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OBJECTIVES: Hepatocellular carcinoma (HCC) surveillance with biannual ultrasound is currently recommended for all patients
with cirrhosis. However, clinical implementation of this “one-size-fits-all” approach is challenging as evidenced by its low
application rate. We aimed to evaluate the cost-effectiveness of risk-stratified HCC surveillance strategies in patients with
cirrhosis.
METHODS: A Markov decision-analytic modeling was performed to simulate a cohort of 50-year-old subjects with compensated
cirrhosis. Risk-stratified HCC surveillance strategies was implemented, in which patients were stratified into high-, intermediate-,
or low-risk groups by HCC risk biomarker–based scores and assigned to surveillance modalities tailored to HCC risk (2 non-risk-
stratified and 14 risk-stratified strategies) and compared with non-stratified biannual ultrasound.
RESULTS: Quality-adjusted life expectancy gains for biannual ultrasound in all patients and risk-stratified strategies compared
with no surveillance were 1.3 and 0.9–2.1 years, respectively. Compared with the current standard of biannual ultrasound in all
cirrhosis patients, risk-stratified strategies applying magnetic resonance imaging (MRI) and/or ultrasound only in high- and
intermediate-risk patients, without screening in low-risk patients, were cost-effective. Abbreviated MRI (AMRI) for high- and
intermediate-risk patients had the lowest incremental cost-effectiveness ratio (ICER) of $2,100 per quality-adjusted life year gained.
AMRI in intermediate- and high-risk patients had ICERs o$3,000 across a wide range of HCC incidences.
CONCLUSIONS: Risk-stratified HCC surveillance strategies targeting high- and intermediate-risk patients with cirrhosis are cost-
effective and outperform the currently recommended non-stratified biannual ultrasound in all patients with cirrhosis.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the leading cause of
death in patients with cirrhosis, largely related to failed
early detection. Liver disease societies worldwide recommend
HCC screening in cirrhosis using biannual abdominal
ultrasound,1–4 which has been associated with early tumor
detection, increased curative treatment receipt, and improved
overall survival.5,6 Although biannual ultrasound for all
cirrhotic patients is cost-effective compared with no screening,
ultrasound can miss one-third of early-stage HCC due to its
suboptimal sensitivity.7–9 Other imaging modalities with higher
sensitivity for early tumor detection, such as dynamic contrast-
enhanced magnetic resonance imging (MRI), have not been
recommended as alternatives given its higher cost.1

HCC screening is recommended when annual HCC
incidence exceeds 1.5%, assuming uniform HCC incidence

among patients’ subgroups with specific liver disease etiology
and severity.1 However, studies have suggested that HCC risk
is not uniform across all patients within a clinical risk group,
and therefore the current one-size-fits-all approach likely
results in overestimated or underestimated HCC risk for each
individual.10 Furthermore, this approach has proved to be
difficult to implement in actual clinical practice as evidenced by
the low utilization rate o20% in the United States due to the
sizable cirrhotic population.11,12 Accurate HCC risk stratifica-
tion and optimized allocation of medical resources could
enable rational and practically feasible implementation of
HCC screening.
Prior studies have demonstrated several clinical HCC risk

factors in cirrhotics, including older age, male sex, viral
etiology of liver disease, Child–Pugh B/C cirrhosis, diabetes,
and obesity, although risk prediction based on these variables
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yielded insufficient accuracy.10,13 Tissue-, blood-, or buccal
swab–based molecular HCC risk biomarkers applicable to a
wide range of liver disease etiologies, some of which are now
clinically available as Laboratory Developed Test, combined
with clinical variables have shown capability to predict 5- to
10-fold HCC risk differences using tissue or serum
specimens.14 We aimed to evaluate the cost-effectiveness of
risk-stratified HCC screening in cirrhosis based on molecular
clinical HCC risk scores.

