the regulation of epithelial-mesenchymal transition (EMT) during the pro-
gression of endometriosis [45]. Moreover, chloride channel-3 (CIC3) and stress-induced
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phosphoprotein 1 enhance the activity of MMP9, while microRNA-33b has the opposite
effect [48–50]. The fibrinogen alpha chain is upregulated and affects MMP2 in endometrio-
sis [51]. Moreover, it has been shown that leptin promotes cell migration and invasion and
that the cyclooxygenase-prostaglandin E2 (PGE2)-pAKT axis can promote angiogenesis via
MMP2 [37,52]. In an in vivo trial, Shu et al. observed that the silencing of aquaporin 1, a
water-channel protein, could influence the expression of invasion-related factors (MMP2,
MMP9, TIMP1, and TIMP2), alleviating the progression of endometriosis in a mouse
model [53]. Lipoxin A4 (LXA4) is a lipid medium that is widely involved in the establish-
ment of endometriosis [54,55]. Moreover, LAX4 can suppress estrogen-mediated EMT via
binding to its receptor and can inhibit the activities of MMP2 and MMP9 [56].

It is well known that the microenvironment of patients with endometriosis is inflamma-
tory. Interleukin (IL)-2 and IL-27 synergistically inhibit MMP9 expression by maintaining
the balance of interferon (IFN)-γ and IL-10, thereby improving the invasive ability of
endometriosis cells [57]. Lin et al. reported that IL-34, through activating signal transducer
and activator of transcription 6 (STAT6), promoted the expression of MMP9 in endometrio-
sis in vitro and in vivo via the colony-stimulating factor 1 receptor/Janus kinase 3/STAT6
pathway [58]. Moreover, IL-37 affects downstream MMP9 expression via a variety of
signaling pathways and regulates the biological behavior of endometrial stromal cells [59].
MMP2 and MMP9 can be regarded as the most typical downstream biomarkers in the
progression of endometriosis. Furthermore, as shown in Figure 1, various extracellular
factors, such as estrogen [60], cytokines [57–59], iron overload [61], and environmental
contaminants [62,63], contribute to the regulation of MMPs expression.

Figure 1. Multiple factors regulate MMP activities. After exposure to certain environmental contaminants (e.g., PCB104 and
HCB), the expression of MMPs (MMP3, 10, 2, and 9) is markedly enhanced. IL-37 upregulates the expression of MMPs via
multiple signaling pathways. IL-2 and IL-27 were found to maintain the balance of IL-10 and IFN-γ, promoting MMP2 and
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MMP9 expression and then inducing cell invasion and proliferation. IL-34 binds to CSF1R, which activated the JAK/STAT6
pathway in an autocrine manner. Estrogen induces MMP9 expression via the OPN. CIC3 and STIR1 improve the activity
of MMP9, while miR-33b inhibits it. AQP1 promotes the expression of MMP2 and 9 via the Wnt signaling pathway. The
COX2/PGE2/pAKT axis, as well as the leptin/JAK2/STAT3 axis, serves as a significant regulator in increasing MMP2
expression. Additionally, MMP2 is a target of FGA and LXA4. MMP7 is a downstream component in the EGFR-mediated
signaling pathway. Iron markedly increases EMT and MMP2/9 activities in endometriosis.

MMP, matrix metalloproteinase; PCB104, polychlorinated biphenyl 104; HCB, hex-
achlorobenzene; CSF1R, colony-stimulating factor 1 receptor; OPN, osteopontin; CIC3,
chloride channel-3; STIR1, stress-induced phosphoprotein 1; miR, microRNA; AQP1, aqua-
porin 1; FGA, fibrinogen alpha chain; COX2, cyclooxygenase 2; PGE2, prostaglandin
E2; p, phosphorylated; JAK2, Janus kinase 2; STAT3, signal transducer and activator of
transcription 3; LXA4, lipoxin A4; EMT, epithelial-mesenchymal transition.

