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Abstract

Aims The aims of this study were to explore phenotypes of heart failure with preserved ejection fraction (HFpEF) and
evaluate differential effects of spironolactone treatment.
Methods and results A swap-stepwise algorithm was used for variable selection. Latent class analysis based on 10 selected
variables was employed in a derivative set of 1540 patients from the TOPCAT trial. Cox proportional hazard models were used
to evaluate the prognoses and effects of spironolactone treatment. Three phenotypes of HFpEF were identified. Phenotype 1
was the youngest with low burden of co-morbidities. Phenotype 2 was the oldest with high prevalence of atrial fibrillation,
pacemaker implantation, and hypothyroidism. Phenotype 3 was mostly obese and diabetic with high burden of other co-
morbidities. Compared with phenotype 1, phenotypes 2 (hazard ratio [HR]: 1.46; 95% confidence interval [CI]: 1.14–1.89;
P = 0.003) and 3 (HR: 2.35; 95% CI: 1.80–3.07; P< 0.001) were associated with higher risks of the primary composite outcome.
Spironolactone treatment was associated with a reduced risk of the primary outcome only in phenotype 1 (HR: 0.63; 95% CI:
0.40–0.98; P = 0.042).
Conclusions Three distinct HFpEF phenotypes were identified. Spironolactone treatment could improve clinical outcome in a
phenotype of relatively young patients with low burden of co-morbidities.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) is a
growing public health problem that accounts for around
50% of all heart failure (HF) cases.1 Unfortunately, unlike
heart failure with reduced ejection fraction (HFrEF), numer-
ous large clinical trials in HFpEF failed.2 The underlying
phenotypic heterogeneity of HFpEF is assumed to be one of
the major reasons for these disappointing results. Therefore,
phenotype-specific treatment for HFpEF is getting more and
more attention.3–5 However, clinical phenotyping is
complicated.

Clustering technique is one of the tools for phenotyping.6

Several studies explored HFpEF phenotypes using clustering
techniques, however, with distinct results.7–10 Unfortunately,

none of the studies evaluated the usefulness of variables be-
fore including them. As including non-informative variables
could compromise the performance of clustering model,11–13

empirical variable selection could be an important reason for
the inconsistent results in these studies. A clustering model
with an objective variable selection algorithm may be able
to produce more reliable phenotypes.

Latent class analysis (LCA) is one of the established
methods using mixture modelling to identify unobserved sub-
groups that can explain the confounding between the known
variables.6 While some clustering techniques work well with
continuous variables,10 LCA is designed to analyse categorical
variables. Because co-morbidities are very important clinical
characteristics for HFpEF14–16 and are often presented as cat-
egorical variables, LCA would be an ideal algorithm to explore
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HFpEF phenotypes and thus enable us studying
phenotype-specific effect of treatment.

The Treatment of Preserved Cardiac Function Heart Failure
with an Aldosterone Antagonist Trial (TOPCAT) was the latest
randomized and placebo-controlled trial (n = 3445). There-
fore, we performed LCA for phenotyping HFpEF patients
enrolled in TOPCAT and then evaluated whether there were
phenotype-specific effects of spironolactone treatment in
HFpEF. In order to include the most informative variables in
LCA, we adopted a swap-stepwise variable selection algo-
rithm before performing LCA.12

Methods

Study population and data resource

The TOPCAT was a phase 3, multicentre, international, ran-
domized, double-blinded, placebo-controlled trial. Patients
aged 50 or older were included if they had at least one sign
and at least one symptom of HF, a left ventricular ejection
fraction ≥45%, controlled systolic blood pressure, and a se-
rum potassium <5.0 mmol/L. In addition, patients were re-
quired to have a history of HF hospitalization within previous
12 months or an elevated natriuretic peptide level within
60 days before randomization.17,18

The current study was a subsequent analysis of data ob-
tained from the National Institutes of Heart, Lung, and Blood
Institute’s Biologic Specimen and Data Repository Informa-
tion Coordinating Center via an approved proposal.

Data from Russia and Georgia were excluded from our
analysis, because of concerns about the diagnosis of
HFpEF and the actual use of spironolactone in these two
countries.17,18 After the exclusion, 1767 patients from the
USA were left for this analysis. The analysis was approved
by the Medical Ethnic Committee of The First Affiliated
Hospital, Sun Yat-sen University.