METHODS

Model and patient population. A previously reported
Markov model simulating HCC screening, diagnosis, and
therapy based on a health system perspective was refined
and updated (TreeAge Pro, Williamstown, MA)9 following the
recommendations.15 The baseline population was a cohort of
50-year-old subjects with compensated cirrhosis (n=10,000)
followed up with a 6-month cycle for 30 years (Figure 1). The
setting of the study was based in the United States. Transition
probabilities were derived from the published literature
(Table 1, Supplementary Methods). Reporting followed the
CHEERS guidelines (Supplementary Reporting Checklist).16

Screening-detected and undetected HCC were distin-
guished. Depending on the performance of screening
modalities, HCC could be detected at an early stage or
remain undetected until an advanced stage. HCC detected
at an early stage in compensated cirrhosis were eligible for
tumor resection, liver transplantation, or local ablative thera-
pies; whereas patientswith decompensated cirrhosis and early-
stageHCCwere eligible for liver transplantation or local ablative
therapies. Patients with advanced tumors received palliative
treatments, including chemoembolization, systemic therapy, or
best supportive care, as recommended by guidelines.1 Our
model assumptions include (1) positive screening tests (i.e.,
lesions ≥1 cm in diameter) were evaluated with diagnostic

contrast-enhancedMRI; (2) patients with characteristic findings
of HCC on the diagnostic MRI did not undergo further
diagnostic evaluation prior to treatment; (3) patients with a
positive screening test but negative diagnostic MRI underwent
biopsy to evaluate the suspicious nodule; (4) patients with false
positive screening tests and subsequent negative biopsy had a
follow-up MRI examination and, if the MRI was negative, were
returned to prior screening strategy; and (5) HCC risk was
stable over time during the observation period.

HCC screening strategies. Based on our preceding
cost-effectiveness analysis of HCC screening by different
combinations of ultrasound, CT, MRI, and AFP, the
most cost-effective strategy, biannual ultrasound with 100%
utilization rate (US2× -100%), was chosen as the reference
strategy in the current study.9 The reference strategy was
compared with two non-risk-stratified screening strategies:
(1) biannual dynamic contrast-enhanced triple-phase MRI
(full MRI) with 100% utilization rate (MRI2 × -100%); (2)
biannual abbreviated contrast-enhanced MRI (AMRI)17,18

with 100% utilization rate (AMRI2 × -100%), and 14 risk-
stratified strategies with various combinations of screening
modalities assigned for each risk subgroup (Table 2). In each
of the risk-stratified strategies, patients were first stratified
into high-, intermediate-, and low-risk groups by applying
either of the two integrated molecular and clinical HCC risk
scores discussed in the next section.19–22 Subsequently,
each risk group was subjected to different screening
protocols according to the HCC risk level. The 16 experi-
mental strategies were also compared with another alter-
native reference strategy, biannual ultrasound with 15%
utilization rate (US2× -15%), representing the current
real-world usage of HCC screening in the United States.5

Baseline estimates of clinical parameters. Table 1 sum-
marizes model parameters, base case values, and plausible

Figure 1 Markov model and hepatocellular carcinoma (HCC) screening strategies. (a) Schematic of Markov states, starting from compensated cirrhosis without HCC and
progressing throughout the model or die. (b) Risk stratification by a HCC risk score classifies subjects into high-, intermediate-, or low-risk groups. In non-stratified strategies, all
subjects undergo biannual ultrasound (US; reference), abbreviated magnetic resonance imaging (AMRI), or MRI (experimental strategies), whereas, in risk-stratified strategies,
each risk subgroup undergoes different modalities. OLT, orthotopic liver transplantation.
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Table 1 Model variables (see Supplementary Table S6 for references)

Variable Baseline (range tested)

Disease progression
Age (years) 50 (40–60)
Cycle time 6 months
Compensated cirrhosis prognosis
Adjusted annual excess mortality of compensated cirrhosis 4% (1.8–8%)
10-year survival of compensated cirrhosis 64% (43–80%)
Annual probability of transition from compensated to decompensated cirrhosis 5% (3–8%)

Decompensated cirrhosis prognosis
Annual mortality of decompensated cirrhosis 28% (18–30%)
2-year survival of decompensated cirrhosis 52% (49–67%)

HCC prognosis
Annual mortality of advanced HCC 75% (30–95%)

HCC natural history
Annual HCC probability 2.9% (0.5–7.0%)
Annual probability of progression from small to advanced HCC 40% (20–70%)

Probability of therapy
Probability of HCC in compensated cirrhosis to be treated with surgical resection 40% (20–60%)
Probability of liver transplantation for early HCC in compensated cirrhosis 20% (0–50%)
Probability of local ablation for HCC in decompensated cirrhosis 40% (20–100%)
Probability of treatment of early HCC after identification in compensated cirrhosis 69% (50–100%)
Probability of treatment of early HCC after identification in decompensated cirrhosis 30% (0–50%)
Probability of liver transplantation for early HCC in treatment-eligible decompensated cirrhosis 40% (0–80%)
Probability of local ablation for early HCC in treatment-eligible decompensated cirrhosis 60% (20–100%)