4. The Role of MMPs in the Pathophysiology of Endometriosis

MMPs are influenced by changes in steroid hormone concentration levels and are
involved in cyclic changes of the endometrium’s structure and thickness [6]. The en-
dometrium, whether it is eutopic endometrium or ectopic endometrium, is periodically
shed in response to hormone fluctuations, but in endometriosis, it changes at the cellular
level, e.g., in epithelial-mesenchymal transition (EMT), cell migration, and invasion, and
at the tissue/organism level, e.g., in angiogenesis, fibrosis, and immunological aspects
(Figure 2). There is no doubt that MMPs play a vital role in this process.

Figure 2. The role of MMPs in the pathophysiology of endometriosis.

In endometriosis, MMPs play a key role in various pathophysiological processes. The
endometrium is shed during menstruation due to the fluctuation of hormones, and MMPs
then accelerate the growth of the new endometrium to cover the wound. Free endometriotic
cells pass through the fallopian tube; adhere to the surfaces of the peritoneum, ovary, and
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other organs; degrade the extracellular matrix; invade the new site; promote angiogenesis.
Immunocytes, such as macrophages, kill the free cells upon coming into contact with them.
MMPs are crucial for the aforementioned processes.

4.1. MMPs at the Cellular Level
4.1.1. Migration and Invasion

Endometriosis is a common benign gynecological disease characterized by a high
migratory and invasive potential. In order to migrate, invade, and grow in new places, the
cells establish cell-cell or cell-ECM interactions. In a study of the endometrial stromal cell
line St-T1b and primary endometriotic stromal cells, researchers found that they partici-
pated in directional migration with significant collagen I remodeling, and this behavior was
inhibited by the broad-spectrum MMP inhibitor N-isobutyl-N-(4-methoxyphenylsulfonyl)
glycyl ydroxamic acid (NNGH) [64]. This confirms that MMPs are involved in ECM re-
modeling which is required for the establishment of ectopic endometriosis lesions. This
initial step of lesion formation requires MMP activity for basement membrane and ECM-
protein breakdown to support the subsequent invasion of endometriosis cells into the
peritoneum [6,65]. The first membrane-type MMP to be named was MT1-MMP (also re-
ferred to as MMP14), which can directly degrade the ECM, especially collagen I, by locating
invadopodia [66]. As downstream target molecules in the complex network that regulates
endometriosis invasion, MMPs are altered by a diverse range of substances. For instance,
the cytokines IL-2 and IL-27 promote the expression of MMPs, enhancing invasion by main-
taining the homeostasis of IL-10 and IFN-γ [57]. Moreover, exposure to bisphenol A (BPA)
exposure increases cell invasion (through MMP2 and MMP9) in a dose-dependent manner,
as shown by an in vitro study [67]. In addition to cytokines [57,58] and environmental
contaminants [67,68], estrogen [56,69–71], oxidative stress [71,72], and autophagy [73,74]
all impact invasion. An increasing number of researchers have explored inhibiting cell
invasion or the metastasis of endometriosis by decreasing MMP expression. These findings
have shown that MMPs are involved in the occurrence and progression of endometriosis
by enhancing the invasion of ectopic endometrial cells.

4.1.2. Epithelial-Mesenchymal Transition

When cells lose their epithelial characteristics and acquire the features of mesenchymal
cells, this is known as “epithelial-mesenchymal transition”. This process includes a loss of
polarity, impaired cell adhesion, and the acquisition of the ability to migrate. Several MMPs
have been found to be involved in various cancers, such as gastric cancer, colorectal cancer,
ovarian cancer, and prostate cancer [75–78]. When the expression of Par3 (a marker of cell
polarity) and occludin (a tight-junction protein) decreases, the polarity of epithelial cells
and the tight junctions between cells decrease [79,80], and then, there is an increase in the
migration and invasion abilities [81,82]. These features are beneficial for the formation and
development of the new lesion through epithelial-mesenchymal transition. Chatterjee et al.
reported that MMP7 promoted epithelial-mesenchymal transition in ovarian endometriosis,
and EGF upregulated the expression of MMP7 through the ERK1-AP1 pathway [45].
MMP14 regulates the function and formation of invadopodia, which controls the migration
and invasion abilities of mesenchymal cells [83]. Therefore, we speculate that MMPs may
play a key role in regulating the EMT process in endometriosis. However, since there
are few in-depth studies on the relationship between MMPs and epithelial-mesenchymal
transition in endometriosis, this needs to be further explored.

