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Abstract

In this study, we use temporally aligned word embeddings and a large diachronic corpus of English
to quantify language change in a data-driven, scalable way, which is grounded in language use. We
show a unique and reliable relation between measures of language change and age of acquisition (AoA)
while controlling for frequency, contextual diversity, concreteness, length, dominant part of speech,
orthographic neighborhood density, and diachronic frequency variation. We analyze measures of lan-
guage change tackling both the change in lexical representations and the change in the relation between
lexical representations and the words with the most similar usage patterns, showing that they capture
different aspects of language change. Our results show a unique relation between language change and
AoA, which is stronger when considering neighborhood-level measures of language change: Words
with more coherent diachronic usage patterns tend to be acquired earlier. The results support theories
positing a link between ontogenetic and ethnogenetic processes in language.
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1. Introduction

Languages change at many different levels (Croft, 2000), involving form, structure, and
meaning, with these processes being influenced by social, cognitive, and cultural factors
(Labov, 2001; Lieberman, Michel, Jackson, Tang, & Nowak, 2007; Thomason & Kaufman,
1992). According to recent theories that stress the role of cognitive rather than biological
factors in language evolution, change likely serves the purpose of adapting the language to
the need of the community of speakers (Smith, 2004; Steels, 2017). However, for a language
to successfully serve its communicative purpose, it needs to preserve a certain stability, such
that it can be passed to following generations (Kirby, 2001). In this paper, we zoom in on the
link between language change and language acquisition, to investigate whether there exists
a unique relation between words that are acquired earlier and words whose usage patterns
remain consistent over time.

Crucially, our goal is not to use diachronic patterns to model the process by which an
individual child learns some words before others (Braginsky, Yurovsky, Marchman, & Frank,
2019; Hills, Maouene, Maouene, Sheya, & Smith, 2009); after all, children are not exposed
to the diachronic history of their native language during learning. Rather, we ask ourselves
why some words, based on diachronic usage patterns, are the words that are learned earlier.
The hypothesis is that the language system as a whole might evolve in such a way that, in
the shifting tides of language, some words become the ones being typically learned earlier.1

We intend to first check whether a relation between acquisition and changes in the diachronic
usage patterns of lexical items exists. Then, we analyze whether such relation holds after
controlling for the contemporary language landscape, as captured by measures of frequency,
contextual diversity, concreteness, orthographic neighborhood density, and word length (all
predictors that have been reported to influence age of acquisition (AoA; Braginsky et al., 2019;
Hills et al., 2010), as well as by diachronic variations in frequency. If confirmed, this would
entail that processes relating to linguistic stability in usage patterns capture something unique
about what learners end up learning.

In pursuing this goal, our major contribution lies in the application of a novel method to
quantify stability of usage patterns over time. We then use several measures derived using
such method to analyze the relation between language acquisition and language evolution.
While previous studies addressing this relation (Monaghan, 2014; Monaghan & Roberts,
2019; Vejdemo & Hörberg, 2016) relied on small sample sizes and expert annotations, lim-
iting the scope of their results, we leverage recent advances in natural language processing
(NLP) to track language behavior over time and learn linguistic representations in an unsu-
pervised and scalable way (Bianchi, Di Carlo, Nicoli, & Palmonari, 2020; Di Carlo, Bianchi,
& Palmonari, 2019).

Language change has typically been analyzed considering social and cultural factors
(Labov, 2001). Recent studies, however, have analyzed which properties of words, gauged
from usage patterns, influence their evolution over time (Christiansen & Chater, 2008). Pagel,
Atkinson, and Meade (2007) showed that more frequent words tend to have fewer cognates;
that is, different words in other languages within the same phylogenetic tree, which have a
shared etymological origin. Moreover, Vejdemo and Hörberg (2016) reported that more fre-
quent words and words with more synonyms have a higher probability of undergoing lexical
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replacement, while polysemy reduces the likelihood that a word is replaced. Both studies
focused on words from the Swadesh list (Swadesh, 1952) containing 200 English words that
are considered to be fundamental terms in most languages. Winter, Thompson, and Urban
(2014) also provided evidence that words that are likelier to be the origin of language change
tend to be more frequent and polysemous, have more associations in free word association
data, and are part of denser semantic networks.

Two recent studies further investigated the relation between cognitive factors and language
evolution. Again relying on the Swadesh list, Monaghan (2014) documented a unique effect
of AoA on cognate proliferation, with early acquired words correlating with lower rates of
lexical evolution. Moreover, Monaghan and Roberts (2019) showed that early acquired words
are less likely to be borrowed from other languages. This study also addressed issues of rep-
resentativeness by analyzing several hundreds of target words from two different languages,
Dutch and English, and documented that Swadesh lists (Swadesh, 1952) are not representa-
tives of the whole lexicon and may thus yield unreliable results. The reported effect of AoA on
cognate proliferation and likelihood of borrowing was interpreted in the light of converging
evidence on the role of acquisition processes in shaping language evolution (Christiansen &
Chater, 2008; MacNeilage & Davis, 2000). This effect suggests that a relation exists between
ontogenetic and ethnogenetic language evolution, in that language learning during the life of
an individual relates to how the language evolved over time in the community of speakers, as
the object of learning at a given moment depends on its evolution over time and since the lan-
guage learned by an individual contributes to shaping the language used by the community,
in turn contributing to the continuing diachronic change of the language.

Importantly, the reported relation between AoA and language change remains when con-
trolling for the effect of contemporary usage, gauged through word frequency. Frequency of
use in the contemporary community and its effect on language change (Pagel et al., 2007)
suggests a pressure to conform to other speakers in order to avoid misinterpretation of words
often used in discourse (Boyd & Richerson, 1988).2 On the contrary, the relation between
AoA and lexical evolution has been hypothesized to relate to representational salience, higher
for early acquired words (Monaghan, 2014). This notion of representational salience is jus-
tified on the basis of two phenomena. First, Juhasz (2005) documented faster processing of
words and pictures with earlier learned labels than words and pictures with later learned labels
in many different tasks. Second, studies with elderly people (Hodgson & Ellis, 1998), apha-
sic (Bradley, Davies, Parris, Su, & Weekes, 2006), and Alzheimer patients (Holmes, Jane
Fitch, & Ellis, 2006) showed that early acquired words are retained longer. Representational
salience, therefore, seems to be related to conceptual availability: The cognitive prioritization
that these words receive because of their early acquisition plays a role in contributing to a
greater stability of these same words.

Even though they provide insights about the relation between language ontogenesis and
ethnogenesis, the reviewed studies present methodological shortcomings, primarily due to (i)
limitations in sample size, (ii) potential biases in the sample, (iii) reliance on expert annota-
tions and manually curated resources (e.g., thesauri, Swadesh lists, and lexica), which make
these methods hard to scale, and (iv) indirect measures of language change, which abstract
away from actual language use. In what follows, we discuss how these problems are addressed
by our proposed operationalization of language change, which builds on recent work in NLP
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on detecting semantic shifts (see Tahmasebi, Borin, & Jatowt, 2018, for a review on this
research line).

While the four aforementioned limitations are distinct and could be addressed orthogo-
nally, we propose to address them organically. Rather than using curated resources, we exploit
recent NLP techniques to learn temporal word representations from diachronic corpora cover-
ing a long period of time (Bianchi et al., 2020; Bowern, 2019; Di Carlo et al., 2019; Hamilton
et al., 2016b; Tahmasebi, Borin, Jatowt, & Xu, 2019). The advantages of this approach over
previous solutions are several: first, it does not require any external resource, such as Swadesh
lists, lexica providing estimates of lexical substitutions, and thesauri to estimate polysemy or
number of synonyms. Therefore, it is more robust, more representative of general linguistic
patterns, and cheaper to compute, addressing three methodological shortcomings of previous
works at once. The only required resource is a sizable diachronic corpus, and such type of text
data are becoming increasingly available. Given such a corpus, it is in principle possible to
automatically compute measures of language change for any word in the corpus. This allows
researchers to work with far larger sample sizes and to improve the representativeness of the
sample as well as the robustness of observed patterns in any study targeting language change
(Sagi, Kaufmann, & Clark, 2011).

This method also allows researchers to characterize language change from documented
language use rather than from indirect measures, which depend on manual coding and rest on
possibly questionable assumptions, addressing the fourth limitation we identified in previous
studies. The idea of operationalizing language phenomena considering how languages are
used by communities of speakers is well established (Firth, 1957; Harris, 1954; Wittgenstein,
1953) and has proven very useful in linguistics, psycholinguistics, cognitive science as well as
artificial intelligence and NLP (Griffiths, Steyvers, & Tenenbaum, 2007; Günther, Rinaldi, &
Marelli, 2019; Lenci, 2018). The specific advantage of this theoretical position in the context
of the current problem and its novelty compared to previous studies on the relation between
language evolution and acquisition, however, is in the possibility of actually tracking how
language use changed over time and exploiting this to operationalize language change for
individual lexical items (Hamilton et al., 2016a; Hilpert & Perek, 2015; Perek, 2014; Sagi
et al., 2011).

