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Abstract

De novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and
expression level in organisms without reference genomes. Investigators must first choose which high throughput
sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454
and Illumina sequences for de novo transcriptome assembly and downstream RNA-Seq applications in a reproductive gland
from a non-model bird species, the Japanese quail (Coturnix japonica). Four transcriptomes composed of either pure 454 or
Illumina reads or mixtures of read types were assembled and evaluated for the same cost. Illumina assemblies performed
best for de novo transcriptome characterization in terms of contig length, transcriptome coverage, and complete assembly
of gene transcripts. Improvements over the Hybrid assembly were marginal, with the exception that the addition of 454
data significantly increased the number of genes annotated. The Illumina assembly provided the best reference to align an
independent set of RNA-Seq data as ,84% of reads mapped to single genes in the transcriptome. Contigs constructed
solely from 454 data may impose problems for RNA-Seq as our 454 transcriptome revealed a high number of indels and
many ambiguously mapped reads. Correcting the 454 transcriptome with Illumina reads was an effective strategy to deal
with indel and frameshift errors inherent to the 454 transcriptome, but at the cost of transcriptome coverage. In the absence
of a reference genome, we find that Illumina reads alone produced a high quality transcriptome appropriate for RNA-Seq
gene expression analyses.
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Introduction

Until recently, evolutionary and population-genomic research

was restricted to the small number of taxa considered model

organisms. Modern next-generation sequencing technologies offer

the opportunity to generate massive (and increasing) amounts of

sequence data easily and affordably. Today, the potential for large-

scale genomic investigations exists for virtually any study system

[1–4]. One approach adopted by the non-model research

community is shotgun-sequencing of transcriptomes [1–4]. With

the advent of deep, parallel sequencing of cDNA (‘‘RNA-Seq’’)

researchers can quantify expression variation in a high-throughput

and cost-effective manner [5,6]. Given options in terms of

sequencing platform and bioinformatics workflow, a pressing

question is what is the optimal strategy to harness both the static

(sequence-level) and dynamic (expression-level) nature of tran-

scriptomes of non-model species.

Until recently, investigators predominantly utilized long se-

quencing reads generated by the 454 GS-FLX (Roche Diagnostics

Corporation; hereafter ‘‘454’’) sequencing platform to facilitate de
novo transcriptome assembly [2,3], e.g., [7–11]. Although 454 is

appropriate for assembly, the millions of short reads produced by

Illumina (Illumina, Inc.) are preferred for RNA-Seq as detection of

differential expression is sensitive to sequencing depth [3,5,12,13].

One approach to RNA-Seq has been to map Illumina short reads

onto a reference constructed from longer 454 reads [14,15]. With

increasing read lengths produced by Illumina HiSeq technology

(currently 125–150 bp), studies assembling de novo transcriptomes

directly from Illumina data are emerging [16–23]. This approach

is attractive, as data for transcriptome characterization and

quantification are collected simultaneously. Recent work compar-

ing technologies using real and simulated data suggest that hybrid

assemblies combining 454 and Illumina reads yield the highest

quality transcriptomes [24–26]. However, collecting both types of

data may be cost-prohibitive. Here, we sequence a transcriptome

of a non-model organism with both 454 and Illumina technologies,

perform de novo assembly with each data type separately and in

combination, and compare the various transcriptomes in terms of

quality and utility for RNA-Seq. Our objective was to model

approaches taken by those studying genomics of non-model

organisms, considering cost as a potential limiting factor. Thus, we

sequenced our transcriptome with both 454 and Illumina

technologies at depths that were approximately the same cost

(,$5000, Table S1).
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Our transcriptome data derive from a reproductive tissue of a

non-model species. Male Japanese quail (Coturnix japonica)

possess a well-developed foam gland that produces a viscous

secretion that is whipped into a stiff foam by contractions of the

cloacal sphincter muscle [27,28]. During copulation, a male

introduces semen and a large quantity of foam to a female’s

reproductive tract [29]. The foam gland is of interest to

evolutionary biologists because it is an example of a novel trait

[27,30], and it is likely involved in sexual selection [31,32]. Foam

is also a key mediator of male fitness, influencing the outcome of

sperm competition and improving several aspects of fertility and

sperm performance [31–36].

We sequenced cDNA from the foam gland with both 454 and

Illumina technologies and assembled transcriptomes following four

schemes previously applied to species without genomic resources

[3,14,24–26,37]. The first two assemblies were composed solely of

reads from one or the other technology (‘‘454’’ and ‘‘Illumina’’

transcriptomes).

The remaining assembly strategies utilized both types of reads

initially subsampled to 50% of the raw data in order to keep costs

comparable to the pure assemblies. The third assembly attempted

to address known issues with systematic errors inherent to 454

sequencing (e.g., homopolymer errors; [4,38]). For this approach,

we mapped Illumina reads onto a 454 assembly, identified points

of discrepancy between the 454 contigs and the majority of

Illumina reads, and created a corrected consensus sequence

(‘‘Corrected 454’’). Finally, we constructed a hybrid assembly

(‘‘Hybrid’’) by merging contigs made by 454 and Illumina data,

and performing an additional round of assembly on those. We

chose to merge contigs, rather than assemble from raw reads,

because recent work in non-model systems suggests that this

method performs better than a merge-reads hybrid approach in

terms of contig length, total transcriptome coverage, and number

of genes identified [25].

