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Abstract
Background  Immune checkpoint inhibitors (ICIs) have significantly transformed the treatment of gastroesophageal can-
cer (GEC). However, the lack of reliable prognostic biomarkers hinders the ability to predict patient response to ICI therapy.
Methods  In this study, we engineered and validated a genomic mutation signature (GMS) utilizing an innovative artificial 
intelligence (AI) algorithm to forecast ICI therapy outcomes in GEC patients. We further explored immune profiles across 
subtypes through comprehensive multiomics analysis. Our investigation of drug sensitivity data from the Genomics of 
Drug Sensitivity in Cancer (GDSC) database led to the identification of trametinib as a potential therapeutic agent. We 
subsequently evaluated trametinib’s efficacy in AGS and MKN45 cell lines using Cell Counting Kit-8 (CCK8) assays and 
clonogenic experiments.
Results  We developed a GMS by integrating 297 algorithms, enabling autonomous prognosis prediction for GEC patients. 
The GMS demonstrated consistent performance across three public cohorts, exhibiting high sensitivity and specificity for 
overall survival (OS) at 6, 12, and 18 months, as shown by Receiver Operator Characteristic Curve (ROC) analysis. Notably, 
the GMS surpassed traditional clinical and molecular features, including tumor mutational burden (TMB), programmed 
death-ligand 1 (PD-L1) expression, and microsatellite instability (MSI), in predictive accuracy. Low-risk samples exhibited 
elevated levels of cytolytic immune cells and heightened immunogenic potential compared to high-risk samples. Our 
investigation identified trametinib as a potential therapeutic agent. An inverse correlation was observed between GMS 
and trametinib IC50. Moreover, the high-risk-derived AGS cell line showed increased sensitivity to trametinib compared 
to the low-risk-derived MKN45 cell line.
Conclusion  The GMS utilized in this study successfully demonstrated the ability to reliably predict the survival advantage 
for patients with GECs undergoing ICI therapy.
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1 � Background

On a global scale, stomach and esophageal cancers comprise the fifth and seventh most prevalent malignancies, respec-
tively, and are frequently associated with high mortality rates [1]. In recent years, immune checkpoint inhibitors (ICIs) 
have emerged as a highly effective therapeutic approach for a wide range of malignancies, including gastroesophageal 
cancers (GECs) [2]. Accordingly, sustained responses have been documented with ICIs in instances of advanced GECs 
that are resistant to chemotherapy. This is supported by the KEYNOTE-061 trial, which documented a median response 
duration of 18.0 months [3]. However, the majority of patients (~ 85%) develop primary resistance to ICI monotherapy 
and do not experience a substantial improvement. Furthermore, the subset of patients who respond well to ICI therapy 
may encounter acquired resistance. Thus, the precise delineation of patient subgroups within GEC cohorts who are poised 
to derive substantial therapeutic advantage from ICIs presents a formidable clinical challenge.

Currently, the most reliable prognostic biomarkers for determining the effectiveness of ICIs include the extent of 
microsatellite instability (MSI) and the level of programmed death-ligand 1 (PD-L1) expression [4]. However, although 
response rates in tumors with high MSI exceed 50%, these malignancies account for approximately 4% of GECs [4]. As 
a result, researchers have focused their attention on studying PD-L1 expression. Intriguingly, various antibodies for 
immunohistochemistry are available, and the difference in their specificities and sensitivities may underlie the spectrum 
of expression estimates, potentially impacting the precision of tumor expression assessment and, by extension, therapy 
eligibility [5]. In this context, PD-L1 expression demonstrates a robust, negative predictive value for response [absent 
expression correlates with a response rate (RR) of 2–6% for ICI monotherapy]. However, its positive predictive value 
is comparatively weaker [a PD-L1 combined positive score (CPS) ≥ 1 is associated with an RR of 15–16%, and a PD-L1 
CPS ≥ 10 is associated with an RR of 24–25%]. In addition, tumor mutational burden (TMB) comprises another potential 
biomarker, which has been observed to correlate well with responses to ICIs in a recent study [6]. However, TMB has not 
been established as a reliable biomarker for GECs [7]. The immunogenic effect of mutations has been shown to differ, 
with certain mutations such as those in the PBRM1, KEAP1, and STK11 proteins [8–10] potentially affecting the efficacy of 
ICI treatment in either a positive or negative manner. Furthermore, the predictive power of TMB scoring systems for ICIs 
appears to be limited because they do not take into account the specific effects of these mutations. In order to address 
this issue, recent studies have proposed refining the TMB calculation algorithm or developing gene mutation-based 
signatures to enhance the predictive accuracy of ICIs outcomes [11, 12].