Assessment of clinical variables

At baseline screening before randomization, data on demo-
graphic characteristics, medical history, medication, quality
of life assessed by Kansas City Cardiomyopathy Question-
naire, physical examination, electrocardiogram, and labora-
tory tests were collected.

Clinical outcomes

The outcome of interest in this analysis was the primary out-
come of TOPCAT, which was a composite of cardiovascular
mortality, aborted cardiac arrest, or hospitalization for HF.

Phenotyping by latent class analysis

For LCA, two steps of variable selections were performed. The
first step was manual selection. Inclusion criteria in this step
were rather loose to avoid subjective bias and missing unrec-
ognized clustering variables. Potentially related variables
were eligible. Variables with more than 60 missing data or a
positive response rate <10% were excluded. Forty-one candi-
date variables were selected and entered the second step,
spontaneous variable selection. A swap-stepwise algorithm12

was adopted to discard redundant and non-informative vari-
ables using the LCAvarsel package in R software. In brief, all
of the 41 variables selected from the first step were included
in the LCA model at the beginning. The algorithm assessed the
usefulness of each variable by comparing the model with or
without this variable. The least useful one was discarded. To
avoid missing potential clustering variables, the algorithm
re-evaluated the usefulness of all discarded variables after
each removal step and tried to add the most likely useful
one back to the model. The action of ‘removal’ or ‘adding’
would be accepted or rejected depending on whether it signif-
icantly improved the performance of the model assessed by
difference in Bayesian information criterion (BIC). This calcula-
tion iterated until no further action was accepted. Finally, 10
variables including age, diabetes, alcohol use, previous HF
hospitalization, pacemaker implantation, hypothyroidism,
body mass index, diastolic blood pressure, haemoglobin, and
estimated glomerular filtration rate were selected. Details of
the variable selection process were summarized in the
Supporting Information, Tables S1 and S2. Among 1767
patients from the USA, 1540 patients with complete data of
the 41 candidate variables were included as a derivative set
for spontaneous variable selection and LCA model establish-
ment. Another 197 patients with missing data of candidate
variables, but complete data of the 10 selected variables were
included as a validation set. Flowchart of patient inclusion is
presented in the Supporting Information, Figure S1.

Latent class analysis based on the 10 selected variables
was performed to identify HFpEF phenotypes by maximum
likelihood estimation. The optimal number of phenotypes
was determined by comprehensive considerations of χ2, G2,
BIC, Akaike information criterion (AIC), adjusted BIC, and con-
sistent AIC. Among these six statistics, BIC, adjusted BIC, and
consistent AIC had minima at 3 (Supporting Information,
Table S3). Therefore, we decided the optimal number of
classes generated by LCA was 3. The partial probabilities of
phenotype membership of each variable and the determina-
tion of an individual patient’s phenotype are summarized in
Supporting Information, Table S4. An example of membership
determination was made on a hypothetical patient
(Supporting Information, Table S5).

A sensitivity analysis was performed to evaluate the
impact of exclusion data from Russia and Georgia. In this
analysis, all of the 3445 patients were potentially eligible
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for analysis. Among them, 3032 had complete data of the 41
candidate variables mentioned above. Methods of variable
selection and LCA were the same as the original analysis
(detailed methods are shown in the Supporting Information,
Table S6).

Statistical analysis

Data were presented as percentages for categorical variables
and mean ± SD or median (interquartile range) for continuous
variables, depending on the normality of their distributions.

Comparisons of baseline characteristics among
phenotypes were performed using analysis of variance or
Kruskal–Wallis test for continuous variables. Categorical
variables were compared by χ2 test or Fisher’s exact test.

Prognoses and spironolactone treatment effects in differ-
ent phenotypes were assessed using Kaplan–Meier survival
curves, log-rank test, and Cox proportional hazard model. In-
teraction between spironolactone treatment and phenotypes
was assessed by likelihood-ratio test. For validation, the
method of phenotype determination was applied to the
validation set of 197 patients. Methods for evaluation of
differences in baseline characteristics, prognoses, and
spironolactone treatment effects were the same as those in
the derivative set.

Analyses were performed using STATA 15 and R software
3.5.3.