4.2. MMPs at the Tissue/Organism Level
4.2.1. Angiogenesis

Angiogenesis is activated after the invasion. Moreover, the establishment and de-
velopment of ectopic lesions require vasculogenesis for the lesions to be maintained.
Angiogenesis is an invasive process initiated by MMPs [84] that contributes to endothelial
cells detaching and migrating into new sites. In humans, at least 14 MMPs have been
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found in the vascular endothelium [12]. Specifically, MMP1, 8, and 13, which belong to the
collagenases, are associated with angiogenesis. MMP1 promotes the expression of vascular
endothelial growth factor (VEGF) receptor 2 (VEGFR2) [85], while MMP7 promotes angio-
genesis by activating the VEGF pathway and degrading VEGFR1 [86]. Similarly, TIMP can
regulate angiogenesis by inhibiting neovascularization [87]. Interestingly, MMPs are not
only associated with angiogenesis but can also, in turn, be activated by angiogenic factors,
such as VEGF and fibroblast growth factors (FGFs) [8].

One analogy is that the “ECM” is a reservoir filled with diverse factors, including
VEGF, transforming growth factors, FGFs, and proteases [88,89]. The “ECM” here, unlike
the aforementioned ECM that is rich in collagens and glycoproteins, but the so-called
“non-ECM” contains growth factors and cell adhesion molecules. This explains why MMPs
participate in angiogenesis. MMPs can release various factors by degrading non-ECM. This
forms a vicious cycle that promotes the progression of endometriosis, and MMPs may be
an indispensable factor among these processes.

4.2.2. Fibrosis

Vigano et al. challenged the obsolete definition of endometriosis and placed fibrosis
or myofibroblasts in the public eye [90]. These authors suggested that altering the new
definition could greatly reduce the misjudgment of endometriosis and redirect current treat-
ments in a more effective direction. In terms of the real role of MMPs in fibrosis, a previous
study revealed the effect of BPA on endometriosis, especially in collagen accumulation.
The results demonstrated that exposure to BPA contributed to fibrosis by increasing the
synthesis of collagen I and III and decreasing MMP2 and MMP14 expression [91]. Beyond
that, another study reported that MT1-MMP deficiency caused the fibrosis of soft tissue
because of a reduction in collagen degradation [92]. Interestingly, the findings of Matsuzaki
et al. were the opposite. These authors observed that increased matrix stiffness promoted
not only collagen I synthesis, but also MMP1 and MMP14 expression [93]. These results
can be attributed to the fact that there may be a precise balance between collagen synthesis
and degradation that should be explored in the future. Despite this, it is undeniable that
MMPs play a vital role in the formation of collagen, which is important for the gradual
fibrosis of endometriosis.

4.2.3. Immunological Imbalance

Endometriosis is a chronic inflammatory disorder. Several studies have analyzed nu-
merous cytokines, chemokines, and immunocytes that are altered in endometriosis [94–96].
Oosterlynck et al. found that the activity of natural killer (NK) cells was decreased in
females with endometriosis [97]. Notably, microenvironment-associated ECM components
regulate NK cells’ functions. MMPs can help tumor cells evade immune surveillance
via the cleavage of NK group 2 member D (NKG2D) ligands from cell surfaces [98,99].
Additionally, they can cause the shedding of intercellular-adhesion molecule 1, a pro-
tein that participates in the process of NK cells’ recognition of their target cells [95,100].
Macrophages, acting as another scavenger in endometriosis, are also impaired. The reduced
expression of MMPs on macrophages may be associated with their impaired phagocytic
activity, as MMPs can help the macrophages to degrade the ECM of target cells that will be
phagocyted [101]. Wu et al. suggested that the levels and activities of MMP9 in peritoneal
macrophages were decreased and regulated by prostaglandin (PG) E2 via the EP2/EP4
pathway. Collectively, this may be a potent mechanism of the decrease in the phagocy-
totic capability of macrophages [102]. The cytokines detected in the peritoneal fluid show
different expressions and may be involved in regulating MMPs. IL-10 and IFN have the
ability to increase the expression of MMP2 and MMP9 [57], while IL-6 can upregulate the
expression of MMP9 [103], and IL-β can positively adjust MMP13 activity [104]. Overall,
it has been suggested that MMPs may cause an imbalance in local microenvironmental
immunity in endometriosis and induce the occurrence of disease, by modulating immune
cells or autoimmune factors.
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As previously mentioned, endometriosis is a complex disease that is regulated by
numerous interacting factors which interact. Similarly, the involvement of MMPs is not lim-
ited to the aforementioned stages in the progression of endometriosis, and their additional
functions require further investigation.