In practice, we learn word representations using distributional semantics methods (Baroni
& Lenci, 2010; Landauer & Dumais, 1997; Lund & Burgess, 1996; Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013), which showed that representations of lexical meanings can
be captured via the co-occurrence patterns of words in context (Firth, 1957). For example, dog
and cat will have similar lexical representations, in line with the similar way in which the two
words are used in English and their similar co-occurrence patterns with other words. Within
this framework, words are represented using distributed, numerical vectors embedded in a
high-dimensional space (Turney & Pantel, 2010). Such distributed word representations are
usually referred to as word embeddings, to stress the fact that a word vector representation is
embedded in a particular space and can only be interpreted in relation to other representations
in the same space, without the need of a priori semantic categories. Embedding spaces are
geometrical spaces in which measures of proximity between word vectors can be computed,
such that more similar words tend to have more similar embeddings and to be closer in
space. It has been widely shown that such measures capture relevant structural and semantic
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phenomena, for example, semantic associations (Caliskan, Bryson, & Narayanan, 2017;
Landauer & Dumais, 1997), lexical categories (Westbury & Hollis, 2019), and valence
(Hollis & Westbury, 2016). Crucially, words are closer in this high-dimensional embed-
ding space when their overall co-occurrence patterns are more similar, rather than when
simply co-occurring together often (Günther et al., 2019). Therefore, we can track differ-
ences in the co-occurrence patterns of a word over time, abstracting away from specific
lexical co-occurrences.

In order to learn representations that can be used to compute language change,3 we need
diachronic corpora that are divided chronologically in different slices (or bins), such that a
different word representation is learned from the language samples in each slice. In order
to compare time-dependent word representations, however, it is necessary to ensure that all
word embeddings exist in a vector space defined by the same coordinates (Di Carlo et al.,
2019); that is, embeddings from different time slices are aligned. This passage is nontrivial:
It is not enough to learn a different embedding space for each slice of a diachronic corpus
because such embedding spaces are not necessarily comparable as they have been learned
independently. It is therefore crucial to ensure that all embeddings exist within the same
coordinate system; in our study this is achieved by first obtaining a general embedding space
from the whole corpus that acts as a compass to align the embedding spaces generated from
each temporal space to the main space and to each other. Once this step has been completed,
relations of proximity across embeddings can thus be leveraged to quantify language change,
as word embeddings reflect the usage patterns of a word in the language over time in the same
reference embedding space.

Let us consider a real example to make things more concrete. Around 1920, the word key-
board had a very similar embedding to violin or piano, as it denoted an element of a musical
instrument. Nowadays, after the technological revolution, the embedding representation for
keyboard is more similar to those of desktop and keypad, reflecting the fact that a keyboard pri-
marily identifies a computer part. Of course, keyboard still also denotes a musical instrument;
however, its use changed over time, with a new meaning being introduced and becoming
prevalent, thus affecting the lexical representation learned from the corpus and the relations
that this representation has with the other lexical representations in the language network.

This example also highlights a further advantage of the current approach, which allows
us to consider item-level properties as well as neighborhood-level properties in tracking
language change (Hamilton et al., 2016a). Since time-dependent word embeddings referring
to the same word exist within the same coordinate system, we can compare how similar they
are, leveraging relations of proximity to quantify whether a word representation changed
over time (item level). We can thus compare the embedding for keyboard learned from a
sample of 1800 English words to the embedding for keyboard computed using contemporary
English and measure their proximity: The farther they are, the more the word representation
has shifted, reflecting stronger changes in language use for that particular lexical item.
However, we can also probe the diachronic relation between a word embedding and the
embeddings for the other words in the vocabulary, looking at whether relations changed
coherently over time at the neighborhood level. For example, we can look at the similarity
between keyboard and its most similar words in 1800 and the similarity between the same
words today, measuring their overall difference. We can therefore probe different measures
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of language change extracted from the same framework and investigate whether they relate
differently with language acquisition.

While the theory behind our approach is well established, its feasibility crucially relies
on recent improvements in temporal distributional models of language (Bianchi et al., 2020;
Bowern, 2019; Di Carlo et al., 2019; Hamilton et al., 2016b; Tahmasebi et al., 2019). These
methods have been used to investigate several phenomena in linguistics (including syntactic
productivity, Perek, 2014; semantic, Sagi et al., 2011; Hamilton et al., 2016b; and morphosyn-
tactic changes, Hilpert & Perek, 2015), history of culture (Hills, Proto, Sgroi, & Seresinhe,
2019; Li, Engelthaler, Siew, & Hills, 2019; Soni, Klein, & Eisenstein, 2021), language learn-
ing (Hills & Adelman, 2015), and computational social sciences (Garg, Schiebinger, Jurafsky,
& Zou, 2018) just to name a few applications next to the direction we are pursuing in our work.
Particularly relevant for our study, Hamilton et al. (2016a) quantified language change con-
sidering both item- and neighborhood-level measures and showed a dissociation between the
two with respect to lexical categories, suggesting the two measures indeed capture different
phenomena in language change.

To summarize, our work builds on previous studies highlighting how ontogenetic and
ethnogenetic language dynamics are intertwined (Christiansen & Chater, 2008). We hypothe-
size that there exists a unique relation between the degree to which usage patterns change over
time and the words that are learned earlier, such that words with stabler usage patterns over
time tend to be learned earlier. In testing this hypothesis, we improve over previous studies by
investigating the relation between language change and acquisition using a novel data-driven,
corpus-based, scalable way of quantifying language change (Bianchi et al., 2020; Di Carlo
et al., 2019), which is grounded in language use (Firth, 1957; Wittgenstein, 1953) and builds
upon previous studies showing the effectiveness of similar approaches in addressing several
linguistic phenomena (Hamilton et al., 2016a, 2016b; Hilpert & Perek, 2015; Perek, 2014;
Sagi et al., 2011).

2. Methodology

2.1. Data

Several datasets were used to carry out this study. First and foremost, we used the Corpus of
Historical American English (CoHA4; Davies, 2010) to track the evolution of the English lan-
guage. This corpus contains more than 400 million words covering the period between 1810
and 2009 and is balanced by genre (fiction, magazine, newspaper, other nonfiction) for each
decade. We split the corpus into six time slices to build time-dependent word embeddings.

Moreover, we retrieved AoA norms from the dataset constructed by Kuperman, Stadthagen-
Gonzalez, and Brysbaert (2012), which ensures a good coverage and has been widely used
in the literature to track AoA. The validity of subjective estimates has been further confirmed
by lab- and test-based results (Biemiller, Rosenstein, Sparks, Landauer, & Foltz, 2014; Brys-
baert, 2017; Gilhooly & Gilhooly, 1980; Łuniewska et al., 2016; Morrison, Chappell, & Ellis,
1997), suggesting that these AoA norms are reliable. Other datasets were further used to derive
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control variables, necessary to ensure that any relation we may detect involving language
change and AoA is not best explained by known predictors of acquisition. We used the dataset
released by Brysbaert, Warriner, and Kuperman (2014) to get concreteness norms and dom-
inant part of speech (PoS) tag for a large sample of English words and extracted word fre-
quency and contextual diversity5 (Adelman et al., 2006) estimates from SUBTLEX-US (Brys-
baert, New, & Keuleers, 2012), which has been shown to provide a very good fit to several psy-
cholinguistics tasks (Baayen, Milin, & Ramscar, 2016). Orthographic neighborhood density
was operationalized using Orthographic Levenshtein Distance (OLD20, Yarkoni, Balota, &
Yap [2008]) and was computed using the OLD20 Python package6 using the vocabulary from
SUBTLEX-US as reference. In essence, OLD20 averages the Levensthein distance between
a target word and its 20 nearest orthographic neighbors.

2.2. Word embeddings

In order to quantify diachronic language change in usage patterns, we need to represent
words in such a way that representations obtained over different slices are comparable. Stan-
dard word embeddings models such asword2vec (Mikolov et al., 2013) are not able to generate
temporal word embeddings and to capture the temporal dimension of text: The stochasticity
of neural networks prevents methods such as word2vec from being used to represent multiple
slices of text (see Di Carlo et al., 2019, for further technical details).