Transcriptomes made of Illumina data are often assembled with

de-Bruijn graph based strategies, but these tend to work poorly for

454 data due to indel-errors and low coverage [39]. As our

objective was to construct four high quality assemblies econom-

ically (thereby mimicking the approach adopted by non-model

researchers) we chose to use assemblers optimized for each data

type. Many prior studies compared different transcriptome

assemblers and there is some consensus regarding which

assemblers perform optimally on different sequence types

[16,39–43]. For 454 data, combining output from multiple

assemblers produces the best transcriptomes [39]. Therefore, we

chose the assembly pipeline iAssembler, which performs iterative

assemblies with MIRA (4 cycles) and CAP3 (1 cycle), followed by

automated error detection and correction [41]. For Illumina data

we initially used the Trinity assembler, which has effectively

reconstructed many transcriptomes from Illumina data [18,40,43].

All transcriptomes were subjected to an additional round of

assembly with iAssembler, to reduce variation due to differences in

assemblers.

We initially evaluated the transcriptome assemblies with

standard metrics based on transcript length (e.g., N50, median

contig length, etc.). De novo assembled transcriptomes can retain

errors not captured by standard metrics, such as sequencing errors,

insertions/deletions (‘‘indels’’), misassembled paralogs, chimeras,

and/or partial transcripts [25,44]. Annotation-based metrics can

be more informative of transcriptome quality than the popular

length-based metrics [45]. Although Coturnix quail do not have a

well-annotated genome available, Japanese quail diverged ,34

million years ago from the chicken (Gallus gallus) and exhibit

conserved synteny and chromosomal structure with the chicken

genome [46–48]. Functional annotation using a related species’

genome as a proxy reference is robust for species pairs diverged

less than 100 million years [24]. Thus, we annotated our quail

transcriptomes with the high-quality chicken transcriptome and

assessed how well assembled contigs reproduced orthologous

genes. Finally, we evaluated each transcriptome’s utility for RNA-

Seq by mapping data from an independent sample of foam glands

to each assembly and comparing the alignments.

Methods

Subjects and RNA extraction
Japanese quail were lab-reared and housed on a 16:8 light:dark

cycle. All study males were sexually mature, had phenotypically

normal foam glands, and produced normal foam complements. A

foam gland from a Japanese quail male approximately one year

old was used to generate the 454 data. Foam glands from six

Japanese quail males (two were one-year old and four were five

months old), were used to generate the Illumina data for

transcriptome assembly. For the independent RNA-Seq assess-

ment, we sampled foam glands from six different Japanese quail

males on winter light conditions (8:16 light:dark cycle, with lights

on at 8:00) with testosterone replacement. Testosterone-replaced

males have phenotypically normal foam glands and produce foam

[49,50]. After euthanizing with CO2, we immediately dissected out

foam glands and froze samples on liquid nitrogen. We extracted

RNA with the Agencourt RNAdvance Tissue Kit (Beckman

Coulter) following the manufacturer’s instructions with the

exception that we performed half-reactions. RNA quality and

concentration was assessed by agarose gel electrophoresis and

NanoDrop spectrophotometry. We checked for RNA purity and

integrity using an Agilent 2100 BioAnalyzer.

Library construction
454. We isolated mRNA from one mg total RNA, synthesized

first-strand cDNA and generated ds cDNA following the

manufacturer’s instructions for the SMART Polymerase Chain

Reaction (PCR) cDNA Synthesis Kit (Clontech Laboratories,

Inc.), with the exception that we used SuperScript III Reverse

Transcriptase (Invitrogen) as the reverse transcriptase and made

adjustments accordingly. We amplified the cDNA, confirmed

successful amplification via agarose gel electrophoresis, and

cleaned the PCR products with the QIAquick PCR Purification

Kit (Qiagen). We partially normalized our library subjecting

amplified cDNA to hybridization and double-stranded nuclease

(DSN) digestion following instructions from the TRIMMER

cDNA Normalization Kit (Evrogen) except using only 1/8 and

1/16 concentrations of DSN. Size selection was performed with

the QIAquick Gel Extraction Kit (Qiagen) according to manu-

facturer’s instructions. We enzymatically fragmented the dsDNA

with NEBNext dsDNA Fragmentase (New England BioLabs, Inc.),

end polished using T4 polymerase (New England BioLabs, Inc.),

phosphorylated 59 ends with T4 kinase (New England BioLabs,

Inc.), added an adenine to 39 ends with NEB Taq (New England

BioLabs, Inc.), and ligated Multiplex Identifier (MID) Adaptor #1

for GS FLX Titanium chemistry (Roche/454 Life Sciences) to ds

cDNA using T4 ligase (New England BioLabs, Inc.). Throughout

the normalization, end polishing, and ligation procedure, the ds

cDNA was cleaned with the QIAquick PCR Purification Kit

(Qiagen) when necessary. Cornell University’s Genomics Facility

at the Institute of Biotechnology performed K plate of 454 GS

FLX sequencing with Titanium chemistry on the resulting library

(Roche/454 Life Sciences) in April 2010.