Prognosis after therapy
5-year survival after hepatic resection for HCC 44% (38–51%)
Perioperative mortality of hepatic resection 3.9% (3.7–4.5%)
5-year survival after liver transplantation for HCC 70% (65–80%)
Perioperative mortality of liver transplantation 4.3% (2.3–6.3%)
5-year survival after local ablation for HCC in compensated cirrhosis 46% (32–77%)
5-year survival after local ablation for HCC in decompensated cirrhosis 31% (27–40%)
Perioperative mortality of local ablation 0.3% (0–1.8%)

HCC risk score
186-gene-based risk score, proportion of each risk group High: 36% (0–50%)

Intermediate: 37%
Low: 27% (10–50%)

186-gene-based risk score, annual HCC incidence in each risk group High: 4.9% (0.8–12%)
Intermediate: 3.3% (0.6–8.0%)

Low: 0.8% (0.1–1.9%)
EGF genotype-based risk score, proportion of each risk group High: 14% (0–40%)

Intermediate: 29%
Low: 57% (0–60%)

EGF genotype-based risk score, annual HCC incidence in each risk group High: 5% (2.5–10%)
Intermediate: 1.8% (0.9–3.6%)

Low: 0.4% (0.2–0.8%)

Screening and diagnosis test characteristics
Probability of being screened for HCC 100% (15–100%)
Reported probability of being screened for HCC 15% (5–60%)
Probability of incidental early HCC in the non-screened group 30% (0–50%)
Ultrasound sensitivity for early-stage HCC screening 63% (35–78%)
Ultrasound specificity for early-stage HCC screening 91% (70–95%)
Screening full MRI sensitivity for early-stage HCC screening 96% (80–100%)
Screening full MRI specificity for early-stage HCC screening 94% (85–98%)
Abbreviated MRI sensitivity for early-stage HCC screening 83% (70–95%)
Abbreviated MRI specificity for early-stage HCC screening 93% (86–96%)
Diagnostic MRI sensitivity for early-stage HCC 88% (78–92%)
Diagnostic MRI specificity for early-stage HCC 94% (85–98%)
HCC biopsy sensitivity 62% (50–100%)
HCC biopsy specificity 100% (80–100%)

Costs ($) Medicare, National Impatient Sample
Annual cost of compensated cirrhosis 1,220 (610–2,440)
Annual cost of decompensated cirrhosis 15,000 (7,500–30,000)
Annual cost after liver transplantation 14,600 (7,300–29,200)
Annual cost of advanced HCC 41,320 (20,660–82,640)
Cost of hepatic resection 42,540 (21,270–85,080)
Cost of liver transplantation 177,000 (88,500–354,000)
Cost of local ablation 3,650 (1,825–7,300)
Cost of imaging-guided HCC biopsy 750 (375–1,500)
Cost of ultrasound 143 (71–285)
Cost of screening full MRI 528 (264–1,056)
Cost of screening abbreviated MRI 313 (156–626)

Cost-Effectiveness of Risk-Stratified HCC Screening
Goossens et al.

3

Clinical and Translational Gastroenterology



ranges based on our previously published model,9 updated
literature review,5 and expert input for sensitivity analyses.
Natural history of cirrhosis. The adjusted annual excess
mortality of compensated cirrhosis was estimated as 4%, and
5% of compensated cirrhosis progress to decompensated
cirrhosis each year.23 Range of annual HCC incidences
tested was 0.5–7.0%, covering HCC incidence in global
populations with a variety of HCC etiologies.24–31 Annual
progression from small to advanced HCC was 40%, and
annual mortality of advanced HCC was 75%.32,33

HCC risk-stratification strategies. A pan-etiology (hepatitis B,
hepatitis C, hepatitis C after viral cure, alcohol, and non-
alcoholic fatty liver disease) 186-gene signature-based HCC
risk score, comprised of the liver gene signature,
bilirubin, and platelet count, was used as the example of
biomarker-based risk stratification.21,34,35 As an additional
example, another HCC risk score based on epidermal
growth factor single-nucleotide polymorphism, which
can be measured using a buccal swab, was also tested.19