Results

Clinical phenotyping by latent class analysis in
heart failure with preserved ejection fraction

Clinical phenotyping was performed first in a derivative data
set and then validated in validation data set. Among 1540 pa-
tients (derivative set), three phenotypes were identified.
Baseline characteristics of these phenotypes are summarized
in Table 1. Patients in phenotype 1 (n = 413) were relatively
young with low burden of co-morbidities. Diastolic blood
pressure was the highest in this phenotype. Phenotype 2
(n = 737) contained 48% of the total HFpEF and were older
with about 50% of patients older than 80 years. Prevalence
of atrial fibrillation, pacemaker implantation, hypothyroid-
ism, and QRS prolongation were the highest. Anaemia and
chronic kidney disease were also prevalent. On the contrary,
proportions of diabetic and obese patients were the lowest
among three phenotypes. Patients in phenotype 3 (n = 390)
were relatively young compared with phenotype 2. The
co-morbidity burden in this phenotype was high. Over 98%
of the patients were diabetic, and approximately 50% of
them had microvascular complications. More than 70% of

the patients were severely obese. Prevalence of peripheral
artery disease, dyslipidaemia, hypertension, anaemia, and
chronic kidney disease were the highest. The rate of previous
HF hospitalization was also the highest. Alcohol use was less
common in this phenotype compared with the other 2
(Table 1). In a validation data set, phenotyping using the
partial probabilities from the derivative set yielded similar re-
sults (Supporting Information, Table S7). Difference in quality
of life assessed by Kansas City Cardiomyopathy Question-
naire is summarized in Table 2. Quality of life was highest
in phenotype 2, intermediate in phenotype 1, and the lowest
in the phenotype 3.

In the sensitivity analysis, phenotyping was performed
without exclusion of patients from Russia and Georgia. Five
phenotypes were identified among 3032 patients. Character-
istics of these five phenotypes were summarized in
Supporting Information, Table S8. Interestingly, patients from
the USA were obviously separated from those from Russia
and Georgia. Phenotypes 1 to 3 consisted mostly of patients
from the USA, while more than 90% of patients in pheno-
types 4 and 5 were from Russia and Georgia. Phenotypes 1
to 3 in the sensitivity analysis shared common major features
with phenotypes 1 to 3 in the original analysis. These results
further supported the regional variation in patients in
TOPCAT trial.18 Therefore, phenotyping limited in the USA
was less biased than in the whole TOPCAT population.

Clinical outcomes of heart failure with preserved
ejection fraction phenotypes

Kaplan–Meier survival curves are shown in Figure 1. The
log-rank test demonstrated a significant difference in risk of
the primary outcome among 3 phenotypes (P < 0.001). Re-
sults of the Cox proportional hazard model are summarized
in Table 3. Compared with phenotype 1, phenotypes 2 and
3 had a 46% [hazard ratio (HR): 1.46; 95% confidence interval
(CI): 1.14–1.89; P = 0.003] and 135% (HR: 2.35; 95% CI:
1.80–3.07; P < 0.001) increase in the risk of the primary out-
come, respectively. In the validation set, results of the
Kaplan–Meier survival curves, log-rank test, and proportional
hazard model were similar.

Effect of spironolactone treatment

To evaluate the phenotypic-specific effect of spironolactone
treatment, risks of the primary outcome of the two
study arms were compared in different phenotypes.
Spironolactone treatment was associated with a significant
reduction in the risk of the primary outcome in phenotype
1 (HR: 0.63; 95% CI: 0.40–0.98; P = 0.042). The beneficial ef-
fect of spironolactone treatment was not significant in the
phenotype 2 (HR: 0.85; 95% CI: 0.65–1.11; P = 0.224). In
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Table 1 Baseline characteristics of the three phenotypes

Phenotype 1 (n = 413) Phenotype 2 (n = 737) Phenotype 3 (n = 390)

P
• Youngest
• Low co-morbidity burden

• Oldest
• Prevalent AF, pacemaker,
and hypothyroidism

• Relatively young
• Diabetic
• High co-morbidity burden

Age, year # #‖ <0.001
<60, n (%) 134 (32.5) 3 (0.4) 60 (15.4)
60–70, n (%) 205 (49.6) 31 (4.2) 195 (50.0)
70–80, n (%) 71 (17.2) 336 (45.6) 126 (32.3)
≥80, n (%) 3 (0.73) 367 (49.8) 9 (2.31)