Next-Gen Approaches for Assembly and RNA-Seq in a Non-Model Bird

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e108550



Illumina. In January 2012, six Illumina libraries for the

transcriptome assembly were prepared from approximately 1.2 mg

total RNA using the TruSeq RNA Sample Preparation Kit

(Illumina) following the manufacturer’s instructions. We also

prepared six samples from testosterone-replaced males for the

independent RNA-Seq evaluations. All twelve samples were

tagged with a unique adapter index, pooled, and single-end

sequenced on one lane of an Illumina HiSeq 2000, with a target

read length of 100 bp. Sequencing was performed by Cornell

University’s Genomics Facility at the Institute of Biotechnology in

April 2012. Raw data for the sequencing runs is reported in Table

S1.

Transcriptome assembly
454. Initial quality filtering of reads was performed by the

Cornell University’s Genomics Facility at the Institute of

Biotechnology. SeqClean (http://sourceforge.net/projects/

seqclean/) was used to trim low complexity sequences and short

sequences (,90 bp). MID-1 and SMART adaptors were trimmed

using both SeqClean and NextGENE (Softgenetics). We assem-

bled the reads into unigenes using two rounds of iAssembler [41].

In all instances where iAssembler was applied, we used iAssembler

version v1.2.2 with default parameters except that minimum

overlap was set to 30 and 95% identity was used for sequence

clustering and assembly [41]. Contigs and singletons from the first

round of iAssembler served as input for the second round to

produce 68,678 unigenes (42,484 of which were represented by

singletons). We retained all unigenes over 200 bp for further

analysis (47,859 unigenes).

Illumina. Initial quality filtering and barcode removal were

performed by Cornell University’s Genomics Facility at the

Institute of Biotechnology. We used fastq-mcf version 1.04.636

(http://code.google.com/p/ea-utils/wiki/FastqMcf) to remove

Illumina adaptors, trim low-quality terminal ends, discard short

sequences, and filter reads. Fastq-mcf scans a sequence file for

adapters and, based on a log-scaled threshold, determines a set of

clipping parameters by initially evaluating a subsampled portion of

the data. We used fastq-mcf with default parameters, except that

we subsampled one million reads for threshold estimation, quality

filtered for mean phred scores ,20, and set the percentage of bad

reads causing cycle removal to 1. We merged the six libraries into

a single file and assembled a transcriptome using Trinity release

2012-06-08 with default parameters [40]. Contigs produced by

Trinity were then clustered into 37,166 unigenes with iAssembler.

Hybrid. As one of our goals was to assemble libraries that

represent approximately the same cost, prior to the Hybrid

transcriptome assembly, we randomly subsampled 50% of the 454

and Illumina filtered reads using custom awk scripts. As a result,

the Hybrid transcriptome represents roughly the same amount of

sequencing cost as the 454 and Illumina transcriptomes. We then

assembled the subsampled 454 and Illumina data with iAssembler

and Trinity, respectively, as above. The output of these two

preliminary assemblies were merged into a single file and

assembled with iAssembler as before.

Corrected 454. We used Illumina data to correct errors with

a 454 transcriptome using the Nesoni pipeline, version 0.85

(http://www.bioinformatics.net.au/software.nesoni.shtml). Nesoni

utilizes the SHRiMP short read mapper to align short reads to an

assigned reference [51]. Positions where disparity exists between

the majority of reads and the reference are identified, corrected,

and the consensus sequences forms a corrected sequence set. We

input the 454 transcriptome as reference, Illumina data as reads,

and created consensus sequences using default parameters, with

the exception that we allowed reads to be mapped to multiple

places. Because we wanted to maintain comparable sequencing

costs, both the 454 reference transcriptome and Illumina reads

reflect data initially sampled to 50% as generated during the

Hybrid assembly (with one additional round of iAssembler for the

454 reference, for a total of two rounds of iAssembler). Only those

transcripts with at least one aligned read were retained. Terminal

N’s were trimmed from the sequence and only sequences greater

than 200 bp were retained. The cleaned consensus sequence set

represents the Corrected 454 assembly.

Transcriptome evaluation
Unless specified, analyses were conducted in R version 2.15.1

and RStudio version 0.96.330. Figures were made in ggplot2 [52].

Standard metrics. For each assembly, we calculated stan-

dard metrics of quality including number of contigs, average

contig length, median contig length, N50 (median contig size

weighted by length), the distribution of contig lengths, and

summed contig length [24,39]. We downloaded all chicken coding

sequences from Ensembl version 68 (G. gallus assembly:

WASHUC2) via the BioMart tool [53] and calculated the same

standard metrics for comparison. Prior to computation of basic

metrics, we removed contigs #200 bp in each dataset, as Trinity

assemblies do not report contigs #200 bp. We were also interested

in how well each assembly predicted open reading frames and

identified open reading frames with OrfPredictor [54]. OrfPre-

dictor outputs the ‘best’ open reading frame, which is the longest

among the six possible reading frames for a putative transcript. For

each assembly, we computed the frequency of contigs with no

open reading frames and the distribution of the lengths of open

reading frames.