The score, awaiting external validation, comprises the
epidermal growth factor single-nucleotide polymorphism,
age, sex, smoking status, alkaline phosphatase level, and
platelet count.
HCC screening, treatment, and prognosis. Sensitivity and
specificity of screening ultrasound, screening full MRI, AMRI,
diagnostic MRI, and biopsy were estimated based on
published literature (Table 1,Supplementary Methods). Based
on a meta-analysis of HCC treatment utilization, we
estimated the probabilities of any treatment in compensated
and decompensated cirrhosis patients.36,37 The prop-
ortions of treatment-eligible patients and prognosis after
treatment were defined based on population and cohort
studies.9,37–51

Costs and utility. Screening test costs were calculated based
on 2015 Medicare Current Procedural Terminology reimbur-
sement global costs. The AMRI cost was conservatively
estimated by halving the technical cost of full MRI18

(Supplementary Table S1). Cost of the HCC risk biomarker
test was calculated as median of multi-gene gapfill Current
Procedural Terminology codes in Clinical Laboratory Fee
Schedule (Supplementary Table S2). Other direct medical
costs were derived from Medicare Current Procedural
Terminology reimbursement, Nationwide Inpatient Sample,
and published literature and adjusted for inflation to 2014
costs (Table 1). The cost incurred by incidental detection of

non-liver-related diseases was outside the scope of this study
and therefore not included. Literature-based estimates were
used for the quality-of-life weights.

Study outcomes. Model outcomes included lifetime costs,
quality-adjusted life expectancy (QALE), and incremental
cost-effectiveness ratios (ICERs), defined as incremental
cost in US dollars per quality-adjusted life year gained. An
ICERo$50,000 was regarded as cost-effective. One- and
two-way sensitivity analyses were performed on all model
variables.

Patient involvement. Patients were not involved in
this study.

RESULTS

Model validity. Overall 1- and 2-year survival in our model
(96% and 90%, respectively) were similar to those reported in
a systematic review of Child–Pugh A cirrhosis (95% and
90%, respectively).23 Similarly, 3-year survival rates for
screening-detected and non-screening HCC patients in our
model (51% and 30%, respectively) recapitulated rates in a
recent systematic review (51% and 28%, respectively).5

Finally, the proportion of screening-detected and non-
screening HCC patients undergoing curative therapy in our
model (57% and 21%, respectively) was comparable to
probabilities in the systematic review (52% and 24%,
respectively).5 These results collectively support the validity
of our model.

Life expectancy. The mean QALE for 50-year-old patients
with compensated cirrhosis was 6.4 years in the absence
of screening. Although the current recommendation in
practice guidelines (US2× -100%) resulted in 1.3 months of
QALE gain, the real-world ultrasound utilization (US2× -15%)
as well as substituting ultrasound with MRI (MRI-15%)
or AMRI (AMRI-15%) did not extend QALE (Table 2). Non-
stratified use of MRI (MRI-100%) and AMRI (AMRI-100%)
yielded QALE gains of 2.0 and 1.8 months, respectively.
Risk-stratified strategies yielded QALE gains ranging from
0.9 to 2.1 months compared with no screening (Table 2).
Among patients who developed HCC, the mean survival after
HCC development was 2.7 years in the absence of

Table 1 (Continued )

Variable Baseline (range tested)

Cost of diagnostic MRI 528 (264–528)
Cost of risk score 796 (500–4,000)
Rate of discounting costs 3%

Quality-of-life weights
Utility of compensated cirrhosis 0.8 (0.6–1.0)
Utility of decompensated cirrhosis 0.65 (0.5–0.8)
Utility after HCC diagnosis 0.3 (0.1–0.4)
Utility after liver transplantation 0.73 (0.5–0.8)

AMRI, abbreviated MRI; EGF, epidermal growth factor; HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
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screening. The gain in QALE compared with no screening
were 2.0 years for US2× -100%, whereas the gain in the risk-
stratified strategies was up to 2.2 years, indicating that
survival
of HCC patients is not sacrificed by the risk-stratified
strategies.