Artificial intelligence (AI) has fundamentally transformed biomedical research over the past few years. Healthcare sys-
tems have increasingly leveraged AI-driven predictive analytics to enhance diagnostic accuracy, prognostic assessment, 
and therapeutic decision-making [13–15]. The present study, therefore, utilizes genomic mutation data to construct and 
validate a novel AI-based genomic mutation signature (GMS). The findings show significant potential to offer crucial 
insights to improve immunotherapy strategies and potentially improve the clinical outcomes for GECs.

2 � Methods

2.1 � Designing research studies and collecting data

Thus, purpose of this study was to construct a GMS in predicting the efficacy of immunotherapeutic approaches. A train-
ing cohort consisting of 123 GECs, which were administered ICIs, was assembled at the Memorial Sloan Kettering Cancer 
Center (MSK) to identify prognostically significant mutations and establish a prognostic signature [7]. Additionally, two 
validation cohorts of ICI-treated GECs that were independent of one another were obtained from public repositories. 
Accordingly, the combined Janjigian and Pender cohort included 42 GECs [16, 17], while the PUCH cohort comprised 66 
individuals who were diagnosed with GESc [18]. The patient selection criteria were as follows: (1) primary GECs; (2) acces-
sible gene mutation profiles and clinical data with follow-up; and (3) confirmation of having undergone a minimum of 
one cycle of treatment with a PD-1/PD-L1 inhibitor, CTLA-4 inhibitor, or combination therapy. The clinical information of 
these three cohorts is shown in Supplementary Table 1. Additionally, somatic mutation data, mRNA expression profiles, 
and copy number variations (CNVs) comprising esophageal cancer (N = 184) and gastric cancer (N = 439), were obtained 
from The Cancer Genome Atlas (TCGA) database.
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2.2 � Mutation data analysis and assessment of clinical outcomes

MSK-IMPACT​® sequencing was performed on tumor specimens from the Janjigian and MSK cohorts, utilizing panels 
consisting of 341, 410, or 468 genes. In addition, whole-genome sequencing (WGS) was applied to tumor tissues 
from the Pender cohort, whereas whole-exome sequencing (WES) was employed to assess the tumor tissues from 
the PUCH cohort. Our analysis was confined to non-silent mutations, encompassing categories such as nonsense, 
missense, frameshift, inframe, splice site, translation start site, and nonstop mutations. The overall survival (OS) 
constituted the principal survival endpoint.

2.3 � AI network‑based signature generation

A novel AI-based network that integrated 297 algorithmic combinations was developed, comprising 22 techniques 
derived from traditional regression, machine learning, and deep learning. The algorithms included stepwise Cox, 
RSF, SuperPC, obliqueRSF, GLMBoost, BlackBoost, Rpart, Survreg, Ranger, Ctree, LASSO, plsRcox, survival-SVM, Ridge, 
Enet, DeepHit, DeepSurv, CoxTime, XGBoost, Coxboost, CForest, and VSOLassoBag. The sequential procedure for 
constructing the signature is outlined as follows: (1) The MSK cohort was analyzed using univariate Cox regression 
to identify prognostic genes. (2) The initial identification of signatures was carried out using the AI network in the 
MSK cohort. (3) The AI network was validated by testing it on two independent cohorts (the Janjigian and Pender 
cohort, and the PUCH cohort). (4) Harrell’s concordance index (C-index), was computed for each model in all cohorts. 
The model that achieved the highest average C-index in the test cohorts was considered to be optimal. The GMS was 
established by merging XGBoost and XGBoost algorithms. The XGBoost algorithm identified the most critical genes 
with importance over than 0.03. The XGBoost model was subsequently developed using tenfold cross-validation. 
The XGBoost model was constructed using default parameters.