Ortholog comparisons. We used data from the chicken to

identify orthologs. All chicken protein sequences from Ensembl

version 68 (G. gallus assembly: WASHUC2) were downloaded via

the BioMart tool [53]. We filtered the protein set to remove

redundant entries (i.e., duplicates, alternative splice variants) by

self-BLAST following Hornett and Wheat [24]. Briefly, for any

pairwise BLASTp hit with an e-value #1 * 1026, .90% similarity,

and .33 amino acids in length, we removed the shorter of the two

proteins. All BLAST steps were performed in parallel via Cornell

University’s Computational Biology Application Suite for High

Performance Computing. The reciprocal best blast method was

used to determine orthologs with a cutoff e-value of 1 * 1026 [55–

57]. We report the number of orthologs identified for each

transcriptome assembly and present their distributions in a Venn

diagram made with the VennDiagram package v1.6.5 in R [58].

For each contig from the various transcriptome assemblies, we

computed the ‘‘ortholog hit ratio’’ as described by O’Neil et al.
[62]. This ratio represents the length of a putative coding region of

a contig divided by the length of the coding region of its

orthologous transcript. The hit region of the best BLASTx result

between a contig and its ortholog was used as a conservative

estimate of the ‘‘putative coding region’’ of a contig. Only

reciprocal best hits were used for ortholog hit ratio determination.

Lengths are in amino acids. An ortholog completely represented

by a contig would have a ratio of ‘‘1’’. Ratios less than 1 indicate

instances where contigs only partially covered orthologs, while

ratios greater than 1 usually indicate insertions in contigs.

Independent RNA-Seq assessment. We produced an

independent Illumina RNA-Seq dataset from foam glands of six

different foam-producing Japanese quail males to evaluate the

utility of our various assemblies for gene expression analyses. The

RNA-Seq data were merged into a single file and aligned using the

Burrow-Wheeler transform as implemented in the aln algorithm of

BWA with default parameters except that -q was set to 20 [59].

Next-Gen Approaches for Assembly and RNA-Seq in a Non-Model Bird
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For the chicken, we relaxed an additional criterion given expected

divergence between chicken and quail, setting -n to 0.1. The

Nesoni pipeline (http://vicbioinformatics.com/nesoni.shtml) was

used to generate statistics about the quality of the alignments to the

various assemblies including the number of mapped/unmapped

reads and the number of indels per 100,000 bp identified between

each assembly and the majority of the RNA-Seq data. We

calculated the number of uniquely mapped reads with samtools

[60].

Data accessibility
Raw data have been deposited on the Short Read Archive

under accession numbers SRR1346108 and SRR1352724.

Ethics statement
All animal procedures were approved by Cornell University’s

Institutional Animal Care and Use Committee under permit

2002–0117.

Results and Discussion

Standard transcriptome quality assessment
We sequenced foam glands with the 454 and Illumina platforms

and assembled the raw data into four transcriptomes, each having

approximately the same sequencing cost: two made solely from

each type of data (454, Illumina), one that used Illumina data to

correct errors in the 454 transcriptome (Corrected 454), and one

that used both kinds of data as input (Hybrid). High quality

assemblies possess near full-length contigs representing most of the

actual transcriptome. We first evaluated each transcriptome

assembly and the Chicken coding sequence set using a suite of

standard metrics [24,39]. We use the Chicken coding sequence set

as a tool for comparing the relative performance of the various

transcriptomes, as gene length is highly conserved within

eukaryotes [61], but recognize that the chicken transcriptome

comprises a much more diverse collection of sequences as they

derive from multiple tissues, life history stages, and sexes. Thus,

our expectation is that the foam gland transcriptome should only

contain a portion of the genes transcribed in the Chicken sequence

set.

The Illumina assembly displayed the highest values across most

standard metrics of transcriptome quality, followed by the Hybrid

assembly (Table 1). The distribution of contig lengths are quite

different between the 454- and Illumina-based datasets, although

similar to patterns described previously (Figure 1a) [18,25]. Both

the Illumina and Hybrid assemblies generated many contigs that

were long (Figure 1; Table 1) and covered a large portion of the

transcriptome (summed contig length in Table 1, which has been

used previously as a proxy for transcriptome coverage [24]). In

contrast, the 454 assembly tended to have short contigs (e.g., N50,

mean, longest contig) and a low summed length (Figure 1;

Table 1). Although the Hybrid transcriptome generated many

long contigs, it also had proportionally more short contigs

(Figure 1), deflating several standard metrics relative to the

Illumina transcriptome (N50, mean in Table 1). We also find that

the absolute longest contigs derive from the Illumina-only

assembly (Table 1). Interestingly, the Hybrid transcriptome is a

composite of both the 454 and Illumina transcriptomes in terms of

contig length; at shorter length ranges, 454-like contigs dominate

the Hybrid assembly, whereas long contigs from the Hybrid

assembly more closely resemble the Illumina transcriptome

(Figure 1). Previous work showed that hybrid, rather than

Illumina-only, assemblies produced the largest summed contig

lengths, although results were mixed regarding which technology

used singly yielded the next best outcome [24,25]. One study also

found that transcriptome assemblies composed solely of Illumina

reads had longer contigs than those composed only of 454 reads

[24], but other studies did not get this result [25,37].