Over the past few years, different methods have been proposed to align different temporal
slices of the same corpus with the goal of quantifying lexical semantic shift in a data-driven
and scalable way (Bianchi et al., 2020; Di Carlo et al., 2019; Dubossarsky et al., 2019; Hamil-
ton et al., 2016b; Kim et al., 2014; Kulkarni et al., 2015; Rudolph & Blei, 2018; Tahmasebi
et al., 2018; Yao et al., 2018). For example, Hamilton et al. (2016b) used Procrustes trans-
formation to align embeddings, while Yao et al. (2018) used a joint optimization procedure.
More recently, Di Carlo et al. (2019) proposed the temporally aligned word embeddings with
a compass (TWEC7) model, which extends the continuous bag of words (CBoW) architecture
(Mikolov et al., 2013). The CBoW architecture is a neural network with one hidden layer and
uses two matrices to learn lexical representations, a target matrix and a context matrix. The
TWEC model exploits this aspect of the CBoW architecture by first training a general embed-
ding space using all the available text, ignoring the time dimension. This time-independent
embedding space is the compass, that is, a general representation to which the other slices can
be aligned. The context matrix of the compass is extracted and used to initialize (and freeze)
the context matrix of a slice-specific CBoW model. This approach ensures that all slices share
the same context matrix and that slice-specific embeddings are aligned. The TWEC model has
been found to outperform competing models in aligning slices of text for temporal analogical
reasoning (Di Carlo et al., 2019), meaning shift analysis (Bianchi et al., 2020), and narrative
text understanding (Kanjirangat, Mellace, & Alessandro, 2020). Due to its simplicity, scala-
bility and effectiveness in creating aligned word embeddings compared to previous methods
(Hamilton et al., 2016b; Yao et al., 2018), the TWEC model is used in the current study to
derive measures of change in temporal usage patterns of individual words.
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2.3. Notation

In our current setting we have a collection T of sets of documents Ti, where T = T1 ∪
T2 · · · Tt , with t being the number of temporal slices considered. The vocabulary V consists
of all the words in the corpus, while each slice is associated with a slice-specific vocabulary
Vj ; it follows that V = ⋃

Vj . The nth word of the V vocabulary in slice j is identified as w j
n

and the corresponding vector representation is identified in bold, w j
n.8 However, note that in

practice there is the possibility of a word not being present in a specific slice (e.g., the word
smartphone is not present in texts from the 1800), and thus w j

n might not be defined.

2.4. Quantifying language change

We use three different methods to quantify language change9 (Gonen et al., 2020; Hamilton
et al., 2016a). In order to ensure comparability across words, we only computed measures of
language change for words that appeared at least 25 times in each of the six slices in which
the corpus was divided, such that reliable lexical representations could be learned. As men-
tioned in Section 1, we used measures to quantify item-level as well as neighborhood-level
language change. Item-level measures probe the change in the usage patterns of individual
lexical items by comparing representations of the same word derived at different times. On
the contrary, neighborhood-level measures consider the relation between a single lexical item
and its similar items in the language, quantifying how this relation changed over time.

The first measure, vector coherence (VC), is an item-level measure that quantifies the coher-
ence of the temporal word embeddings extracted from different time epochs and is imple-
mented following Eq. 1. t is the number of slices in which the corpus is split and cos is the
cosine similarity between two vectors. Importantly, we sum10 the cosine similarity for pairs
of embeddings not only for adjacent time slices but for all pairwise comparisons, to account
for all possible trajectories of coherence and lack thereof. Higher values thus indicate a more
coherent lexical representation over time:

VC(wn) =
∑

i, j∈T where i �= j

cos(wi
n, w j

n). (1)

Our second measure, local neighborhood coherence (LNC), addresses neighborhood-level
change and tracks the coherence of the relation between a word embedding and the embed-
dings of its nearest semantic neighbors (Hamilton et al., 2016a). We describe its implemen-
tation in Eqs. 2 and 3. This measure is a second-order cosine similarity—given two corpus
slices i and j, we compute the vector si

n as follows: We collect the k-nearest neighbors (N )
of both wi

n and w j
n and we then compute the similarity between wi

n and all the neighbors
in the embedding space i. Eq. 2 shows how to compute the values of the vector st . It can,
however, be the case that a nearest neighbor of w j

n does not occur in slice i, making it impos-
sible to retrieve the corresponding embedding. When this happens, we compute the similarity
between wt and the average word embedding in slice t , since if no information is available
from co-occurrences, the only available reference point is the average word embedding:

si
n(x) = cos(wi

n, w j
x ) ∀wx ∈ N (wi

n) ∪ N (w j
n). (2)
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We repeat the same procedure for w j
n, obtaining two vectors (si

n, s j
n) of cosine similarities

capturing how the same word relates to its nearest neighbors in two different time epochs.
We then compute the cosine similarity between these two vectors of cosine similarities for
all pairs of time slices as detailed in Eq. 3, summing pairwise similarities over different time
slices to obtain our target measure LNC. Words keeping a coherent relation with their nearest
semantic neighbors over time will have a higher LNC:

LNC(wn) =
∑

∀i, j∈T where i �= j

cos(si
n, s j

n). (3)

The third measure, J, is similar to LNC in that it tackles the neighborhood-level change but
is fully symbolic, since it does not exploit the geometrical relations across word embeddings.
Like LNC, this measure also tracks the coherence between local neighborhoods but it is com-
puted through the Jaccard coefficient (hence the name) between the sets of nearest neighbors
of wi

n and w j
n, as detailed in Eq. 4. The Jaccard coefficient is a measure of set overlap obtained

by dividing the cardinality of the set intersection by the cardinality of the set union. A coeffi-
cient of 1 indicates perfect overlap, while a coefficient of 0 indicates no overlap. In the case
at hand, the Jaccard coefficient between two words reflects the normalized overlap between
the set of their neighboring words in two corpus slices. As for VC and LNC, we compute J for
all possible pairwise comparisons of time slices and sum the pairwise scores. Words with a
high J will have more coherent local neighborhoods over time, disregarding the geometrical
relation between the target word and its neighbors:

J (wn) =
∑

∀i, j∈T where i �= j

N (wi
n) ∩ N (w j

n)

N (wi
n) ∪ N (w j

n)
. (4)

The main difference between J and LNC is that the former only considers the identity
of the neighbors and tracks how many occur both at time i and at time j over how many
unique neighbors occur at both time epochs. Therefore, the problem of missing embeddings
is avoided. For the purpose of computing both LNC and J, we set k = 25 as the number of
nearest neighbors being retrieved, in line with Hamilton et al. (2016a).

Table 1 summarizes the different measures of language change considered in this work,
listing the abbreviations, which will be used throughout the paper, their names, and a
short description.

For every measure of language change, we also compute a quasi-random control measure
to ensure that any correlation between language change and AoA does not occur by chance or
due to properties of the embedding spaces that are irrelevant to capturing language change.
The random counterpart of VC, rVC, is computed by randomly sampling a word embedding
among the 10 nearest neighbors of wi and wi itself, repeating this procedure for w j , and com-
puting the cosine similarity between the two randomly sampled embeddings. Therefore, we
expect rVC to have a weaker but qualitatively similar relation with AoA to VC. rJ was com-
puted similarly, randomly sampling a word embedding among the 10 nearest neighbors of wi

and wi itself, getting its k nearest neighbors, repeating this procedure for w j , and computing
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Table 1
Measures of language change used in this work

Abbr. Measure Description

VC Vector coherence Tracks the consistency of each lexical representation by measuring the
cosine similarity between the embeddings of the same word in
different corpus slices

LNC Local neighborhood
coherence

Tracks the consistency in the cosine similarity between a word
embedding and its k nearest neighbors in two different corpus slices

J Jaccard coherence Tracks the consistency in the identity of the nearest neighbors of a target
word using the Jaccard coefficient as a measure of normalized set
overlap in two different corpus slices

Note. The table lists the abbreviation (Abbr.) in the first column, the full name (Measure) in the second, and a
short description in the third.

the Jaccard coefficient between the set of neighbors at time i and the set of neighbors at time
j. rLNC, on the contrary, was computed by sampling words at random from the whole vocab-
ulary, which is less problematic since what is being tracked is the relation between the target
word and the other words in the language. It is therefore conceivable that this relation may be
coherent even when computed over words that fall outside the local semantic neighborhood
of the target word.

Finally, it is known that word embeddings also capture corpus frequencies (Schakel &
Wilson, 2015). Therefore, we computed a measure of diachronic frequency change in the
CoHA to be able to tease apart the relation that changes in usage patterns may have with AoA
from that of mere frequency variations. For every temporal slice, we computed the frequency
per million (FpM) of each token and summarized frequency variations summing FpM values
over corpus slices, in line with what we did for the target measures of language change. Words
with high FpM thus tend to be more frequent across the whole corpus.

2.5. Statistical approach

All analyses were performed in the R programming language (R Core Team, 2017).
All independent variables were first transformed using a Box–Cox power transformation
(performed using the package MASS, Venables & Ripley, 2002) to remove the skew in their
distribution and then z-transformed. This procedure ensures that all variables exist on the
same scale, that regression coefficients can be directly compared, and that their distribution is
as close as possible to normal across all analyses. We first fitted a baseline statistical model,
where AoA is modeled as a linear combination of frequency, contextual diversity (Adelman
et al., 2006), concreteness, OLD20 (Yarkoni et al., 2008), length in characters, dominant
PoS tag, and diachronic frequency. We then added each measure of semantic change to this
baseline model and assessed whether its fit improved by considering the difference in the
Akaike Information Criterion (�AIC ) between the baseline and each model including a
measure of language change. The choice to use AoA as our dependent variable is primarily
motivated by the necessity to control for variance explained by diachronic shifts in frequency,
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to ensure that the potential relation between changes in usage patterns and AoA can be really
ascribed to an effect of stability in usage patterns and is not reducible to an epiphenomenon of
other diachronic patterns in the corpus. In the discussion, we consider the possible theoretical
implications of this approach.

3. Results

We report and discuss results obtained with word embeddings with 40 dimensions and
training the TWEC model with a window size of three words to the left and right of the target
word. Crucially, we investigated other values for these hyperparameters, finding consistent
patterns these analyses are discussed at length in the Appendix. We preprocessed the text
using Spacy,11 removed stopwords and punctuation, and lemmatized the corpus. Finally, we
removed all the words that appeared 10 times or fewer in a slice to reduce the noise in the
representations. This entails that a word may be preserved in a slice where it occurs 20 times
but discarded in a slice where it only occurs 5 times.