5. Potential Value of Inhibiting MMPs in Endometriosis
5.1. MMPs as Biomarkers in Endometriosis

One study has suggested that MMP3 may be one of the most significant genes of the
291 genes that are responsible for endometriosis [105]. Collectively, MMPs are important
in the progress of endometriosis. A cross-sectional study found higher MMP2 expression
in the sera of women with stage III/IV endometriosis than in women with stage I/II
endometriosis, although there were no differences between women with and without
endometriosis [106], which may be due to the low sample size (n = 30). Another study
showed that MMP2 and TIMP2 were associated with advanced-stage endometriosis [107].
In addition, Wu and other experts found that the expression of MMP9 was increased in
patients with recurrent ovarian endometriosis [108]. The expression of MMPs could have a
certain reference value for judging the stage of the disease. However, there have been few
clinical studies in this area; larger sample sizes and more rigorous experimental protocols
are required to verify this.

5.2. MMPs as Therapeutic Targets

The current medical therapies may be classified into two groups: surgery and con-
servative medication. Surgery is effective but can be traumatic. Gonadotropin-releasing
hormone (GnRH) agonists and synthetic progestins are commonly used in clinics; however,
they can cause numerous systemic side effects due to the over-suppression of endogenous
steroid hormone levels [109]. Most patients show severe menopausal symptoms, such
as hot flashes, night sweats, sexual hypoactivity, and osteoporosis [110]. Thus, there are
still challenges in the treatment of endometriosis, and it is urgent to investigate additional
optimal therapies.

MMPs are required for endometrial cells to detach from the endometrium and invade
the peritoneum surface, for vascular endothelial cells to migrate to the new vessel, for
macrophages to recognize and phagocytose escaped cells, and for NK cells to kill targeted
cells, suggesting that MMPs may be an important target for treating endometriosis. To
date, several types of MMP inhibitors have been applied to treat malignant tumors. As
mentioned previously, TIMPs are natural inhibitors of MMPs. Arkadash et al. modified a
high-affinity and highly specific inhibitor of MMP14, which is a TIMP analog [111]. Addi-
tionally, numerous monoclonal antibodies against MMP9 or MMP14 have been evaluated
in clinical trials for gastric and gastroesophageal junction adenocarcinoma, ulcerative coli-
tis, and breast tumors [112–114]. However, various side effects have followed. Marimastat
(BB-2516) showed much promise in a preclinical setting and reached phases II and III
for numerous tumors. However, many patients could not ignore the “musculoskeletal
syndrome”, such as stiffness, inflammation, and joint pain, which forced them to even-
tually discontinue their participation in the study [115]. The anti-metastatic activity of
Neovastat (AE-941) depends on its inhibitory effect on MMPs’ enzymatic activity [116].
However, patients could not tolerate its adverse effects, including flatulence, diarrhea,
nausea, constipation, and rashes [117]. Although their final results may be unsatisfactory
due to the intolerable side effects, their value is evident. The development of inhibitors
that are specific for certain MMPs but do not cross-react with other MMPs is critical for the
development of future MMP inhibitors.