Costs-effectiveness of risk-stratified HCC screening. In
the absence of screening, the mean discounted lifetime cost
for a 50-year-old patient with compensated cirrhosis was
$42,961, which was increased by $8,322, $13,460, and
$10,420 using US2× -100%, MRI-100%, and AMRI-100%
(indicating all patients are screened by biannual ultrasound,
MRI, or AMRI), respectively, whereas risk-stratified strategies
increased costs by $3,920–$10,900 compared with no
screening (Table 2). Compared with the current HCC
screening utilization (US2× -15%), increasing ultrasound
utilization to 100% (US2× -100%), use of MRI (MRI-100%),
and use of AMRI (AMRI-100%) resulted in ICERs of $64,072,
$68,012, and $58,401 per quality-adjusted life year gained,
respectively, which were all above the cost-effectiveness
threshold of $50,000.
We next evaluated the stratified strategies. Each stratified

HCC screening strategy is described by combining the
screening modalities assigned to the HCC high-, intermedi-
ate-, and low-risk groups, respectively, separated by a hyphen.
For example, an HCC screening strategy applying ultrasound
(4 × per year) for high-risk group, ultrasound (2 × per year) for

intermediate-risk group, and no screening for low-risk group is
presented as “US4× -US2× -none”. We identified three risk-
stratified screening strategies that were cost effective
compared with US2× -100%: MRI-MRI-none, AMRI-AMRI-
none, and MRI-US2× -none, among which AMRI-AMRI-none
had the smallest ICER of $2,100, and three strategies
dominating the reference: US2× -US2× -none, AMRI-US2× -
none, and MRI-none-none (Table 2). When compared with
US2× -15%, six risk-stratified strategies, US2× -US2× -none,
AMRI-AMRI-none, AMRI-US2× -none, US2x-none-none,
MRI-none-none, and AMRI-none-none, were cost-effective
with ICERs ranging from $33,422 to $48,762 per quality-
adjusted life year gained. One common feature of the cost-
effective risk-stratified strategies was omitted screening for
low-risk patients, with minimal to no impact on QALE, which
was also confirmed in subgroup analysis for each risk group
(Supplementary Table S3). Screening only for high-risk
patients was also cost-effective without substantially reducing
QALE (Table 2) and may be an alternative screening strategy
for resource-limited area that are only able to deliver HCC
screening to a small fraction of the at-risk population. Risk-
stratified strategies using another HCC risk score based on
the epidermal growth factor single-nucleotide polymorphism19

was similarly cost-effective (Supplementary Table S4).

Factors affecting cost-effectiveness of risk-stratified
HCC screening (sensitivity analyses). One-way sensitivity
analyses on each model variable were performed to identify

Table 2 Cost-effectiveness of non-stratified and risk-stratified HCC screening strategies

Strategy QALE Cost ICER ICER

(vs. US2× -100%) (vs. US2× -15%)

No screening 6.40 $42,961

Reference strategies
Regular US screening (100% adherence; US2× -100%) 6.51 $51,761 Reference
Regular US screening (15% adherence; US2× -15%) 6.39 $44,078 Reference

Non-stratified experimental strategies
MRI for all (MRI-100%) 6.57 $56,871 85,167 71,072
AMRI for all (AMRI-100%) 6.55 $53,883 53,050 61,281

Risk-stratified strategies (for high–intermediate–low risk groups)
US4× -US2× -US2× 6.50 $54,601 Dominated 95,664
MRI-US2× -US2× 6.54 $54,442 89,367 69,093
AMRI-US2× -US2× 6.53 $53,437 83,800 66,850
US2× -US2× -none 6.52 $50,417 Dominant 48,762
US4× -US4× -none 6.51 $54,391 Dominated 85,942
MRI-MRI-none 6.58 $53,966 31,500 52,042
AMRI-AMRI-none 6.56 $51,866 2,100 45,812
US4× -US2× -none 6.52 $52,300 53,900 63,246
MRI-US2× -none 6.55 $52,140 9,475 50,388
AMRI-US2× -none 6.54 $51,136 Dominant 47,053
US2× -none-none 6.48 $47,086 Less effective 33,422
US4× -none-none 6.47 $48,969 Less effective 61,137
MRI-none-none 6.51 $48,809 Dominant 39,425
AMRI-none-none 6.50 $47,804 Less effective 33,873