We note that the median contig lengths are very similar across

all four transcriptomes, but that the means of the Illumina and

Hybrid assemblies are much higher (Table 1). This is likely

because all of the de novo assembled transcriptomes produced an

excess of very short contigs (,200 bp) relative to the Chicken

coding sequences, but the Hybrid and Illumina assemblies had

many more long contigs (Figure 1a). This result highlights that all

four assembly strategies have problems because they produce

many short contigs. Further, though the Illumina and Hybrid

assemblies generated many long contigs, it is worth noting that the

much more diverse Chicken sequence set has fewer long sequences

than either the Hybrid or Illumina transcriptomes (Figure 1).

Thus, many of the long transcripts in the Hybrid and Illumina

Figure 1. Distribution of contig lengths for each transcriptome
assembly. a) Histogram of contig lengths (natural-log transformed) in
nucleotide base pairs of each of the transcriptome assemblies and the
Chicken coding sequence set. b) Histogram of open reading frame
lengths (natural-log transformed) in base pairs predicted for each of the
transcriptome assemblies and the Chicken coding sequence set.
Legend applies to both graphs.
doi:10.1371/journal.pone.0108550.g001
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data sets may be isoforms (we removed isoforms from the Chicken

sequence set for these analyses) or simply false.

The Corrected 454 assembly performed poorly across almost all

basic metrics revealing short contigs representing a small portion

of the expected transcriptome size (Table 1). This pattern arises in

part because the preliminary 454 transcriptome constructed from

50% of the 454 data constitutes an upper limit in terms of number

and length of contigs for the Corrected 454 assembly. For

example, the dramatic decrease in the number of contigs from the

454 assembly is because, in addition to using only half the 454

data, the Corrected 454 transcriptome is also limited to consensus

sequences between the preliminary 454 transcriptome and RNA-

Seq data. Hence, only the subset of the preliminary 454 assembly

with at least some mapped Illumina reads was retained.

Improvements in the Corrected 454 versus the 454 transcriptomes

are seen as revised errors within the assembly and would not be

captured by standard metrics (Tables 2, 3).

Some errors in transcriptome assembly (e.g., homopolymer

errors) can produce frameshifts, in which case downstream

analyses reliant on properly called open reading frames would

be difficult. Frameshifts can create premature stop codons,

resulting in shorter open reading frames. We predicted open

reading frames in silico for each transcriptome assembly and

computed the frequency of contigs with no open reading frames,

as well as the distribution of the lengths of open reading frames

(Table 2, Figure 1b). All of the assemblies again produced an

excess of short open reading frames compared to the chicken

coding sequence (Figure 1b). The 454, Illumina, and Hybrid

assemblies all produced a high number of open reading frames,

but the 454 transcriptome did so at the cost of long contigs and a

relatively high frequency of contigs with no reading frames

(Table 2, Figure 1b). Only the Illumina and Hybrid transcrip-

tomes produced a high number of contigs with long open reading

frames, with the Illumina performing slightly better than the

Hybrid assembly (Figure 1b; Table 2). Again, comparisons with

the Chicken sequence set suggest many of the de novo assembled

contigs may be isoforms or false transcripts. Correcting the 454

data with Illumina sequences decreased the proportion of contigs

without open reading frames, suggesting this may be an effective

strategy to remove nonsense errors in 454-based transcriptomes

(Table 2).

Previously, approaches combining both 454 and Illumina data

revealed significant improvements over either single technology

using similar metrics [25,26]. Here, we find that Illumina data

alone produces transcriptomes that are better in quality than

assemblies incorporating both types of data. The discrepancy

between our results and previous work may be due to aspects of

our experimental design. Since our sequencing efforts, 454 has

introduced GS FLX+ chemistry (Roche Diagnostics Corporation),

which promises more reads that are longer (up to 1000 bp) than

the GS FLX Titanium chemistry we used. Longer reads can

improve transcriptome contiguity and reduce mis-assembly of

short reads [26]. We chose to sequence one-half lane of Illumina

and one-half plate of 454 for the transcriptome assemblies because

these strategies had approximately the same cost. However, for

this cost Illumina sequencing generated significantly more data

(Table S1). The discrepancies in coverage could, therefore, explain

many of the differences in transcriptome quality. Nevertheless, in

construction of our Hybrid transcriptome, our merge-contigs

approach started with more contigs from the 454 assembly (,45K)

than the Illumina assembly (,32K), yet the Hybrid assembly

performed much better than the 454-only transcriptome (Table 1,

Figure 1). Another possibility is that differences in the levels of

polymorphism in the input samples could influence transcriptome

quality. The 454 data were produced from a single individual,

whereas the Illumina data were generated from six males. Other

studies using Trinity for de novo transcriptome assembly have

found that contig length or gene recovery (but not accuracy) are

negatively influenced by increased polymorphism [43,44]. Given

that we find improved performance with our sampling that has

increased polymorphism (i.e., Illumina), polymorphism differences

likely do not explain our main results. Additionally, we sequenced

a single tissue that expresses fewer genes than would be expressed

across all tissues. Thus, assemblies generated with short Illumina

Table 1. Standard metrics of transcriptome assembly (lengths and N50 in base pairs).