2.4 � Functional annotation of the GMS

The data on immune modulators were collected from a previous study [19]. In order to quantify immune cell infil-
tration, four distinct algorithms were employed: the quanTIseq algorithm [20], which analyzes 11 specific immune 
cell types; the EPIC (Estimating the Proportions of Immune and Cancer cells) algorithm [21], which calculates the 
proportions of 8 immune cell types; the MCPcounter (Microenvironment Cell Populations-counter) algorithm [22], 
which identifies 10 immune cell types; and the ESTIMATE (Estimation of STromal and Immune cells in MAlignant 
Tumors using Expression data) algorithm [23], which assesses both stromal and immune cell components in malig-
nant tumors. Furthermore, 29 canonical immune signatures were obtained from the earlier study conducted by He 
et al [24]. In order to calculate the cytolytic activity scores (CYTs), the geometric mean of the expression levels of the 
granzyme (GZMA) and the perforin (PRF1) was utilized [25]. Additionally, the GSVA R package, which employs the 
single-sample gene set enrichment analysis (ssGSEA) method, was utilized to assess the enrichment levels of these 
29 immune signatures across all samples in the TCGA cohort.

2.5 � Immunogenomic indicator determination

The immunogenomic indicators were procured from the pan-cancer immune landscape project [19]. Essentially, the 
intertumoral heterogeneity (ITH) score is defined as the subclonal genome fraction, which represents the propor-
tion of the tumor genome that does not belong to the dominant clone. This was determined using ABSOLUTE, a 
computational tool that models tumor copy number alterations and mutations as combinations of subclonal and 
clonal components with varying ploidy levels. The copy number burden was quantified using two scores: n_segs, 
which represents the total number of segments in the copy number profile of each sample, and frac_altered, which 
indicates the proportion of bases that differ from the baseline ploidy. The aneuploidy score was computed as the sum 
of the altered arms. In addition, the diversity scores for TCR (T-cell receptor) and BCR (B-cell receptor) was inferred 
using Shannon entropy and richness measures, based on cancer RNA-sequencing data.
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2.6 � Unveiling genomic mutational signatures

The maftools R package was used to perform nonnegative matrix factorization (NMF) analysis on 96 trinucleotide 
context mutations in GEC samples obtained from The Cancer Genome Atlas (TCGA). Subsequently, the obtained 
mutational profile was assessed by comparing it to the Catalogue of Somatic Mutations in Cancer (COSMIC) using 
cosine similarity as the metric.

2.7 � Drug sensitivity prediction

The Genomics of Drug Sensitivity in Cancer (GDSC) database was queried for data regarding the sensitivity of tumor 
cell lines to potential drugs and the corresponding mutations. Accordingly, the half of the maximal inhibitory con-
centration (IC50) of the drugs was utilized to assess the sensitivity of the cell line.

2.8 � Cell line cultivation

The human gastric cancer cell lines AGS and MKN45 were obtained from the Shanghai Institutes for Biological Sci-
ences, Chinese Academy of Sciences. Correspondingly, the AGS cells were cultured in Ham’s F-12 medium, which 
was supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin, whereas the MKN45 cells 
were cultured in RPMI 1640 medium. The cell cultures were maintained inside an incubator set at 37 °C in a 5% CO2 
atmosphere.