3.1. Correlation analysis

We start by considering the quantitative relations concerning language change, AoA, and
the set of chosen control variables. The correlation matrix is shown in Fig. 1. First, we see
strong positive correlations across different measures of language change, suggesting that
they largely capture similar patterns.

Fig. 1 also suggests that there is a relation between AoA and measures of language change,
particularly looking at VC and J. We see that J has the strongest correlation with AoA norms
(r = −0.334), followed by VC (r = −0.306), while LNC has the weakest correlation (r =
−0.182). Therefore, both item- and neighborhood-level measures of language change seem to
correlate with AoA, although to a lesser extent than other predictors. The analysis reported in
the following section investigates whether there is unique variance in AoA, which is captured
by measures of language change. This analysis becomes particularly relevant when looking
at the collinearity between measures of language change and other covariates; in particular,
the correlation between VC and J on the one hand, and concreteness and frequency measures,
both synchronic and diachronic, on the other may signal that the effect of VC and J could
be reduced to a frequency or concreteness effect. On the contrary, LNC seems to be largely
orthogonal to other variables, even though its contribution in explaining AoA is not very large
to begin with.

Turning to quasi-random control measures, rVC, rJ, and rLNC, we observe smaller corre-
lations between AoA and all three, confirming that true measures of language change have
stronger correlations with AoA than the quasi-random counterparts, although the difference
is small for LNC and rLNC. Moreover, whereas VC and J have stronger correlations with
frequency values than their quasi-random counterparts, the opposite is observed for LNC.
Quasi-random measures, however, tend to be more correlated with concreteness.
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Fig. 1. Pairwise correlations between measures of language change, AoA, and control variables (TWEC with
dimensionality = 40, window size = 3, and enforcing a minimum count = 10 on word frequency in a slice).
Abbreviations: LNC, local neighborhood consistency; VC, vector coherence of word embeddings; J, Jaccard coef-
ficient of word semantic neighbors; rLNC, random local neighborhood consistency; rVC, random vector coherence
of word embeddings; rJ, random Jaccard coefficient of word semantic neighbors; AoA, age of acquisition; Concr,
concreteness; Freq, frequency (SUBTLEX); CD, contextual diversity (SUBTLEX); Len, length in letters; FpM,
frequency per million (CoHA).

3.2. Multiple regression analysis

As mentioned in Section 2.5, we first fitted a baseline multiple linear regression model
predicting AoA using word frequency, contextual diversity, orthographic word length, con-
creteness, dominant PoS tag, OLD20, and FpM to control for diachronic frequency variations
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Table 2
Summary statistics of lm(AoA ∼ basemodel + (Predictor)), presenting the β coefficient, standard error (SE), t
statistic, p value, r2, AIC, and �AIC with respect to the baseline statistical model provided at the top

Predictor β SE t p r2 AIC �AIC

Base 0.599 32,414.10 0
LNC −0.3844 0.0188 −20.500 <.001 0.618 32,005.17 408.93
rLNC −0.1425 0.0195 −7.309 <.001 0.601 32,362.72 51.38
J −0.3059 0.0208 −14.677 <.001 0.609 32,202.91 211.19
rJ −0.2090 0.0192 −10.873 <.001 0.604 32,298.44 115.66
VC −0.2536 0.0290 −12.093 <.001 0.606 32,270.79 143.31
rVC −0.2203 0.0194 −11.384 <.001 0.605 32,287.20 126.90

in the source corpus.12 Then, we separately added each measure of language change to this
baseline statistical model to assess their unique contribution. Results are reported in Table 2.
The measures of fit for the baseline statistical model are provided for reference at the top.

We see that all models including measures of language change have a lower AIC and a
higher r2 than the baseline statistical model. Moreover, we see that measures of language
change have lower AIC scores than their corresponding quasi-random counterparts, confirm-
ing that true measures of language change explain more unique variance in AoA norms. In
detail, we see that the highest improvement in fit is brought by LNC (�AIC = −408.93),
with J (�AIC = −211.19) following and VC (�AIC = −143.31) bringing the least improve-
ment. Considering the collinearity between VC and the control variables, especially con-
creteness and frequency measures, it is not surprising that its effect becomes weaker once
control variables are included in the statistical model. Similarly, it is not surprising to
see that LNC explains the largest share of unique variance in AoA considering that it is
largely orthogonal to other predictors. Finally, looking at β coefficients, we see that for
a 1 standard deviation increase in VC, the predicted AoA drops by a quarter of a year
(β = −0.2536 ± 0.0290, t = −12.093). A 1 standard deviation increase in LNC results in a
decrease in predicted AoA of about 5 months (β = −0.3844 ± 0.0188, t = −20.500). Finally,
a 1 standard deviation increase in J results in a drop of predicted AoA of about a third of a
year (β = −0.3059 ± 0.0208, t = −14.677).

The regression analysis summarized in Table 2 confirms that the pattern of the relations
between different measures of language change and AoA does not hold once standard covari-
ates of AoA and diachronic frequency variations are controlled for. Although J and VC
had a stronger correlation with AoA than LNC, we see that this pattern is reversed in the
regression analysis. This suggests that a large portion of the variance that VC and J explain
in AoA is actually better accounted for by other covariates. To verify this, we regressed
AoA on VC alone, reporting a coefficient almost three times as large as that reported in
Table 2 (β = −0.8215 ± 0.0281, t = −29.23). We repeated the same procedure for J and
obtained a coefficient which was almost three times as large as that provided in Table 2
(β = −0.8975 ± 0.0278, t = −32.26). On the contrary, the coefficients of the control vari-
ables in the baseline model remain largely unaltered by the inclusion of VC and J. This pattern
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is likely explained by the pairwise correlations between VC and J, on the one hand, and fre-
quency, contextual diversity, and concreteness, on the other.

3.3. Examples of words with high and low diachronic coherence

After having shown that there indeed is a unique relation between different measures of
language change and acquisition patterns, it is interesting to look at which words have the
highest and lowest diachronic coherence as measured by VC, LNC, and J. The examples we
discuss show that, while they largely agree, different measures of language change capture
different subtle patterns. This suggests that language change is a composite phenomenon that
cannot be easily reduced to a single measure without missing some of its relevant aspects.

Looking at the words with a high VC, we see several words referring to body parts (finger,
hand, wrist, arm, and hair). Moreover, we observe basic-level concepts, referring to entities,
for example, water, word, wind, hill, dress, sea, bird, and church, and actions, for example,
sing, kill, and buy. Time expressions, for example, year, evening, month, winter, summer, and
morning, also tend to show high VC. Finally, we also observe words with very specialized
meanings having high VC, for example, embroider, guttural, foliage, moisture, complexion,
symptom, and dialect, suggesting that words that are used in specific domains with strongly
conventionalized meanings tend to have high diachronic coherence. These words, however,
are also of low frequency; their stability is in line with and further qualifies the evidence
provided by Monaghan and Roberts (2019), who showed that low-frequency words have a
rather low probability of being replaced. Our analysis suggests that domain specificity may
be a further factor influencing diachronic stability.

On the other hand, many words with low VC appear to have been at the center of techno-
logical changes. Examples are projector, which came to refer to a tool used to show videos
while it was used to refer to a person who made plans; monitor, which used to refer to people
overseeing tasks while now primarily indicates video terminals; stainless, which shifted from
a moral connotation to referring to steel; console, which came to indicate a device to play
video games next to the action of comforting somebody; a highly polysemous word such as
recorder that could indicate a wind musical instrument, a judge, and now primarily a tool for
audio recording. We also observe the effect of cultural changes on lexical meanings in words
relating to the sexual sphere such as hooker, abortion, erection, and pregnant. Finally, we
see many words now relating to gay culture whose meaning changed over time, often words
repurposed to stigmatize or insult gay people. While the very word gay does not have one of
the lowest VC values, words such as aids, which came to indicate the disease as a lexicalized
acronym, fag, which used to refer to cigarettes, or faggot, which indicated sticks of wood tied
together, all appear at the bottom of the list when considering VC.

Fig. 2 graphically shows the VC of four words, two with high coherence (finger and thun-
der) and two with low coherence (pregnant and recorder), which highlight two different tra-
jectories of diachronic change. On the one hand, pregnant shows two distinct clusters, sig-
naling a shift in usage between 1880 and 1920; on the other hand, recorder shows a more
constant shift. On the contrary, the temporal vector representations for finger and thunder are
much closer in space to each other, signaling an overall stability in language use.
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Fig. 2. Vector coherence . Each panel represents a different word (from left to right: finger, thunder, pregnant,
recorder. Each dot represents the coordinates of a temporal vector representation extracted from a specific slice
of the CoHA and mapped onto a two-dimensional space obtained by applying Principal Component Analysis to
the original 40-dimensional vectors (the first principal component [PC1] is the x-axis, while the second principal
component [PC2] is the y-axis). Each color indicates a different temporal slice.