Assembly
Number of
contigs N50

Median contig
length

Mean contig
length

Maximum contig
length

Summed contig
length

454 47,859 410 336 395 3,387 18,888,486

Illumina 37,166 1297 389 749 12,391 27,823,843

Corrected 454 13,643 398 331 380 1,906 5,189,883

Hybrid 47,003 646 343 537 8,691 25,231,308

Chicken coding 23,392 2136 1068 1507 26,362 32,322,198

doi:10.1371/journal.pone.0108550.t001

Table 2. Number and frequency of contigs with no open reading frames.

Assembly # contigs with ORF # contigs with no ORF Frequency (%)

454 47,342 517 1.09

Illumina 36,961 206 0.55

Corrected 454 13,621 22 0.16

Hybrid 46,639 364 0.78

Chicken coding 17,031 2 0.01

doi:10.1371/journal.pone.0108550.t002
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reads may be appropriate for sequencing a smaller number of

genes, but hybrid assemblies may exhibit improvements as the

number and diversity of expressed genes increase.

Comparisons with orthologs
De novo assembled transcriptomes from non-model species rely

on BLAST-based annotations to provide information about gene

identity and function. We exploited the fact that quail and chicken

are closely related and determined quail-chicken orthologs via

reciprocal best BLAST [55,56]. We find that assemblies that

include some Illumina sequences outperform those built solely

from 454 reads in terms of the number of orthologs identified,

providing significantly more annotations. We identified at least

1,100 more orthologs from the Hybrid (8,547) and Illumina

assemblies (7,918) than the 454 transcriptome (6,789) (Figure 2).

Again, the Corrected 454 transcriptome was limited by its

consensus-based assembly pipeline (3,367 orthologs). However,

by aligning RNA-Seq data to the 454 dataset in the construction of

the Corrected 454 assembly, we retained a higher proportion of

contigs with orthologs (0.24) compared with the 454 transcriptome

(0.14). Our results contrast with previous work that annotated

similar numbers of [24,25] or more [37] contigs in assemblies from

454 data than Illumina data. Compared to the previous studies, we

either generated more Illumina and less 454 sequence data, or

implemented the newer Illumina HiSeq 2000 sequencing

technology (Table S1; [25,37]). Hybrid assemblies performed well

across studies (present study, [24,25]).

If a research goal is to annotate the maximum number of genes,

combining annotations from hybrid and single-data assemblies is

the preferred method (Figure 2). The 454 reads contributed an

additional 1,865 annotations over the Illumina assembly, whereas

the Illumina data added 2,994 annotations over the 454

transcriptome. These are significant contributions, as only 9,812

contigs were annotated in total. Therefore, utilizing both types of

data can substantially improve the number of gene annotations,

although improvement is greater with Illumina. It should noted,

however, that the quality of the annotations added by the 454

assembly may be low, as these annotations are likely represented

by low coverage contigs that incompletely recover gene sequences

(Figure 3).

Contigs from optimal assemblies represent full, not partial, gene

sequences. We assessed how well contigs from each assembly

reproduced ortholog length by calculating the ‘‘ortholog hit ratio’’

(Figure 3; [18,62]). This ratio is the length of the assembled contig

length relative to the length of its chicken ortholog as defined by

reciprocal best blast hits. Contigs representing fully assembled

transcripts have ortholog hit ratios close to one. Values less than

one represent partial contigs, whereas values greater than one

generally (but not always) indicate an insertion in the assembled

contig. Because we only examined the ortholog hit ratios from the

reciprocal best BLAST hit, this metric is conservative (i.e., parts of

orthologs may be represented by contigs that are not the reciprocal

best hit). Still, Hornett and Wheat [24] found that the longest

assembled contig per ortholog (which was often also the reciprocal

best hit in our datasets) is the single best metric for assessing

transcriptome performance.

All assemblies displayed many ratios less than one, suggesting

that partial transcripts are a challenge for de novo assembled

transcriptomes (Figure 3). The Illumina and Hybrid assemblies

had many more fully assembled transcripts than either the 454 or

Corrected 454 assemblies, with the Illumina assembly in particular

revealing a high number of transcripts with ortholog hit ratios

equal to one (Figure 3). The greater depth of coverage provided by

Illumina sequencing may be partly responsible for the increase in

the number of full-length or nearly full-length assembled

transcripts [62]. The Illumina and Hybrid assemblies performed

well at constructing complete transcripts across both small and

large orthologous genes (Figure 4), whereas the ability of the 454

and Corrected 454 assemblies to build full transcripts degraded

quickly with ortholog length (Figure 4). High completeness of

transcripts across many ortholog sizes has been demonstrated

previously for Illumina-only transcriptome assemblies [18,62].

Independent RNA-Seq assessment
A general challenge for RNA-Seq analyses is dealing with

ambiguity in read mapping, and one proposed solution is to retain

only uniquely mapped reads for detection of differential expression

[6,63]. Therefore, for de novo transcriptome assemblies to be

useful for many gene expression analysis, a large proportion of

high quality RNA-Seq reads need to map unambiguously to a

single contig with few errors. We generated Illumina sequences

from foam glands of an independent set of Japanese quail males

and aligned reads to each of the four transcriptome assemblies and

the Chicken coding sequence set. To assess each assembly’s utility

for RNA-Seq, we calculated the total number of aligned reads and

the number that mapped uniquely or ambiguously (Figure 5). Our

results suggest that assemblies built from Illumina data alone offer

the best combination of quantity (total number) and quality

(proportion unique) of mapped reads for RNA-Seq.