2.9 � Colony formation assay

For a duration of 2 weeks, 1000 untreated cells were seeded into each well of a six-well plate, in the absence or pres-
ence of trametinib or dimethyl sulfoxide (DMSO). Subsequently, the colony formation was evaluated.

2.10 � Statistical analysis

Herein, the chi-square test was utilized to assess categorical data, whereas the Wilcoxon analysis was employed to 
inspect numerical variables. The magnitude of correlation was measured using Pearson’s correlation coefficient. The 
construction of Kaplan–Meier survival plots was facilitated by using the Survival and survminer packages within R. 
The prognostic independence of the GMS signature in relation to clinical contributing factors was evaluated using 
univariate and multivariate Cox regression analyses. In addition, the Receiver Operating Characteristic (ROC) curves 
were generated to assess the model’s sensitivity and specificity in predicting survival. A P value less than 0.05 was 
considered statistically significant, unless explicitly mentioned otherwise. The statistical analyses were conducted 
using R (version 4.2.3).

3 � Results

3.1 � Establishment and verification of the GMS

The schematic representation of the research process is depicted in Fig. 1. The training set consisted of 123 GEC 
patients from MSK who received ICIs. A univariate Cox analysis identified 23 prognostic genes. Subsequently, seed 
genes with a mutation frequency higher than 1% were selected and processed using an AI network that facilitated 
the construction of the GMS. The optimal model was achieved by combining XGBoost and XGBoost, resulting in the 
highest average C-index (0.72) out of all 297 algorithmic combinations (Fig. 2A). The XGBoost algorithm identified 12 
genes and utilized them to create the most reliable GMS using the resulting XGBoost model (Fig. 2B). The GMS scores 
of each patient were computed and categorized as high-risk or low-risk based on the median GMS score (56.40) in the 
training set. As observed in Figs. 2C–E, the high-risk group consistently showed a significantly worse OS compared 



Vol.:(0123456789)

Discover Oncology          (2024) 15:507  | https://doi.org/10.1007/s12672-024-01400-7	 Research

to the low-risk group across all cohorts (P < 0.05). Furthermore, the resulting time-dependent ROC curves consist-
ently demonstrated the strong performance of the GMS in all cohorts. As evident from the above, the GMS exhibits 
significant promise for use as a predictor of immunotherapeutic outcomes in GECs.

3.2 � The powerful prognostic capability of GMS

To determine whether GMS could function as an autonomous predictor of OS in immunotherapy patients, both univari-
ate and multivariate Cox regression analyses were conducted across the included cohorts. Despite being adjusted for 
various factors including age, gender, drug category, MSI, PDL-1, and TMB, the GMS continued to be a reliable prognostic 
indicator in multivariate analysis (Figs. 3A–C), underscoring its prognostic efficacy. When juxtaposed against typical 
clinical attributes and molecular features, the GMS demonstrated a notably higher degree of precision in comparison to 
other parameters including age, gender, drug type, TMB, MSI, and PD-L1 across the three cohorts examined (Figs. 3D–F). 
This highlights the potential likelihood that our GMS could function as a reliable surrogate for prognostic prediction in 
clinical patients with GECs undergoing immunotherapy.

3.3 � Extrinsic immune landscapes of the GMS

The potential of GMS as an immune status marker was evaluated by analyzing its correlation with both immune cell 
infiltration and immune checkpoint expression. The TCGA dataset revealed that the low-risk group exhibited elevated 
infiltration and regulatory activity of immune cells, as depicted in Figs. 4A and B. Upon comparing the 29 immune signa-
tures among the groups, it was observed that the low-risk group exhibited a greater abundance of immune cells, such as 
CD8 +T and NK cells (P < 0.05) (Fig. 4C). To further ascertain whether the risk categories corresponded to cohorts of high 
and low immune cell infiltration, the 29 immune signatures were utilized to perform an unsupervised clustering of the 
TCGA patients. Two discernible immunological patterns were identified as a consequence of the analysis: those indicat-
ing high immune infiltration and those indicating low immune infiltration (Fig. 4D). Importantly, the low-risk category 
was more frequently observed in the cluster with higher immune infiltration (P < 0.001) (Fig. 4E). Furthermore, low-risk 
tumors were found to significantly correlate with higher CYT scores (P < 0.001) (Fig. 4F). These observations indicate a 
relatively inflammatory and immunostimulated environment, which could potentially be amenable to immunothera-
peutic interventions [26].