Moving to measures of neighborhood-level coherence, all words mentioned as having low
VC also appear to have low LNC and J values, suggesting that words that underwent drastic
changes in language use did so at both item and neighborhood levels. It is therefore inter-
esting to check whether the same happens for words with high VC, that is, whether words
with stable vector representations also top the chart in terms of measures of neighborhood-
level coherence.

Among words with high LNC, we no longer observe basic-level concepts. We still see some
words referring to body parts, for example, face, tooth, eyelid, and eye, and temporal expres-
sions, for example, night and twilight. Both patterns, however, are weaker than observed for
VC, and words appear to be less prototypical. Words with high LNC include animals, such as
snake, cat, vulture, raccoon, toad, dog, and frog, and fruit, such as melon, pumpkin, cabbage,
and turnip. Two very strong patterns among words with high LNC, which sometimes overlap,
involve words including nonarbitrary relations between form and meaning, on the one hand,
and words relating to the broad semantic field of suffering and sadness, on the other. The first
trend is exemplified by words including phonaestemes, such as fling, sneer, glimmer, glit-
ter, and snore, and by phonosymbolic words, such as shriek, howl, wail, roar, moan, whine,
groan, rumble, creaking, sob, and squeak. The second trend is represented by some of the
previously mentioned words (shriek, howl, moan, groan) and others such as grief, remorse,
suffering, anguish, humiliation, agony, or sorrow.

Fig. 3 shows a word with high LNC, evening, and a word with low LNC, aids. The plots
show the cosine similarity between the target word and the word’s nearest neighbors in two
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Fig. 3. Local neighborhood coherence. The top panel represents the similarity patterns of the word evening while
the bottom panel represents the similarity patterns of the word aids. The x-axis shows eight of the nearest neighbors
taken from two different temporal slices (i.e., for each word we take four nearest neighbors per slice), the y-axis
indicates the cosine similarity between each neighbor and the target word, while the facets indicate two temporal
slices, 1840 on the left and 2000 on the right.
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Table 3
Examples of words with high and low J

Target Neighbors (1840) Neighbors (2000) J

Fifth sixth, fourth, eighth, ninth, tenth, seventh,
twentieth, twelfth, thirtieth, fourteenth,
second, fortieth, inclusive, fiftieth, eleventh,
thirteenth, fifteenth, sixteenth, thirty, seven

fourth, seventh, sixth, ninth, eighth, tenth,
12th, 13th, eleventh, 11th, 14th, 33rd, 10th,
fifteenth, consecutive, twelfth, 34th, 15th,
16th, second

5.39

Aids engineering, auxiliary, superintendence, tactics,
desideratum, adjunct, culinary, housewifery,
procurement, ception, ose, operations,
commissariat, offi, reconnaissance, portant,
ciety, engineers, cult, department

HIV, std, epidemic, trachoma, syphilis, malaria,
Hodgkin, cholera, communicable, polio,
cancer, Alzheimer, lupu, Ebola, lupus,
asthma, ovarian, testicular, tuberculosis,
colon

0.22

Note. The first column (Target) contains the target word, the second column (Neighbors (1840)) shows the 20
nearest neighbors of the target word in the time slice ending in 1840, the third column (Neighbors (2000)) shows
the 20 nearest neighbors of the target word in the time slice ending in 2000, and the last column provides the
overall J score. The shared neighbors in the two slices are in bold. Words like ception, ose, offi, and cietyare likely
errors of the Optical Character Recognition system used to digitise the corpus or errors of the lemmatiser.

different time slices, 1840 and 2000. Of all the neighbors, we picked eight to avoid cluttering
the plot and ensure to make the patterns visible. Looking at evening, we see that all neighbors
have kept a rather consistent similarity with the target word, except for overcast and weekday,
which became more similar to the target in 2000. The fact that only minor differences appear
in the bar heights signals that the relation between evening and its nearest neighbors in differ-
ent corpus slices remained largely consistent diachronically, contributing to an overall high
LNC. On the contrary, in the bottom panel, we observe that the relation between the target
word aids and some of its neighbors changed drastically. Although words with similar usage
patterns in 1840 included culinary and personnel, in 2000 the word was being used more
similarly to epidemic or disease. The plot shows how the bars change, with neighbors with a
high similarity in 1840 falling near 0 in 2000 and vice versa.

Moving to the third measure of language change, among words with high J, we again
observe time expressions such as night, hour, day, morning, ago, evening, and afternoon,
numbers and ordinals, such as seven, tenth, fourth, sixth, fifth, twice, eighth, and ninth, as well
as words referring to kinship relations, such as child, daughter, and wife. These trends sug-
gest that J is highest for words from the same closed, narrow semantic domains, where words
are likeliest to be neighbors of each other. This highlights a potential limitation of a purely
symbolic measure, which could equate diachronic coherence to closed semantic domains.
Moreover, we observe other trends which were also reported when discussing words with
high VC and high LNC, including words referring to suffering (sob, grief), words including
nonarbitrary form-meaning relations (scream, howl, moan, roar, shriek), body parts (fore-
head, hand, finger), fruit (cabbage, melon), and basic-level concepts (window, table, walk,
door).

Table 3 shows one word with high J (fifth) and one with low J (aids). Again, for illustration
purposes we only show two time slices, 1840 and 2000. We see how aids does not share any
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neighbor in distant time slices, while fifth shares several neighbors even after several decades.
It is interesting to see, however, that this measure is very strict in that it only accepts as valid
overlap the occurrence of the exact same neighbor. When looking at the neighbors of fifth,
we see that the overlap could have been much higher if the convention of writing ordinals in
letters rather than with numbers would have stuck: In 1840 we see the token fourteenth, while
in 2000 we see the token 14th. However, venturing into processes of normalization would
have introduced further degrees of freedom in the modeling framework which fell outside the
scope of the current paper.

4. Discussion

In this study, we report evidence of a unique relation between language change and AoA,
which remains after controlling for variables, which are known to influence the age at which
words tend to be acquired as well as usage-based measures of diachronic variation. All else
being equal, words with more coherent diachronic usage patterns tend to be acquired earlier.
Our results were obtained leveraging temporal word embeddings derived using the TWEC
model (Di Carlo et al., 2019) and with the CoHA (Davies, 2010), a large diachronic corpus
of American English spanning two centuries.

We improved over previous studies investigating the relation between language evolution
and acquisition dynamics (Monaghan, 2014; Monaghan & Roberts, 2019; Vejdemo & Hör-
berg, 2016) by targeting a larger and more representative sample of words. We achieved this
by using an entirely data-driven, unsupervised corpus-based approach to quantifying language
change, which is grounded in diachronic language use (Firth, 1957; Harris, 1954; Wittgen-
stein, 1953) rather than exploiting measures of language change, which require expert anno-
tations or carefully constructed resources (Monaghan, 2014; Monaghan and Roberts, 2019;
Pagel et al., 2007; Vejdemo and Hörberg, 2016; Winter et al., 2014). This approach builds on
recent advancements in the study of language change using distributed temporal word embed-
dings (Bianchi et al., 2020; Di Carlo et al., 2019; Hilpert & Perek, 2015; Kim et al., 2014;
Kulkarni et al., 2015; Perek, 2014; Sagi et al., 2011; Yao et al., 2018). Finally, we imple-
mented and evaluated three different ways of capturing language change, which target both
item- and neighborhood-level patterns of change in usage patterns (Gonen et al., 2020; Hamil-
ton et al., 2016a), offering a more thorough and insightful characterization of the phenomenon
at hand.

We also extended the extant literature on temporal word embeddings (Kutuzov et al., 2018;
Tahmasebi et al., 2018) by applying the TWEC model, a novel method to align diachronic
lexical representations (Di Carlo et al., 2019), to the analysis of acquisition patterns and pro-
viding further evidence that measures of language change developed in the NLP community
can be fruitfully used to investigate cognitive phenomena. Moreover, we showed that differ-
ent measures of language change not only relate differently with lexical categories (Hamilton
et al., 2016a) but also with word-level properties and language acquisition. VC, for exam-
ple, was reported to correlate more with frequency and concreteness, such that more concrete
and frequent words tend to have more coherent embeddings over time. This result fits with
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evidence reported by Vejdemo and Hörberg (2016) that more imageable words tend to
undergo less lexical replacement over time, thus being more stable from a lexical point of
view. A distributed measure of neighborhood coherence such as LNC, on the contrary, is less
correlated with frequency and concreteness, and explains more unique variance in acquisi-
tion patterns.

In detail, the correlation analysis showed that all measures of language change correlated
negatively with AoA, indicating that words with stabler diachronic usage patterns tend to
be acquired earlier. The regression analysis characterized relations further. The effect of VC
on AoA reduced the most when controlling for other variables. Measures of neighborhood
coherence, LNC and J, on the contrary, explained more unique variance after controlling for
covariates of language change and other word-level properties with a known influence on
AoA (Braginsky et al., 2019; Hills et al., 2010). This dissociation between measures of item-
and neighborhood-level coherence suggests that, once other properties of target words are
taken into account, the relation between AoA and language change emerges more clearly at
the neighborhood level, where the relations between different lexical items over time are con-
sidered.