DM # #‖
<0.001

DM without MVC, n (%) 118 (28.6) 139 (18.9) 189 (48.5)
DM with MVC, n (%) 19 (4.6) 30 (4.1) 194 (49.7)

Pacemaker, n (%) 27 (6.54) 168 (22.8)# 22 (5.64)‖ <0.001
Hypothyroidism, n (%) 38 (9.2) 161 (21.9)# 60 (15.4)#‖

<0.001
Previous HF hospitalization, n (%) 248 (60.1) 348 (47.2)# 304 (78.0)#‖

<0.001
Drinking alcohol, n (%) 135 (32.7) 226 (30.7) 37 (9.5)#‖

<0.001
BMI, kg/m2 # #‖

<0.001
<25, n (%) 23 (5.6) 158 (21.4) 4 (1.03)
25–30, n (%) 81 (19.6) 255 (34.6) 25 (6.41)
30–35, n (%) 102 (24.7) 223 (30.3) 84 (21.5)
≥35, n (%) 207 (50.1) 101 (13.7) 227 (71.0)

DBP, mmHg # # <0.001
<60, n (%) 5 (1.21) 127 (17.2) 67 (17.2)
60–70, n (%) 62 (15.0) 253 (34.3) 136 (34.9)
70–80, n (%) 123 (29.8) 199 (27.0) 118 (30.3)
≥80, n (%) 223 (54.0) 158 (21.4) 69 (17.7)

Haemoglobin, g/dL # #‖
<0.001

≥14, n (%) 198 (47.9) 164 (22.3) 30 (7.7)
13–14, n (%) 102 (24.7) 161 (21.9) 65 (16.7)
12–13, n (%) 72 (17.4) 185 (25.1) 109 (28.0)
<12, n (%) 41 (9.9) 227 (30.8) 186 (47.7)

eGFR, mL/min/1.73 m2 # #‖
<0.001

≥90, n (%) 134 (32.4) 26 (3.5) 19 (4.9)
60–90, n (%) 227 (55.0) 287 (38.9) 100 (25.6)
45–60, n (%) 52 (12.6) 257 (34.9) 166 (42.6)
<45, n (%) 0 (0) 167 (22.7) 105 (26.9)

Male, n (%) 222 (53.8) 347 (47.1) 193 (49.5) 0.095
NYHA III and IV, n (%) 116 (28.1) 238 (32.3) 171 (43.9)#‖

<0.001
PND at baseline, n (%) 73 (17.7) 77 (10.5) # 66 (16.9)‖ 0.001
Orthopnoea at baseline, n (%) 114 (27.6) 189 (25.6) 152 (39.0)#‖

<0.001
LVEF, % 0.168

<55, n (%) 123 (29.8) 204 (27.7) 97 (24.9)
55–60, n (%) 84 (20.3) 174 (23.6) 113 (29.0)
60–65, n (%) 100 (24.2) 178 (24.2) 93 (23.9)
≥65, n (%) 106 (25.7) 181 (24.6) 87 (22.3)

CHD* # # <0.001
CHD without MI, n (%) 38 (9.2) 97 (13.2) 71 (18.2)
CHD with MI, n (%) 63 (15.3) 157 (21.3) 93 (23.9)

PAD, n (%) 30 (7.3) 80 (10.9) 68 (17.4)#‖
<0.001

Dyslipidaemia, n (%) 266 (64.4) 508 (68.9) 341 (87.4)#‖
<0.001

Hypertension, n (%) 375 (90.8) 648 (87.9) 373 (95.6)#‖
<0.001

COPD, n (%) 65 (15.7) 119 (16.2) 73 (18.7) 0.454
AF # ‖

<0.001
Paroxysmal AF, n (%) 41 (9.9) 135 (18.3) 58 (14.9)
Chronic AF, n (%) 104 (25.2) 250 (33.9) 75 (19.2)