Table 3. The number of deletions, and insertions per
100,000 bp identified between RNA-Seq and an assembly.

Assembly Deletions Insertions

454 307.36 61.47

Illumina 0.98 0.46

Corrected 454 17.04 0.93

Hybrid 64.93 79.73

Chicken coding 0.33 0.19

doi:10.1371/journal.pone.0108550.t003

Figure 2. Venn diagram of the number of orthologs for each de
novo assembled transcriptome. Orthologs were identified via
reciprocal best BLAST with chicken and each transcriptome assembly.
Non-white numbers indicate orthologs that were unique to one
assembly.
doi:10.1371/journal.pone.0108550.g002
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The Illumina transcriptome allowed for the largest number of

mapped reads, but at least half of the total reads mapped when

aligned to any de novo assembled quail transcriptome (Figure 5).

In contrast, a large proportion of reads remained unmapped when

the chicken transcriptome was used as reference. Strikingly, the

Illumina assembly allowed for a very high proportion of uniquely

mapped reads (Figure 5), whereas any transcriptome built with

454 data resulted in a significant portion of ambiguously mapped

reads (Figure 5).

Either something particular to the 454 reads or the assembly

pipeline could be responsible for the high levels of ambiguity in the

Hybrid and 454 transcriptomes. One option is that erroneous

indels in the 454 transcriptome produce ambiguous mappings.

Because correcting 454 transcriptomes reduces indels (Table 3)

but does not reduce the frequency of ambiguously mapped reads

(Figure 5), this is likely not the issue. A more promising

explanation is that the 454 reads produced transcriptomes with

a high number of contigs representing portions of the same genes

causing Illumina reads to map to multiple contigs in the

transcriptome. This is consistent with the observed excess of short

reads and low ortholog hit ratios found in 454-based libraries

(Figures 1a, 3). Additionally, though the final assembler used for

the all four transcriptomes was the same, differences in the initial

assembler could have introduced biases that would make reads

more or less likely to map uniquely. For example, the first round of

assembly in all transcriptomes explicitly attempts to retain isoforms

(Trinity, the MIRA cycles of iAssembler use the EST mode which

keeps isoforms), but differences in how the isoforms are called may

influence the frequency of shared exons between contigs,

producing ambiguity [40,41]. Finally, even though the RNA-Seq

data derived from an independent set of birds, the sampling and

raw sequence data were nearly identical to strategies used for the

Illumina transcriptome, and it may be unsurprising that it

produces a higher proportion of uniquely mapped reads.

Nevertheless, Illumina or similar short-read data are currently

the standard for RNA-Seq projects, and our results suggest

that Illumina-based assemblies will indeed be most appropriate

for RNA-Seq experiments mapping to de novo assembled

transcriptomes.

Biases inherent to next-generation sequencing can compromise

accurate quantification of gene expression [64]. False indels are

one type of bias that may be problematic for RNA-Seq. They

result in fewer high quality mapped reads or more mis-assigned

reads, both of which would negatively affect the detection of true

differences in expression. Downstream applications with tran-

scriptomes that rely on properly called open reading frames (e.g.,

Figure 3. Ortholog hit ratios for each transcriptome assembly. Histograms of ortholog hit ratios (i.e., contig lengths relative to ortholog
length) for contigs generated from the 454, Illumina, Corrected 454, and Hybrid transcriptome assemblies. Ratios equal to 1 indicate fully assembled
transcripts. Values ,1 signify partial transcripts and values .1 than represent contigs with insertions relative to orthologs. Orthologs were
determined by 1:1 reciprocal best blast hits with chicken.
doi:10.1371/journal.pone.0108550.g003
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calculation of evolutionary rates) would be further complicated by

erroneous frameshifts produced by false indels. To assess

potentially confounding errors in our various transcriptomes, we

computed the number of indels per 100,000 bp identified between

the consensus alignments of RNA-Seq reads and each assembly

(Table 3). The Illumina assembly formed similar numbers of indels

as the Chicken transcriptome (Table 3), which is reassuring given

that the Chicken coding sequences are certainly in frame

(Table 2). Strikingly, mapping RNA-Seq reads to the 454 or

Hybrid assemblies produced two-three orders of magnitude more

indels than alignments with the Illumina or Chicken transcriptome

(Table 3). Indels could reflect errors in the assembled transcrip-

tome, mistakes in the RNA-Seq data, or true polymorphisms. We

believe our 454 data is at fault given a large reduction in indels

after correcting the 454 assembly with Illumina data (Table 3), a

low incidence of indels in the transcriptomes without 454 data

including the high quality Chicken sequence set, and previously

described homopolymer issues with 454 technology [4,38]. Since

correcting the 454 transcriptome with Illumina data significantly

reduces the frequency of seemingly erroneous indels, researchers

doing RNA-Seq analyses with 454-based transcriptomes should

consider performing a consensus-based correction step prior to

detection of differential expression. It is worth noting that the

quantification of differential gene expression can be robust to

Ortholog length (log_10(AA)) Ortholog length (log_10(AA))