Surprisingly, few studies have focused on the application of anti-MMP compounds
for patients with endometriosis. In endometriosis, the levels of TIMPs are controversial,
but this has not prevented studies from demonstrating that promoting their expression
can suppress endometrial cell invasion. Most studies regard MMPs as biomarkers and
have proven that medicine has the ability to repress the expression of MMPs. However, the
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specific mechanism by which MMPs function is yet to be elucidated. Sharpe et al. injected
40 female Sprague-Dawley rats with GnRH-a and a diluent. After examining the peritoneal
fluid, their results suggested that GnRH-a altered the activity of MMPs [118]. Moreover, it
has been reported that dehydrocostus lactone, isolated from Aucklandia lappa, inhibited the
expression of MMP2 and MMP9 in endometriosis-associated macrophages (EAMs) and
influenced the polarization of macrophages [119]. Resveratrol exerts its anti-inflammatory
effect by modulating MMP activity [26]. Furthermore, cisplatin combined with letrozole
was found to inhibit angiogenesis in a rat model of endometriosis by altering MMP2
activity [120]. As depicted in Figure 1 and Table 2, MMPs have been reported to play a key
role in the invasion. However, additional in-depth mechanistic studies should be conducted;
in particular, it is necessary to conduct a safety assessment for anti-MMP interventions. Overall,
examining numerous medicines has provided evidence to support their anti-endometriosis
activity by reducing MMP activity. However, there is no relevant research on MMP antibodies
in endometriosis. Studies on this should be conducted in the future.

Table 2. MMP interventions for endometriosis.

Drug(s) In Vivo or In Vitro Species or Cell Type MMP Function Reference

GnRH-a In vivo Rats MMPs Inhibit invasion [118]
Atorvastatin and

amygdalin In vivo Rats MMP2, MMP9 Inhibit invasion [121]

Jiawei Foshou San In vivo Rats MMP2, MMP9 Inhibit invasion [122]
Naringeni In vivo Rats MMP2, MMP9 Inhibit invasion [123]
Nobiletin In vivo Mice MMP1, MMP3 Inhibit invasion [124]

Euterpe oleracea
extract In vivo Rats MMP9 Inhibit invasion [125]

Doxycycline In vitro

12Z epithelial
endometriotic cells,

human endometriotic
stromal cells

MMP2, MMP9 Inhibit invasion [126]

Pueraria flower
extract

In vitro and
in vivo

Human endometriotic
cells and mice MMP2, MMP9 Inhibit invasion [127]

Cervus elaphus In vitro Human endometriotic
cells MMP2, MMP9 Inhibit invasion [128]

Cisplatin and
letrozole In vivo Rats MMP2 Inhibit

angiogenesis [120]

Dehydrocostus
Lactone In vitro Human macrophages MMP2, MMP9 Inhibit activation [119]

Resveratrol In vivo
Human (endometrial

tissue, fluid, and
serum)

MMP2, MMP9 Anti-inflammatory [26]

Montelukast In vivo Rats MMP2 Decrease the area
of lesions [129]

Curcumin In vivo Mice MMP2,TIMP2,
MT1-MMP

Decrease the area
of lesions [130]

1,25-Dihydroxy
Vitamin D3 In vitro Human endometriotic

stromal cells MMP2, MMP9 May inhibit
invasion [131]

MMP, matrix metalloproteinase.

6. Summary and Perspective

At present, endometriosis is a challenge for patients, clinicians, and researchers on
account of the poor understanding of how and why the disease develops. As a result, the
effects of clinical medication remain unsatisfactory. MMPs have been an intriguing target
for decades. However, no MMP antibodies or inhibitors have yet been used in clinical
settings due to their intolerable side effects or non-specificity. Hence, further investigation
of their mechanisms and inhibitors is required; this will enhance the therapeutic abilities
of drugs. In endometriosis, information relevant to anti-MMP treatment is lacking, which
poses significant challenges. Considering the crucial role of MMPs in the development of
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endometriosis, it is easy to see the necessity of exploiting anti-MMP drugs. Endometriosis
is a benign disease that behaves in a malignant manner, and it is important to weigh
the advantages and disadvantages of its treatment. Therefore, many aspects of using
MMPs as a therapeutic target need to be carefully considered: For example, can anti-MMP
approaches be used in endometriosis? How can anti-MMP treatments achieve potent
effects without impairing gestation? Furthermore, how can inhibitors or antibodies be
optimally designed in order to reduce side effects? This review highlights the location,
function, and potential value of MMPs, which will help to improve the understanding of
the categories and functions of these key enzymes. Moreover, the review aims to promote
the optimization of future therapies (i.e., making them more specific and patient-friendly).
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