Smoking, n (%) 261 (63.2) 393 (53.3)# 237 (60.8) 0.002
SBP, mmHg # # 0.001

<120, n (%) 93 (22.5) 241 (32.7) 114 (29.2)
120–130, n (%) 88 (21.3) 171 (23.2) 69 (17.7)
130–140, n (%) 124 (30.0) 180 (24.4) 103 (26.4)
≥140, n (%) 108 (26.2) 145 (19.7) 104 (26.7)

QRS prolongation, n (%) 74 (17.9) 237 (32.2)# 80 (20.5)‖ <0.001

AF, atrial fibrillation; BMI, body mass index; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; DBP, diastolic
blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HF, heart failure; LVEF, left ventricular ejection fraction;
MI, myocardial infarction; MVC, microvascular complication; NYHA, New York Heart Association; PAD, peripheral artery disease; PND, par-
oxysmal nocturnal dyspnoea; SBP, systolic blood pressure.
*Defined as patients with angina pectoris, a history of percutaneous coronary intervention, coronary artery bypass graft surgery, or MI.
#Bonferroni’s corrected P < 0.05 compared with phenotype 1.
‖Bonferroni’s corrected P < 0.05 compared with phenotype 2.
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phenotype 3, the effect of spironolactone treatment was
neutral (HR: 1.00; 95% CI: 0.74–1.37; P = 0.986). However,
no significant interaction between treatment and pheno-

types was detected (P for interaction = 0.223). In the valida-
tion set, trends in Kaplan–Meier curves were similar, but the
proportional hazard models did not yield any significant
results, probably because of the limited sample size (Figure 2
and Table 4).

Discussion

In a large cohort of HFpEF patients from TOPCAT, 3 clinical
phenotypes were identified by LCA with rigorous variable
selection. Spironolactone was beneficial in a phenotype of
relatively young patients with low burden of co-morbidity.

Table 2 Kansas City Cardiomyopathy Questionnaire scores of the three phenotypes

Domain

Phenotype 1 (n = 413) Phenotype 2 (n = 737) Phenotype 3 (n = 390)

P
• Youngest
• Low co-morbidity burden

• Oldest
• Prevalent AF, pacemaker,
and hypothyroidism

• Relatively young
• Diabetic
• High co-morbidity burden

Overall summary score 59.4 (36.7–78.1) 65.6 (46.6–80.7)# 52.0 (32.0–67.7)#‖
<0.001

N = 413 N = 737 N = 390
Clinical summary score 59.4 (40.1–80.2) 64.6 (48.4–79.7)# 51.6 (34.7–68.8)#‖

<0.001
N = 413 N = 737 N = 390

#Bonferroni’s corrected P < 0.05 compared with phenotype 1.
‖Bonferroni’s corrected P < 0.05 compared with phenotype 2.

Figure 1 Kaplan–Meier survival curves of the 3 phenotypes in (A) derivative set and (B) validation set.

Table 3 Association of the primary outcome and phenotypes

Phenotype Events, n (%) HR (95% CI) P

Derivative set
Phenotype 1 92 (19.9) Reference Reference
Phenotype 2 213 (28.9) 1.46 (1.14–1.89) 0.003
Phenotype 3 161 (41.3) 2.35 (1.80–3.07) <0.001

Validation set
Phenotype 1 9 (15.3) Reference Reference
Phenotype 2 24 (28.6) 2.27 (1.05–4.49) 0.036
Phenotype 3 24 (44.4) 4.16 (1.92–8.98) <0.001

CI, confidence interval; HR, hazard ratio.
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To date, different approaches to variable selection for clus-
tering techniques were used for phenotyping in HF. The first
approach was to include a considerable amount of variables
to cover several different features of HF.10,19 The second

one was to select predictors of prognosis or treatment
effect.8,20,21 The third approach only focused on variables in
one aspect of HF.22 With such a difference in selected vari-
ables, it was not surprising that previous studies generated

Figure 2 Kaplan–Meier survival curves of spironolactone versus placebo arm in the three phenotypes in (A) derivative set and (B) validation set.