Ortholog length (log_10(AA))Ortholog length (log_10(AA))

Figure 4. Relationship between ortholog hit ratio and ortholog length for each transcriptome assembly. The ortholog hit ratio
standardizes contig lengths relative to ortholog length. Contigs representing complete transcripts will have ratios equal to 1. Ortholog lengths are in
amino acids and were log10 transformed. Orthologs were determined by 1:1 reciprocal best blast hits with chicken.
doi:10.1371/journal.pone.0108550.g004

Figure 5. Performance of each assembly for RNA-Seq read
mapping. Proportion of 88,446,213 RNA-Seq reads that mapped
uniquely (grey), ambiguously (black), or were unmapped (light grey) to
each of the transcriptomes.
doi:10.1371/journal.pone.0108550.g005
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sequencing errors, though this finding was based on the errors and

error rates specific to Illumina, not 454, sequencing [44].

Recent work suggests that directly mapping RNA-Seq reads to a

related species’ transcriptome (up to 15% divergent) outperforms

mapping to de novo assembled transcriptomes in terms of

accurately quantifying gene expression [44]. We aligned our

RNA-Seq data to the Chicken sequence set. Comparisons of

Japanese quail and chicken reveal on average 14% sequence

divergence at protein-coding mitochondrial loci [65]. Despite

levels of divergence within the recommended range, we found that

directly mapping Japanese quail RNA-Seq reads to the Chicken

transcriptome performed poorly, as few reads aligned, many of

which had ambiguous assignments (Figure 5). In fact, all

transcriptomes constructed de novo from Japanese quail data

allowed for many more uniquely mapped reads than the chicken

sequence set (Figure 5). Thus, we find that decent transcriptomes

from a focal species serve as a better reference for RNA-Seq than

excellent transcriptomes from a distant relative.

Differences in the nature of the data examined may explain the

disparity between our results and previous work. To mimic

reference-based mapping, Vijay et al. [44] introduced varying

levels of divergence (5–30%) in silico to the zebra finch

transcriptome and mapped simulated RNA-Seq reads, also from

zebra finch, back to the various transcriptomes. Their datasets

accounted for simple differences due to nucleotide polymorphisms

and indels, but did not incorporate more complex forms of

variation that could affect the ability to map RNA-Seq data (e.g.,
inversions, gene rearrangements, duplications, exon shuffling). As

we utilized non-simulated data, our reference-based mapping

approach encompassed both simple and complex forms of

sequence divergence that occurred after the Japanese quail and

chicken lineages split. Increasing transcriptome complexity (size,

paralogs, alternatively spliced isoforms) negatively affects both de
novo transcriptome assembly and the ability to quantify gene

expression [44]. Therefore, we caution directly mapping to a

reference transcriptome from a model species, unless sequence

differences between the target and reference are known to be

simple.

Conclusion

We compared assemblies generated from mixtures of 454 and

Illumina reads for de novo transcriptome assembly and utility for

RNA-Seq analyses in a non-model species. The Illumina assembly

often performed the absolute best in standard assays of

transcriptome quality, though both the Hybrid and Illumina

assemblies produced longer contigs covering more of the

transcriptome than 454-based assemblies. Hybrid and Illumina

assemblies also afforded more gene annotations that better

reproduced ortholog lengths. However, if a goal is to identify the

maximum number of annotations, utilizing both 454 and Illumina

is preferred, as each contributes a significant number of

annotations. Correcting the 454 library with Illumina data

drastically reduced the error rate in terms of indels and premature

stop codons, but at the cost of contig length and gene annotation.

The Illumina assembly offered the best reference for RNA-Seq

data, delivering the highest number of uniquely mapped reads by

far. Our results may be unsurprising given the vast differences in

the number of reads generated by the two technologies. However,

cost is often a limiting factor when working with non-model species

and we spent approximately the same amount of money to

generate both types of data.

A current challenge facing the non-model community is how to

navigate the landscape of next-generation sequencing efficiently

and economically. In the past, researchers considered a two-step

approach, first building a transcriptome (often from 454 reads)

that later served as a reference for mapping RNA-Seq reads,

generally generated from a separate Illumina run (e.g., [14,15]).

From sequencing one-half of an Illumina lane, we assembled a

high quality transcriptome that consistently outperformed a 454

and mixed data transcriptome for less money. De novo assemblies

made from paired-end Illumina sequences are likely to be even

better than the results obtained here. Moreover, our Illumina data

averaged 20 million reads per sample, which is well within the

range the suggested number for robust detection of differential

gene expression (10-30 million reads; [13], but see [66]). To be

fair, our study represents a single snapshot in time and is

conservative. Indeed, both sequencing platforms currently pro-

duce more data with increasing read lengths and fewer errors, at

less cost. Although Roche has recently announced that they will be

taking 454 technology off the market, our results are likely

applicable to users of the popular Ion Torrent Personal Genome

Machine sequencing platform, as the high rate of homopolymer-

associated indel errors and mean read length are comparable to

our 454 data [67–69]. In summary, for researchers on limited

budgets with few genomic resources, the present study shows that

sequencing transcriptomes with Illumina technology provides

sufficient data for de novo assembly and RNA-Seq analysis in a

single step.
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