The qualitative analysis also highlighted interesting trends among words with higher vector
or neighborhood coherence. In particular, we observed that words with high VC tend to refer
to basic-level concepts, with higher frequency and concreteness (as confirmed by the positive
correlations between VC and concreteness reported in Fig. 1). Words with both high vector
and neighborhood coherence, on the contrary, tend to refer to time-related concepts, body
parts, and numerals. The fact that we observe peculiar effects of language change (or better
lack thereof) for number expressions in word embeddings is further evidence that language
encodes important aspects of numbers and can inform the way we represent them cognitively
(Rinaldi & Marelli, 2019). Our results show that number words tend to maintain coherent
word representations over time, suggesting a central role in language, which should be further
studied considering synchronic and diachronic patterns.

These pieces of evidence indicate, indeed, a unique and robust relation between stabil-
ity in usage patterns and AoA, which holds after controlling for several known word-level
predictors of acquisition and usage-based covariates of changes in usage patterns. With this
conclusion, we complement previous studies that uncovered a relation between acquisition
and language change (measured as a word’s stability of form and its probability of being
borrowed), while controlling for the effect of known predictors of language change (Mon-
aghan, 2014; Monaghan & Roberts, 2019). Ours remains, however, a correlational analy-
sis, which prevents us from drawing definitive conclusions about the causal relation between
either dimension. How to describe this relation, then? A direct link between the two vari-
ables is unlikely. On the one hand, children are not exposed to the history of the language
and so diachronic stability cannot directly affect AoA. On the other hand, AoA patterns esti-
mated from the intuitions of adults in the 2010s cannot have exerted an influence on pat-
terns of change which happened over the previous centuries, unless we assume that AoA
estimates obtained today also capture AoA patterns in the past. The relation is thus likely
to be more complex than a directional causal link. We get back to this point later in the
discussion.
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Even if we cannot directly interpret our results as arising from a direct relation between lan-
guage change and AoA, previous studies can inform a more insightful discussion of the unique
relation we uncovered. First, Newberry, Ahern, Clark, and Plotkin (2017) provided evidence
of a negative correlation between frequency and language drift, such that more frequent words
are less subject to stochastic drift in language transmission. Considering the robust negative
relation between frequency and acquisition (Braginsky et al., 2019) as well as the negative
correlation between our measure of change in frequency over time and AoA, a positive rela-
tion between drift and acquisition may be hypothesized, such that early acquired words are
also less subject to stochastic drift and stabler over time. On a related but different level, it can
be questioned whether children are at all sensitive to small changes that happen on a much
longer time scale than that in which they learn a language. This concern can be addressed by
considering evidence provided by Thompson, Kirby, and Smith (2016), who have shown how
cultural transmission amplifies weak linguistic biases over time, testifying to the possibility
that small changes in language use over a long period of time can build up and influence the
language that is learned at a given time, and, we hypothesize, how this process happens.

However, by explicitly controlling for diachronic frequency variations in our regression
analysis, our results also show that there is something unique about the relation between
stability in usage patterns and AoA. We suggest that the relation at the heart of our study is
best understood by considering the features of the language network, also considering that
the strongest relation between change and acquisition emerged when quantifying change at
the neighborhood level. Previous research has shown how this network consists of a few hubs
with many connections and a lot of nodes with few connections (Steyvers & Tenenbaum,
2005). Such a network could form following different dynamics. One possibility is that new
concepts are added to the network as a function of the number of connections each node in
the network already has, with a rich-gets-richer effect (Steyvers & Tenenbaum, 2005). Under
this hypothesis, words with more stable usage patterns could end up having more connections
with other nodes in the network and act as hubs around which the network grows. However,
this account has been challenged as a model of how individual children learn words (Hills
et al., 2009, 2010). An alternative view posits that early learned words are more contextually
diverse. Relating our finding to contextual diversity is harder since we explicitly control for
it in our model. However, our analysis did show a moderate positive correlation between
contextual diversity and VC and J, suggesting that words with more stable usage patterns
tend to co-occur with a higher number of unique contexts. This fits with the hypothesis that
words with a higher contextual diversity may play a role in structuring the growth and end
state of language networks. That said, it is important to point out that the notion of contextual
diversity has recently been called into question by Hollis (2020), who showed how it could
boil down to a transformation of frequency. Measures that better disentangle the effects of
frequency and contextual diversity will be needed in order to improve our understanding of
these dynamics.

A third account of how language networks could grow during learning involves the rela-
tion of new nodes with already known words (Hills et al., 2009). New words do not enter
the network earlier because they are attracted by hubs, but rather because unknown words are
themselves hubs, being associated with several words in the environment (Hills et al., 2010).
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The diachronic stability of lexical representations could play a crucial role in maintaining
such dense relations in the environment and ultimately facilitating learning by structuring the
lexicon in a convenient way. While our results cannot adjudicate between competing accounts
of how individual language networks grow, they highlight how the structure of such networks
is not simply constrained by the learning environment in which the child grows, but may
depend on the long process that shaped the language network that children will eventually
learn. Baumann (2018) highlights how changes that optimize learnability are less likely to
get lost due to random fluctuations, which is instead a likelier outcome for innovations that
optimize usability. This fits again with the evidence about stochastic drift offered by New-
berry et al. (2017). The observation by Hills et al. (2009) that “the structure of information
influences early [word] learning” fits nicely with our results, which highlight how the long
process that molds the language network could make it easier to learn. This perspective also
suggests that there likely is not a single directional causal relation between acquisition and
change, with the current state of the language network being influenced by diachronic pat-
terns, influencing learning, and in turn affecting diachronic patterns to come. The fact that a
unique relation involving acquisition and change has been documented regardless of the direc-
tionality of the hypothesis, and thus after controlling for variables known to affect change
and variables known to affect acquisition is a further hint of a feedback-loop kind of rela-
tion between these two constructs, where stability in usage pattern and early AoA go hand in
hand and influence each other in cultural transmission of language. Early acquired words gain
representation strength that guards against change (Monaghan, 2014; Monaghan & Roberts,
2019), and stability in usage patterns contributes to structuring the language network in such
a way that some words are easier to learn than others. Further studies are needed, however, to
probe the relation between psycholinguistic properties of language and its subjective experi-
ence (captured by AoA estimates in our study), on the one hand, and the properties of how the
language system changes over time, on the other, to uncover whether this relation is indeed
best characterized by a directional influence of one over the other or by mutual influences at
different time scales.

At a more speculative level, diachronic stability may also relate to synchronic stability,
such that words with more stable diachronic usage patterns are also used consistently during
development. This could reinforce the information structure in the world and facilitate word
learning (Brysbaert & Ghyselinck, 2006; Ghyselinck et al., 2004; Hills et al., 2009). The
neural-network model of language learning proposed by Ellis and Lambon Ralph (2000) is
particularly interesting in this respect. It predicts that early acquired words will exert a larger
influence on the whole system because at the initial stages the model is still changing rapidly
while it tends to settle later on, such that the connections in the network are primarily shaped
when the network has higher plasticity. If early acquired words had unstable usage patterns,
it would be harder to learn reliable connections, since new encounters with a word in context
would push the learned representation in different directions. This is, however, a hypothesis
that needs, at present, to be further tested. Recent models that learn context-dependent word
embeddings (Devlin, Chang, Lee, & Toutanova, 2019; Peters et al., 2018) could be useful to
quantify cross-sectional stability of representation and verify whether this relates to AoA on
top of diachronic stability, or whether one explains all the variance the other does and some.
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A further possible explanation of the reported relation between language change and acqui-
sition patterns involves a third variable, which may affect both AoA and language change, that
is, conceptual stability. This hypothesis rests on the observation of which words show high
VC, J, and LNC values, on the pairwise correlation between VC and concreteness, and on
the observation that the relation between VC and AoA is greatly reduced after controlling for
concreteness. Therefore, it may be the case that words with more stable usage patterns refer
to more stable concepts, which remain stable because they capture important and invariant
aspects of reality (that are less subject to cultural evolution) and thus are also learned earlier.
It is not unlikely that concepts, both concrete (such as body parts and fruit) and abstract (time
expressions and numbers), whose referents are diachronically more stable, will be referred
to more coherently in language and acquired earlier. In this sense, our purely linguistic mea-
sure of representational stability would be an epiphenomenon of a broader-level conceptual
stability. There are, however, several models that build conceptual representations combining
linguistic and modality-specific information, such as images (Bruni, Tran, & Baroni, 2014;
Kiela & Bottou, 2014) and natural sounds (Kiela & Clark, 2015; Lopopolo & van Miltenburg,
2015). If datasets of images and sounds pertaining to a same concept from different time peri-
ods were available, the language-based model we considered could be extended to overcome
this limitation and disentangle the contribution that pure stability of referent and pure stabil-
ity in language use has on AoA. Moreover, even though it is debatable whether language use
reflects meaning or meaning reflects use (Wittgenstein, 1953) and is thus hard to pin down
the causal links between conceptual and linguistic stability, our work shows that there is a
tight relation between concepts and the language, which is used to refer to them over time,
which can be captured by temporal word embeddings, and can be used to investigate acquisi-
tion dynamics.