Table 4 Effect of spironolactone in the three phenotypes

Phenotypes

Events/total (%)

HR (95% CI) P*
P for

interaction#Placebo Spironolactone

Derivative set
Phenotype 1 50/215 (23.3) 32/198 (16.2) 0.63 (0.40–0.98) 0.042 0.233
Phenotype 2 113/361 (31.3) 100/376 (26.6) 0.85 (0.65–1.11) 0.224
Phenotype 3 79/192 (41.2) 82/198 (41.4) 1.00 (0.74–1.37) 0.986

Validation set
Phenotype 1 6/26 (23.1) 3/33 (9.1) 0.32 (0.08–1.30) 0.112 0.240
Phenotype 2 13/39 (33.3) 11/45 (24.4) 0.62 (0.28–1.38) 0.237
Phenotype 3 13/30 (43.3) 11/24 (45.8) 1.22 (0.54–2.76) 0.628

CI, confidence interval; HR, hazard ratio.
*P value for significance of spironolactone treatment in each proportional hazard model.
#P value for interaction between spironolactone treatment and phenotyping.
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different subgroups of HF. However, all of the approaches
were empirical and could include non-informative variables
in the final clustering model. It has been shown that using
variables without grouping information could lead to a poor
clustering performance.11–13 The same problem also existed
in phenomapping studies specifically designed for HFpEF.7–10

In these studies, numbers of phenotypes, clinical manifesta-
tions, prognoses, and responses to treatment were different,
which made these data difficult to interpret. These distinct
results were also likely caused by relatively empirical meth-
odology for clustering variable selection. In our study, a
swap-stepwise spontaneous variable selection algorithm
was adopted to discard redundant or non-informative vari-
ables. At each step of the algorithm, all the variables were ex-
amined for the evidence of carrying grouping information. In-
terestingly, although several variables, such as gender,
coronary heart disease, and atrial fibrillation, were believed
to carry important grouping information before,8,19,21,22 they
were excluded by the algorithm. Although nobody could deny
the difference between HFpEF subgroups stratified by these
variables, for example, sex difference,23 they might not cap-
ture the most significant heterogeneity in HFpEF. This further
emphasized the advantage of clustering techniques com-
pared simple subgroup analysis and the shortcomings of em-
pirical variable selection. With the strict control of selected
variables, the phenotypes produced by our LCA model were
the least likely to be influenced by non-informative variables
and subjective bias.

Our study indicated a beneficial effect of spironolactone
treatment in phenotype 1 with relatively lower risk, which
was in line with a previous post hoc analysis from TOPCAT
showing that benefit of spironolactone treatment was
greater in patients with lower levels of natriuretic peptide.24

Another phenotyping study in HFrEF also indicated a greater
effect of eplerenone in subgroups at lower risk.21 Cardiac
structural changes in phenotype 1 might be mild, reversible,
and amenable to spironolactone treatment. This hypothesis
was supported by the gradual increase of HRs of
spironolactone versus placebo in phenotypes 2 and 3, which
were at intermediate and high risk, respectively. Another
possible reason was the difference in renal function.
Phenotype 1 had the best renal function among the three
phenotypes. Over 85% of patients in this phenotype had an
eGFR ≥ 60 mL/min/1.73 m2, while this percentage was
42.4% in phenotype 2 and 30.5% in phenotype 3. A post
hoc analysis of TOPCAT trial showed that a worse renal func-
tion was associated with a lower spironolactone dose and a
higher rate of treatment discontinuation,25 which could
compromise the potential benefit of spironolactone.
Indeed, in a subgroup analysis of TOPCAT-USA data
showed that spironolactone treatment significantly reduced
the risk of the primary outcome among patients with
eGFR ≥ 60 mL/min/1.73 m2, but not among those with
eGFR < 60 mL/min/1.73 m2.18 Therefore, the protective

effect of spironolactone in phenotype 1 could be mediated
by its relatively preserved renal function.

It is known that HFpEF might be mechanically driven by
cardiovascular aging and or co-morbidity-induced
inflammation.14,26 Cardiovascular aging shared several com-
mon pathophysiological components with HFpEF.27 Some re-
searchers even regarded HFpEF as an exaggerated version of
cardiovascular aging.26 Phenotype 2 was more than 10 years
older than the other 2 phenotypes averagely, but they had
the lowest rates of severe HF symptoms the highest quality
of life, and a relatively benign prognosis compared with the
phenotype 3. These could be explained if HFpEF in this phe-
notype was largely driven by cardiovascular aging, instead
of other ‘abnormal’ pathological causes. Paulus et al. pro-
posed a paradigm of HFpEF development. They believed
HFpEF was caused by a systemic proinflammatory state in-
duced by co-morbidities.14 Phenotype 3 was characterized
by the highest prevalence of diabetes, obesity, hypertension,
anaemia, and chronic kidney disease, which were also
believed to be the most important systemic inflammation
inducers. The pathogenesis of this phenotype 3 could be ex-
plained by Paulus’s paradigm.