3.4 � Intrinsic immune landscapes of the GMS

In order to identify variations in the determinants of tumor immunogenicity between the two cohorts, mutation rate, TCR 
diversity, BCR diversity, CNV load, aneuploidy, and intertumoral heterogeneity were initially evaluated. In contrast to the 
high-risk group, the low-risk group demonstrated a significantly higher mutation rate (P < 0.05), as well as a substantially 
increased TCR and BCR diversity (P < 0.05) (Fig. 5A). On the other hand, the high-risk group exhibited a higher CNV load 
and a greater degree of aneuploidy in comparison to the low-risk group (P < 0.001) (Fig. 5A). These findings align well 
with previous studies that have indicated a correlation between tumor aneuploidy and diminished immunotherapeutic 

Fig. 1   An illustration of the 
general workflow adopted in 
this study
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responses, along with indications of immune evasion [27]. In addition, it was observed that patients assigned to the high-
risk group exhibited greater intertumoral heterogeneity in comparison to those assigned to the low-risk group (P < 0.001) 
(Fig. 5A). This finding provides support for the hypothesis that tumors have the ability to undergo clonal evolution as a 
consequence of cytolytic activity and a reduction in the quantity of actively infiltrating immune cells, which leads to the 

Fig. 2   Development and validation of an artificial intelligence network using 297 algorithm combinations. A Evaluation and C-index com-
putation for 297 prediction models across all validation datasets. B Variable importance of the top 12 genes determined using the XGBoost 
algorithm. C–E Kaplan–Meier survival analysis (left) and receiver operating characteristic (ROC) (right) curves for overall survival (OS) in the 
MSK, Janjigian and Pender, and PUCH cohorts
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Fig. 3   Univariate and multivariate Cox regression analyses of the GMS and other characteristics. A GMS subjected to univariate and multi-
variate Cox regression analyses in the MSK cohort. B GMS subjected to univariate and multivariate Cox regression analyses in the Janjigian 
and Pender cohort. C GMS subjected to univariate and multivariate Cox regression analyses in the PUCH cohort. D Comparison of GMS per-
formance with other clinical and molecular variables for prognosis prediction in the MSK cohort. E Comparison of GMS performance with 
other clinical and molecular variables for prognosis prediction in the Janjigian and Pender cohort. F Comparison of GMS performance with 
other clinical and molecular variables for prognosis prediction in the PUCH cohort
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emergence of heterogeneity. Thus, it was inferred that the elevated immunogenicity of the low-risk group may induce 
an extrinsic immune response. To gain a better understanding of the mutational processes underlying the distinction 
between high-risk and low-risk groups, the mutational signatures were classified according to somatic mutation data. 
Accordingly, two distinct mutagenesis patterns were identified within the TCGA (Fig. 5B). In this context, SBS6, which 
is distinguished by the presence of C > T mutations and generally associated with dysfunctional DNA mismatch repair 
(MMR) (Fig. 5B), was found to be more prevalent in the low-risk group than in the high-risk group (Fig. 5C). Subsequently, 
the enrichment scores for the ten oncogenes that involved in oncogenic pathways were calculated. Higher scores were 
observed in the high-risk group for the cell cycle, Wnt, and MYC pathways, while an enrichment of the TP53 pathway was 
observed in the low-risk group (Fig. 5D). Reportedly, the Wnt pathway is linked to immune exclusion [28].