One more aspect of how word embeddings are learned in the CBoW architecture, and
hence by the TWEC model, is worth discussing, particularly in the light of evidence provided
by Vejdemo and Hörberg (2016). This study showed that polysemy as measured by number
of WordNet senses had a negative relation with the rate of lexical replacement, such that
more senses resulted in a lower probability of lexical replacement (Vejdemo & Hörberg,
2016). As we discussed in Section 1, distributional representations are derived by tracking
co-occurrences. If a word is polysemous, the resulting word embedding will collapse all
the different usages capturing the more frequent and distinctive ones better, such that the
embedding for keyboard will reflect its shift in language usage from the music to the tech-
nology domain but still be shaped by all of its senses, technology- and music-related. If a
word is entirely repurposed or is attached to a new meaning, it becomes more entrenched
in the lexicon. Then it makes sense that its probability of being replaced decreases, as
observed by Vejdemo and Hörberg (2016), since, after being repurposed or extended to new
meanings, replacing it entirely would cause larger disruptions in the lexicon. At the same
time, results provided by Winter et al. (2014) show that more polysemous words are likelier
to be the origin of language change, thus of being repurposed or extended to a new meaning,
making them more entrenched in the lexicon, and at the same time more likely to determine
a higher rate of change as measured by our model. The observation that polysemy has a
different influence on different measures of language change, correlating with lower rates of
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replacement and stronger changes in usage patterns, calls for future studies to analyze how
usage patterns relate to the rate at which word forms are introduced in or disappear from
a language, and investigate a possible mediation of AoA in the relation between stability
of usage and stability of form. If AoA were not just a proxy for representational stability
(Juhasz, 2005; Monaghan, 2014), it would be expected to have a unique effect on stability of
form once controlling for diachronic patterns of language usage.

Finally, a limitation of the current study that needs to be mentioned involves its scope,
both in terms of time span and language. Monaghan and Roberts (2019) provided evidence
of cross-linguistic differences in how language change relates to acquisition and word-level
properties, even when considering rather similar languages as English and Dutch. Since our
study only focused on English, further studies are necessary to probe whether the patterns we
uncovered hold cross-linguistically. Moreover, we used the CoHA (Davies, 2010) to derive
temporal word embeddings and measures of language change. Whether 200 years of his-
tory of a language, characterized using newspaper and magazine articles as well as fiction
and nonfiction books, are representative enough to capture the relevant patterns involved in
acquisition and evolution is an open question. Our choice was primarily constrained by data
availability, since a large-scale corpus is required to reliably train the model we used. Alter-
native corpora that covered a longer time span, such as Google Books, had other substantial
shortcomings related to the availability of rich linguistic context. Future studies are necessary
to qualify how the history of a language should be best characterized.

To conclude, we provide evidence of a robust relation between diachronic patterns of lan-
guage use and AoA in English. We introduced and validated measures of language change
for a large set of words, derived in an unsupervised way and with no need for annotated data
or carefully constructed resources that need expert knowledge. Finally, we showed that lan-
guage change is best characterized as involving word-level and neighborhood-level patterns,
with both relating to AoA albeit in different ways.
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Notes

1. We thank Thomas Hills for this remark.
2. As Andreas Baumann pointed out in his review of a first draft of this work, however,

it is important to note that Monaghan and Roberts (2019) found a nonlinear effect
of frequency on the probability of borrowing, with very low-frequency words being
less likely to be borrowed. This suggests that the picture is likely more complex than
a simple pressure to conform to the language more popular in the community. We
return on this aspect later in the paper, highlighting how frequency could relate to
domain specificity, such that low-frequency words that are less likely to be borrowed
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may reflect very specific usages, with a low overall frequency but a possibly high in-
domain frequency.

3. Even though word embeddings are typically used to encode lexical semantics, we do
not refer to our model as tracking semantic change alone, but rather language change
at a more general level, as word embeddings reflect usage patterns and also encode
structural relations across words (Hewitt & Manning, 2019; Westbury & Hollis, 2019).
However, it is worth pointing out that our measures of change do not capture language
evolution at all levels: Change in word form and in sublexical structural properties at
the level of phonology and morphology are not tracked by our current model.

4. The corpus can be obtained at https://www.corpusdata.org/.
5. There are several ways to compute contextual diversity scores (see Hollis, 2020, and

references therein), which differ in what context they consider (from whole documents,
Adelman, Brown, & Quesada, 2006, to unique word types occurring in a narrow win-
dow around the target word, Hills, 2013; Hills et al., 2010) and in how they encode
it, whether counting unique contexts or using distributed representations (see Cevoli,
Watkins, & Rastle, 2020, and references therein). Since determining which operational-
ization of contextual diversity best accounts for acquisition patterns is outside the scope
of the current work, we decided to use the standard measure in the literature, that is,
the one introduced by Adelman et al. (2006).

6. See https://github.com/stephantul/old20.
7. The source code for the TWEC model can be found at https://github.com/valedica/

twec.
8. Superscript symbols describe the temporal slice, while subscript symbols are used to

represent an indexed word of the vocabulary.
9. The code implemented to compute measures of semantic change and perform the statis-

tical analyses detailed in Subsection 2.5 is available at the following GitHub repository:
https://github.com/GiovanniCassani/semanticShift_AoA.

10. During an exploratory stage, we considered other measures of central tendency and
spread, including the median, median absolute deviation, range, and standard deviation,
finding that the sum provides the most information.

11. The tool is available at https://spacy.io/.
12. We included all covariates in spite of collinearity because removing them resulted in a

worse fit as measured using AIC. We do, however, observe adverse effects of collinear-
ity, which manifest in two regression coefficients changing direction. In detail, while
length has a positive effect on AoA when considered alone, with longer words being
learned later, we observe a weak opposite effect once controlling for other predictors.
Similarly, frequency has a negative effect when considered alone (more frequent words
are learned earlier), but it changes sign once contextual diversity is included, such that
frequent words appear to be learned later once controlling for their contextual diver-
sity. The observation that once both contextual diversity and frequency are included
in the same model, the former trumps the latter, with a larger effect size and an effect
that keeps its original sign, aligns with previous results on the relation between the two
variables in several contexts (Adelman et al., 2006).

https://www.corpusdata.org/
https://github.com/stephantul/old20
https://github.com/valedica/twec
https://github.com/valedica/twec
https://github.com/GiovanniCassani/semanticShift_AoA
https://spacy.io/


G. Cassani, F. Bianchi, M. Marelli / Cognitive Science 45 (2021) 25 of 29

References

Adelman, J. S., Brown, G. D., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines
word-naming and lexical decision times. Psychological Science, 17, 814–823.

Baayen, H. R., Milin, P., & Ramscar, M. (2016). Frequency in lexical processing. Aphasiology, 30, 1174–1220.
Baroni, M., & Lenci, A. (2010). Distributional memory: A general framework for corpus-based semantics. Com-

putational Linguistics, 36, 673–721.
Baumann, A. (2018). Linguistic stability increases with population size, but only in stable learning environments.

In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), The evolution of
language: Proceedings of the 12th international conference (EVOLANGXII). https://doi.org/10.12775/3991-1.
004

Bianchi, F., Di Carlo, V., Nicoli, P., & Palmonari, M. (2020). Compass-aligned distributional embeddings for
studying semantic differences across corpora. Available at: https://arxiv.org/abs/2004.06519.

Biemiller, A., Rosenstein, M., Sparks, R., Landauer, T. K., & Foltz, P. W. (2014). Models of vocabulary acquisi-
tion: Direct tests and text-derived simulations of vocabulary growth. Scientific Studies of Reading, 18, 130–154.

Bowern, C. (2019). Semantic change and semantic stability: Variation is key. In Proceedings of the 1st international
workshop on computational approaches to historical language change (pp. 48–55). Florence, Italy: Association
for Computational Linguistics.

Boyd, R., & Richerson, P. J. (1988). Culture and the evolutionary process. Chicago, IL: University of Chicago
Press.

Bradley, V., Davies, R., Parris, B., Su, I. F., & Weekes, B. S. (2006). Age of acquisition effects on action naming
in progressive fluent aphasia. Brain and Language, 99, 128–129.

Braginsky, M., Yurovsky, D., Marchman, V. A., & Frank, M. C. (2019). Consistency and variability in children’s
word learning across languages. Open Mind, 3, 52–67.

Bruni, E., Tran, N.-K., & Baroni, M. (2014). Multimodal distributional semantics. Journal of Artificial Intelligence
Research, 49, 1–47.

Brysbaert, M. (2017). Age of acquisition ratings score better on criterion validity than frequency trajectory or
ratings “corrected” for frequency. Quarterly Journal of Experimental Psychology, 70, 1129–1139.

Brysbaert, M., & Ghyselinck, M. (2006). The effect of age of acquisition: Partly frequency related, partly fre-
quency independent. Visual Cognition, 13, 992–1011.

Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word
frequencies. Behavior Research Methods, 44, 991–997.

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known
English word lemmas. Behavior Research Methods, 46, 904–911.

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora
contain human-like biases. Science, 356, 183–186.

Cevoli, B., Watkins, C., & Rastle, K. (2020). What is semantic diversity and why does it facilitate visual word
recognition? Behavior Research Methods, 1–17. https://doi.org/10.3758/s13428-020-01440-1.

Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31,
489–509.

Croft, W. (2000). Explaining language change: An evolutionary approach. London: Pearson Education.
Davies, M. (2010). The corpus of historical American English (CoHA): 400 million words, 1810–2009. Provo,

UT: Brigham Young University.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019 conference of the North American chapter of the
Association for Computational Linguistics: Human language technologies (NAACL-HLT) (Vol. 1, pp. 4171–
4186). Stroudsburg, PA: Association for Computational Linguistics.

Di Carlo, V., Bianchi, F., & Palmonari, M. (2019). Training temporal word embeddings with a compass. In Pro-
ceedings of the AAAI conference on artificial intelligence (Vol. 33, pp. 6326–6334). https://doi.org/10.1609/
aaai.v33i01.33016326

https://doi.org/10.12775/3991-1.004
https://doi.org/10.12775/3991-1.004
https://arxiv.org/abs/2004.06519
https://doi.org/10.3758/s13428-020-01440-1
https://doi.org/10.1609/aaai.v33i01.33016326
https://doi.org/10.1609/aaai.v33i01.33016326


26 of 29 G. Cassani, F. Bianchi, M. Marelli / Cognitive Science 45 (2021)

Dubossarsky, H., Hengchen, S., Tahmasebi, N., & Schlechtweg, D. (2019). Time-out: Temporal referencing for
robust modeling of lexical semantic change. In The 57th annual meeting of the Association for Computational
Linguistics (ACL2019) proceedings of the conference (pp. 457–470). Florence, Italy: Association for Compu-
tational Linguistics.

Ellis, A. W., & Lambon Ralph, M. A. (2000). Age of acquisition effects in adult lexical processing reflect loss
of plasticity in maturing systems: Insights from connectionist networks. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 26, 1103.

Firth, J. R. (1957). Papers in linguistics, 1934–1951. Oxford, England: Oxford University Press.
Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and

ethnic stereotypes. Proceedings of the National Academy of Sciences, 115, E3635–E3644.
Ghyselinck, M., Lewis, M. B., & Brysbaert, M. (2004). Age of acquisition and the cumulative-frequency hypoth-

esis: A review of the literature and a new multi-task investigation. Acta Psychologica, 115, 43–67.
Gilhooly, K. J., & Gilhooly, M. L. (1980). The validity of age-of-acquisition ratings. British Journal of Psychology,

71, 105–110.
Gonen, H., Jawahar, G., Seddah, D., & Goldberg, Y. (2020). Simple, interpretable and stable method for detecting

words with usage change across corpora. In Proceedings of the 58th annual meeting of the Association for
Computational Linguistics (pp. 538–555). Stroudsburg, PA: Association for Computational Linguistics. https:
//www.aclweb.org/anthology/2020.acl-main.51.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review,
114, 211.

Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-space models of semantic representation from a cogni-
tive perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14, 1006–
1033.

Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016a). Cultural shift or linguistic drift? Comparing two com-
putational measures of semantic change. In Proceedings of the conference on empirical methods in natural
language processing. Conference on empirical methods in natural language processing (Vol. 2016, pp. 2116–
2121). Stroudsburg, PA: Association for Computational Linguistics.

Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016b). Diachronic word embeddings reveal statistical laws of
semantic change. In Proceedings of the 54th annual meeting of the Association for Computational Linguistics
(pp. 1489–1501). Berlin: Association for Computational Linguistics. Available at: https://www.aclweb.org/
anthology/P16-1141

Harris, Z. (1954). Distributional structure. Word, 10, 146–152.
Hewitt, J., & Manning, C. D. (2019). A structural probe for finding syntax in word representations. In Proceedings

of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT 2019) (pp. 4129–4138). Stroudsburg, PA: Association for
Computational Linguistics.

Hills, T. (2013). The company that words keep: Comparing the statistical structure of child-versus adult-directed
language. Journal of Child Language, 40, 586–604.

Hills, T. T., & Adelman, J. S. (2015). Recent evolution of learnability in American English from 1800 to 2000.
Cognition, 143, 87–92.

Hills, T. T., Maouene, J., Riordan, B., & Smith, L. B. (2010). The associative structure of language: Contextual
diversity in early word learning. Journal of Memory and Language, 63, 259–273.Available at: https://www.
ncbi.nlm.nih.gov/pubmed/20835374

Hills, T. T., Maouene, M., Maouene, J., Sheya, A., & Smith, L. B. (2009). Longitudinal analysis of early semantic
networks: Preferential attachment or preferential acquisition? Psychological Science, 20, 729–39.Available at:
https://www.ncbi.nlm.nih.gov/pubmed/19470123.

Hills, T. T., Proto, E., Sgroi, D., & Seresinhe, C. I. (2019). Historical analysis of national subjective wellbeing
using millions of digitized books. Nature Human Behaviour, 3, 1271–1275.

Hilpert, M., & Perek, F. (2015). Meaning change in a petri dish: Constructions, semantic vector spaces, and motion
charts. Linguistics Vanguard, 1, 339–350.

https://www.aclweb.org/anthology/2020.acl-main.51
https://www.aclweb.org/anthology/2020.acl-main.51
https://www.aclweb.org/anthology/P16-1141
https://www.aclweb.org/anthology/P16-1141
https://www.ncbi.nlm.nih.gov/pubmed/20835374
https://www.ncbi.nlm.nih.gov/pubmed/20835374
https://www.ncbi.nlm.nih.gov/pubmed/19470123


G. Cassani, F. Bianchi, M. Marelli / Cognitive Science 45 (2021) 27 of 29

Hodgson, C., & Ellis, A. W. (1998). Last in, first to go: Age of acquisition and naming in the elderly. Brain and
Language, 64, 146–163.

Hollis, G. (2020). Delineating linguistic contexts, and the validity of context diversity as a measure of a word’s
contextual variability. Journal of Memory and Language, 114, 104146.

Hollis, G., & Westbury, C. (2016). The principals of meaning: Extracting semantic dimensions from co-occurrence
models of semantics. Psychonomic Bulletin & Review, 23, 1744–1756.

Holmes, S. J., Jane Fitch, F., & Ellis, A. W. (2006). Age of acquisition affects object recognition and naming in
patients with Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 28, 1010–1022.

Juhasz, B. J. (2005). Age-of-acquisition effects in word and picture identification. Psychological Bulletin, 131,
684.

Kanjirangat, V., Mellace, S., & Alessandro, A. (2020). Temporal embeddings and transformer models for nar-
rative text understanding. In Proceedings of Text2Story —Third workshop on narrative extraction from texts
co-located with 42nd European conference on information retrieval (ECIR 2020) (pp. 71–77). Available at:
arXiv:2003.08811

Kiela, D., & Bottou, L. (2014). Learning image embeddings using convolutional neural networks for improved
multi-modal semantics. In Proceedings of the 2014 conference on empirical methods in natural language pro-
cessing (EMNLP) (pp. 36–45). Stroudsburg, PA: Association for Computational Linguistics.

Kiela, D., & Clark, S. (2015). Multi- and cross-modal semantics beyond vision: Grounding in auditory perception.
In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 2461–2470).
Stroudsburg, PA: Association for Computational Linguistics.

Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., & Petrov, S. (2014). Temporal analysis of language through neural
language models. In Proceedings of the ACL 2014 workshop on language technologies and computational
social science (pp. 61–65). Stroudsburg, PA: Association for Computational Linguistics.

Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of
regularity and irregularity. IEEE Transactions on Evolutionary Computation, 5, 102–110.

Kulkarni, V., Al-Rfou, R., Perozzi, B., & Skiena, S. (2015). Statistically significant detection of linguistic change.
In Proceedings of the 24th international conference on World Wide Web (pp. 625–635). New York: ACM.

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English
words. Behavior Research Methods, 44, 978–990.

Kutuzov, A., Øvrelid, L., Szymanski, T., & Velldal, E. (2018). Diachronic word embeddings and semantic shifts:
A survey. In Proceedings of the 27th international conference on computational linguistics (pp. 1384–1397).
Stroudsburg, PA: Association for Computational Linguistics.

Labov, W. (2001). Principles of linguistic change Volume 2: Social factors, Language in society (Vol. 29). Oxford,
England: Blackwell.

Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisi-
tion, induction, and representation of knowledge. Psychological Review, 104, 211–240.

Lenci, A. (2018). Distributional models of word meaning. Annual Review of Linguistics, 4, 151–171.
Li, Y., Engelthaler, T., Siew, C. S., & Hills, T. T. (2019). The macroscope: A tool for examining the historical

structure of language. Behavior Research Methods, 51, 1864–1877.
Lieberman, E., Michel, J.-B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying the evolutionary dynamics

of language. Nature, 449, 713–716.
Lopopolo, A., & van Miltenburg, E. (2015). Sound-based distributional models. In Proceedings of the 11th Interna-

tional Conference on Computational Semantics (pp. 70–75). Stroudsburg, PA: Association for Computational
Linguistics.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behav-
ior Research Methods, Instruments, & Computers, 28, 203–208.

Łuniewska, M., Haman, E., Armon-Lotem, S., Etenkowski, B., Southwood, F., Anđelković, D., Blom, E., Boerma,
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