Four phenotyping studies in HFpEF have been
published.7–10 Among them, three studies also identified three
HFpEF phenotypes.7,9,10 The remaining one suggested six phe-
notypes. The relatively large number of subgroups in this could
be the consequence of including non-informative variables,
because these variables could influence decision of the opti-
mal cluster number.11,12 For example, subgroup A and B, and
D and E in this study had huge differences in gender propor-
tions. However, there were no considerable differences in
other traits between these subgroups. The generation of these
subgroups was likely to result from inclusion of the variable
gender, which was non-informative according to our analysis.
Among the three studies with three phenotypes, two showed
very similar phenotypic features to our study, that is, one
young phenotype with the lowest co-morbidity burden, one
phenotype with the most prevalent diabetes and obesity as
well as some other co-morbidities, and one elderly phenotype
with a higher burden of aging-related diseases.7,10 However,
there were still some differences between our study and the
two studies. In one study, the elderly phenotype had a poorer
prognosis than the diabetic/obese phenotype.10 The other
study showed the same comparative prognosis of the three
phenotypes as our study did, but they indicated the benefit
of spironolactone in the diabetic/obese phenotype, but not
in the young phenotype with a low co-morbidity burden.7

The similarities between our study and these two published
studies confirmed the existence of three distinct HFpEF
phenotypes, but the differences emphasized the effect of phe-
notyping methodology on the final conclusion. Our study uti-
lized a non-empirical variable selection algorithm to
avoid subjective bias. It is known that TOPCAT-USA and
TOPCAT-Russia/Georgia represented very different
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populations.18 When pooling them together, our LCA model
successfully separate them from each other, which demon-
strated the power of ourmodel to identify heterogeneous sub-
group. After the phenotyping algorithm was established in the
derivative set, applying this algorithm to a validation data set
successfully recapitulated the characteristics, comparative
prognosis, and response to spironolactone treatment. The
sensitivity analysis and model validation demonstrated the re-
liability of our findings. However, clinical phenotyping was hy-
pothesis-generating. Future laboratory studies on molecular
mechanisms and phenotype-specific randomized controlled
trials are needed to verify these findings.

Study limitation

Several limitations should be taken into account. First, a data
set for external validation was not available for this study.
The sample size of internal validation set was so limited with
a small number of events. Therefore, the results of validation
should be interpreted with caution, especially the results for
spironolactone treatment. For example, Figure 2B and Table 4
showed very promising validation results in phenotypes 1 and
2 for spironolactone treatment, with separated survival curves
and low HR. However, these results could deviate from true
effect, because there were only 9 and 24 events in phenotypes
1 and 2, respectively. Second, the overall analysed sample was
only a subpopulation of TOPCAT underpowered to detect
effect of spironolactone treatment, let alone the phenotypes
generated from this subpopulation. Although there was a
trend of differential treatment effect in the three phenotypes
in both the derivative and validation set, no significant interac-
tion was found. Therefore, differential effect of spiro-
nolactone treatment could not be concluded in this study.
Third, echocardiographic data were not incorporated in the
clustering model because of the large proportion of missing
data. These data contained important information of cardiac
structure and function. Therefore, a clustering model would
generate more accurate phenotypes if both clinical and echo-
cardiographic data are incorporated. Fourth, although using
variable selection algorithm could reduce bias considerably,
the selection of the candidate variables still involved empirical
aspects, which could unavoidably introduce bias.

Conclusion

In conclusion, this study identified three distinct phenotypes
of HFpEF that differed significantly in demographic features,

co-morbidities, quality of life, electrocardiogram findings, lab-
oratory results, and prognosis. Spironolactone treatment was
associated with a lower risk of the primary outcome in a
phenotype of relatively young patients with low burden of
co-morbidities. Our study strengthens need of a new strategy
in future clinical trial in HFpEF, namely, phenotyping-based
intervention trial.
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