3.5 � Recognition of small compound medications exhibiting negative associations with GMS

Trametinib, a small compound medication, which exhibited the most pronounced inverse correlation with GMS score 
and the smallest p-value (P < 0.01), was successfully identified by employing GDSC drug sensitization data. Accordingly, 
it was hypothesized that trametinib might be more effective in high-risk patients. In order to validate this hypothesis, the 
GMS of the two cell lines from our laboratory (AGS GMS score: 62.32; MKN45: 4.75) were examined and their receptivity 
was compared against trametinib. The IC50 of trametinib for AGS and MKN45 was identified to be 3.59 nm and 47.20 nm, 
respectively (Fig. 6A). Additional evidence was presented in the form of a plate clone formation assay, which validated 
the increased sensitivity of AGS to trametinib (Fig. 6B).

4 � Discussion

The present study details the successfully development and validation of a genomic classifier, denoted as GMS, which is 
composed of 12 genes and is powered by an AI network. The as-obtained classifier was found to be able to enhance the 
prognosis of ICI therapy in patients with GECs. Furthermore, the optimal model was identified by combining XGBoost 
and XGBoost algorithms, resulting in the highest average C-index among the three cohorts. In addition, the predictive 
value of the GMS was found to be independent of other variables, and its performance was consistent across all valida-
tion cohorts. Furthermore, the GMS demonstrated a substantial level of sensitivity and specificity in forecasting OS at 6, 
12, and 18 months, as evidenced by the ROC analysis. Moreover, the GMS demonstrated considerably greater precision 
than clinical characteristics (like gender), and molecular features (including MSI, TMB, and PD-L1 expression). The pre-
sented evidence indicates that the GMS possesses substantial potential for improved translation and clinical application.

By leveraging the TCGA cohort, the response of cancer to immunotherapy was also assessed in the current study. Upon 
examining the characteristics of extrinsic immune infiltration according to a variety of algorithms, the low-risk group 
was found to comprise a substantial quantity of immune cells. Furthermore, the intrinsic immune landscapes exhibited 
greater immunogenicity of the low-risk group, as evidenced from the higher mutation rate. Moreover, compared to the 
high-risk group, the low-risk group exhibited considerably increased expression of immune checkpoints, including PD-L1, 
PD-1, and CTLA-4, in addition to a heightened CYT score. Thus, increased tumor immunogenicity, activated antitumor 
immunity, and elevated levels of PD-L1, PD-1, and CTLA-4 may account for the fact that the low-risk group is more likely 
to benefit from ICI therapy than the high-risk group.

In addition to the above, the innovative contributions and practical applications resulting from the present study are 
also highlighted. The AI network was initially constructed using 297 algorithm combinations, 22 of which were derived 
from classic regression, machine learning, and deep learning. The predictive performance of this network, which featured 

Fig. 4   Immune infiltrating characteristics of the GMS. A The relationship between the GMS and infiltrating immune cell populations. B The 
association between the GMS and immune modulatory factors expression. C The relationship between the GMS and 29 immune signatures 
score. D Unsupervised clustering based on 29 immune signatures. E The proportions of high and low immune infiltration were estimated in 
both the high-risk and low-risk groups. F A comparison of the cytolytic activity scores (CYTs) score was conducted betweenthe high-risk and 
low-risk groups. NS, no significant; **p < 0.01; ***p < 0.001