AMRI, abbreviated magnetic resonance imaging; HCC, hepatocellular carcinoma; ICER, incremental cost-effectiveness ratio; QALE, quality-adjusted life
expectancy; US, ultrasound. Dominant, improved QALE with lower cost; dominated, worse QALE with higher cost; less effective, reduced efficacy with
lower cost; 2/4 × , screening two/four times a year; MRI and AMRI are biannual. Risk-stratified strategies are named as screening modality in high-risk subjects–
intermediate-risk subjects–low-risk subjects. For example, MRI-none-none corresponds to screening by MRI in high-risk subjects and no screening in intermediate-
and low-risk subjects.
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notable drivers of cost-effectiveness. We first assessed a
range of annual HCC incidence rates to model a range of
different cirrhosis etiologies24–29 on cost-effectiveness of
the four non-dominant, cost-effective (i.e., ICERo$50,000)
risk-stratified screening strategies within the range of
annual HCC incidence rate between 0.5% and 7%. As
expected, all strategies were more cost-effective at higher
annual HCC incidence (Figure 2a). MRI-MRI-none had the
highest QALE and was cost-effective with an ICER consis-
tently o$50,000. More frequent ultrasound among
high-risk patients (US4× -US2× -none) was the only strategy
that sharply became non-cost-effective when annual HCC
incidence dropped o3%. In contrast, the ICER for
AMRI-AMRI-none was consistently low, highlighting its
robust performance across a wide range of annual HCC
incidences.
We next evaluated HCC risk biomarker test performance

(defined as fold difference in annual HCC incidence rates
between the high- and low-risk groupswith a range of 1.3–10),
which showed that AMRI-AMRI-none remained cost-effective

when compared with US2× -100% even at the lowest-risk
score performance with consistently low ICER, although MRI-
MRI-none required approximately greater than twofold differ-
ence in HCC incidence between the high- and low-risk groups
to be cost-effective (Figure 2b). The costs of the HCC risk
biomarker test also affected cost-effectiveness (Figure 2c).
MRI-MRI-none had an ICERo$50,000 up to a risk biomarker
cost of $2,200, while AMRI-AMRI-none was cost-effective up
to a cost of $3,400.
Subsequently, one-way sensitivity analyseswere performed

for the remaining model variables in a comparison bet-
ween the reference strategy (US2× -100%) and the non-
dominant risk-stratified strategy with the smallest ICER,
AMRI-AMRI-none. Ultrasound specificity, AMRI specificity
and cost, and HCC risk biomarker cost were identified as the
top influential variables (Supplementary Figure S1). AMRI-
AMRI-none was not cost-effective when specificity of ultra-
sound 493%, specificity of AMRI was o89%, or cost of
AMRI 4$532.

Figure 2 One-way sensitivity analysis of key model parameters and their effect on incremental cost-effectiveness ratio (ICER) compared with non-stratified ultrasound (US)-
based screening in 100% of individuals for cost-effective risk-stratified strategies. Only the four non-dominant, risk-stratified strategies with an ICER o$50,000 per quality-
adjusted life year (QALY) in the baseline model are shown for (a) global annual hepatocellular carcinoma (HCC) incidence, HCC risk score performance, (b) defined as ratio of
annual HCC incidence in the high- over low-risk group, and (c) HCC risk biomarker cost. (d) Annual HCC incidence according to HCC etiology projected onto the range of annual
HCC incidence tested in sensitivity analysis (Supplementary Table S5). 2/4 × , screening two/four times a year; ALD, alcoholic liver disease; AMRI, abbreviated MRI; HBV,
hepatitic B virus; HCV, hepatitis C virus; NAFLD, nonalcoholic fatty liver disease; SVR, sustained virological response. Risk-stratified strategies are named as screening modality
in high-risk subjects–intermediate-risk subjects–low-risk subjects. For example, MRI-none-none corresponds to screening by MRI in high-risk subjects and no screening in
intermediate- and low-risk subjects.
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Two-way sensitivity analysis of these variables against
annual HCC incidence showed that AMRI-AMRI-none was the
best strategy when AMRI specificity was 491%, replaced by
MRI-US2× -none when AMRI specificity dropped and annual
HCC incidence was o5.7% or by MRI-MRI-none when
45.7% (Figure 3a). AMRI-AMRI-none was the most cost-
effective strategy across a range of HCC incidences when its
cost was o$360 (Figure 3b) and US specificity was o88%
(Figure 3c). AMRI-AMRI-none remained the most cost-
effective strategy irrespective of annual HCC incidence when
the risk biomarker cost was o$2,900 (Figure 3d). The
proportion of subjects in the low-risk group did not affect the
superiority of AMRI-AMRI-none (Supplementary Figure S2).
When varying AMRI cost and specificity, AMRI-AMRI-none
remained superior when specificity was 490% or 96% when
cost was o$156 or $532, respectively (Supplementary
Figure S3).

DISCUSSION

Cirrhosis is a prevalent condition with significant indirect costs
approximating $10.2 billion in the United States in 2004.52 In
addition, the human and economic burden of cirrhosis is

expected to increase due to an aging population of hepatitis C
virus–infected subjects who can develop HCC even a decade
after viral cure and increases in prevalence of fatty liver
disease.53 However, as evidenced by low-quality indicators,
interventions are urgently needed to improve quality of care
in this vulnerable and underserved population.54 Our study
demonstrates for the first time the feasibility and cost-
effectiveness of tailored HCC screening, in which cost
for low-yield testing among low-risk patients is spared
without significant drop in effectiveness. Imaging modalities,
such as AMRI, with higher sensitivity while being afford-
able may, when applied to high-risk patients, improve early
tumor detection in a cost-effective manner. Risk-based
personalized screening has been increasingly adopted
in multiple cancer types, e.g., MRI for BRCA-mutated
breast cancer, with an intention to allocate costly but more
sensitive modalities to thosewith the greatest need.55 With the
recent development of more accurate HCC risk stratification
tools, our study provides a blueprint of how HCC screening
can be personalized and advanced into the era of precision
medicine.
Of note, incorporation of MRI could become cost-effective if

targeted to high- and intermediate-risk patients, with recent

Figure 3 Two-way sensitivity analysis of annual hepatocellular carcinoma (HCC) incidence vs. variables affecting cost-effectiveness of risk-stratified HCC screening. Overall
HCC incidence is varied along with model parameters, (a) abbreviated MRI (AMRI) specificity, (b) AMRI cost, (c) ultrasound (US) specificity, and (d) HCC risk biomarker cost, with
the greatest effect on incremental cost-effectiveness ratio of non-dominant, cost-effective risk-stratified strategies.
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reductions in its costs. Compared with ultrasound, which may
be affected by operator’s skill/experience as well as the
presence of morbid obesity,8 MRI can yield more robust
performance that will be critical considering the rapidly
increasing and already highly prevalent obese patients with
non-alcoholic fatty liver diseases. The emergence of simplified
MRI protocols, such as AMRI, is expected to further lower the
bar for introducing MRI-based screening by reducing exam-
ination costs and time.
Another issue limiting HCC screening effectiveness is low

utilization rates due to providers overlooking at-risk patients
and patient barriers to performing screening.56 Risk-stratified
strategies may improve utilization rates as efforts and
resources to maximize adherence can be concentrated on
the highest-risk patients instead of being diffused among all
cirrhotic patients, particularly in centers with limited radiologi-
cal or subspecialty capacity.
Recent development of robust molecular assays has

allowed clinical deployment of already reimbursable multi-
gene biomarker tests.55 In addition, recent emergence of
direct-to-consumer molecular diagnostics may drastically
lower the current biomarker costs, which may further improve
cost-effectiveness of the risk-stratified HCC screening. Our
sensitivity analysis, evaluating a range of these dynamically
changing variables, provides quantitative reference for further
clinical development of HCC risk biomarker tests and AMRI
protocols.
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Study Highlights
WHAT IS CURRENT KNOWLEDGE
✓ Current practice guidelines recommend hepatocellular

carcinoma (HCC) screening uniformly in all cirrhotic
subjects by biannual ultrasound with or without alpha-
fetoprotein.

✓ The utilization of HCC screening in the general cirrhotic
population is o20%.

✓ Molecular risk stratification of cirrhotic subjects is clinically
feasible and already validated in a wide range of liver
disease etiologies.

WHAT IS NEW HERE
✓ Our cost-effectiveness analysis shows that HCC screening

strategies targeting high- and intermediate-risk patients
with cirrhosis are cost-effective.

✓ Three risk-stratified strategies, all omitting screening in the
lowest-risk subjects, were cost-effective compared with
biannual screening without sacrificing net survival benefit.

TRANSLATIONAL IMPACT
✓ These findings provide evidence supporting risk-stratified,

personalized HCC screening in cirrhotic subjects with
currently available modalities and technologies.
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