▸
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an extensive and diverse collection of algorithms, exceeded that of the previous machine learning-based integration 
[29–31]. Furthermore, the optimal algorithm pairing was found to be XGBoost in tandem with XGBoost, which presents 
a significant combination that had not been observed in previous studies [29–31]. Further application of additional algo-
rithm combinations successfully streamlined the variable dimensionality, thereby rendering the GMS more user-friendly 
and practically viable. Moreover, the execution of multibiomarker predictive frameworks requires an in-depth compre-
hension of elements influencing the accuracy and precision of high-throughput assays in a clinical setting. Among these 
elements, the fluctuation of biomarker measures presents a critical concern, which can be ascribed to technical factors 
associated with reliance on a particular platform. Several mRNA-based markers, such as the T cell-inflamed gene-expres-
sion profile (GEP), comprising an 18-gene assay, have been developed to predict clinical efficacy in patients undergoing 
ICI therapy [32]. In this context, relative quantification is employed to evaluate mRNA expression, while normalization 
is performed on reference genes [33]. However, the risk score computations and cutoff values of these mRNA markers 
are not suited for validation using alternate data measurement. In the present study, mutant genes were identified as 
predictors of the clinical success of ICI therapy. Thus, despite the utilization of diverse platforms across multiple centers, 
the GMS remains impervious to technical fluctuations. Furthermore, when examining patients who are anticipated to 
exhibit low responsiveness, the GMS averts potential immunological adverse effects from an operational standpoint. 
In addition, this expedites the pairing of patients with treatments that may be potentially more effective. Furthermore, 
given that the mean cost of treatment exceeds $120,000 [34], the incorporation of biomarker strategies that improve 
diagnostic accuracy could alleviate substantial costs that are typically associated with anticipated reduced benefits. Thus, 
given the simplicity with which tumor samples from patients can be obtained via targeted NGS of these genes, the use 
of GMS, encompassing these mutations, as opposed to the assessment of the TMB, a complex and expensive procedure 
in commonplace practice, presents additional merits.

In addition, trametinib, a small molecular drug with the lowest p-value and a significant inverse correlation with GMS, 
was identified by utilizing GDSC drug sensitization data. Trametinib, a reversible allosteric suppressor of MEK1/2 that is 
orally ingestible [35, 36], is currently authorized for both single application and concurrent use with dabrafenib in the 
treatment of patients with BRAF V600-mutated non-excisable/metastatic melanoma. It is also endorsed for simultane-
ous use with dabrafenib as a supplementary treatment for patients who have undergone complete resection of Stage III 
melanoma, advanced non-small cell lung malignancy, and locally progressive or metastatic anaplastic thyroid carcinoma 
with a BRAF V600 mutation. In the present study, it was noted that the AGS cell line, which was categorized as the high-
risk group, exhibited greater sensitivity to trametinib than the MKN45 cell line, which was categorized as the low-risk 
bracket. As a result, it was hypothesized that the combination of trametinib and ICIs might potentially increase the efficacy 
of ICIs within the high-risk contingent. However, additional validation of this theory is required via in vivo experiments.

The present study also suffers from several limitations. First, all-encompassing clinical records for every patient could 
not be assessed; this is likely to have introduced an analytical bias in our data. Second, the application of immunohis-
tochemistry techniques to verify the presence of immune cell population and the expression of immune checkpoint 
appears essential. Thus, to address these limitations, it is necessary to take a proactive approach to analyze and validate 
a wide range of ethnicities within a large group of patients with GECs undergoing ICI therapy. Studies conducted in these 
areas are likely to help to strengthen the findings and consequences of our study.

5 � Conclusions

The GMS developed in the current study serves as a promising biomarker capable of effectively predicting the prognosis 
of patients with GECs undergoing immunotherapy. The use of the GMS is likely to facilitate a cost-effective strategy to 
identify patients who may benefit from immunotherapy, which is worth exploring through future studies. Furthermore, 
integrating the GMS could substantially aid in refining customized treatment approaches and enhancing patient results 
in the field of GECs immunotherapy.

Fig. 5   Exploration of potential intrinsic immune response and escape landscapes in the high-risk and low-risk groups. A Comparison of 
immunogenomic markers between the high-risk and low-risk groups. B Analysis of mutational activities of two extracted mutational signa-
tures. C Comparison of the SBS6 signature activity between high-risk and low-risk groups. D Comparison of enrichment scores for 10 onco-
genic pathways between high-risk and low-risk groups. NS, no significant; **p < 0.01; ***p < 0.001

▸
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