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Introduction

Type 2 diabetes is a multifactorial disease character-

ised by chronic hyperglycaemia resulting from defects

in insulin secretion and ⁄ or insulin action (1,2).

These defects impact the utilisation of glucose and

free fatty acids (FFA) by muscle, liver and adipose

tissue. Factors that influence the development of

chronic hyperglycaemia include genetic abnormali-

ties; environmental causes, such as nutritional excess

and lack of activity; increased hepatic production of

glucose; increases in visceral fat; atherogenic dyslipi-

daemias; increased adiposity of muscle and liver;

b-cell dysfunction; and, an imbalance of oxidation and

inflammation, natural processes involved in main-

taining a physiologic state. Long-term complications

associated with chronic hyperglycaemia include

microvascular disease, such as retinopathy, nephrop-

athy, neuropathy and macrovascular diseases, includ-

ing fatal and non-fatal myocardial infarction,

peripheral vascular disease and stroke (1,2).

Understanding pathophysiologic processes that

trigger the development of type 2 diabetes mellitus

(DM2) provides opportunities for designing pharma-

cologic interventions to target mediators of these

processes. The goal of intervention is to improve

short-term glucose metabolism, as measured by fast-

ing and postprandial blood glucose levels; maintain

long-term glycaemic control, as measured by reduc-

tion in haemoglobin A1C (A1C); and, provide long-

term cardiovascular (CV) benefits. Early detection,

intervention, and aggressive, long-term treatment of
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SUMMARY

Type 2 diabetes is a result of derangement of homeostatic systems of metabolic

control and immune defense. Increases in visceral fat and organ adipose, environ-

mental factors and genetic predisposition create imbalances of these homeostatic

mechanisms, ultimately leading to a condition in which the oxidative environment

cannot be held in check. A significant imbalance between the production of reac-

tive oxygen species and antioxidant defenses, a condition called to oxidative stress,

ensues, leading to alterations in stress-signalling pathways and potentially end-

organ damage. Oxidative stress and metabolic inflammation upregulate the expres-

sion pro-inflammatory cytokines, including tissue necrosis factor alpha, monocyte

chemoattractant protein-1 and interleukin-6, as well as activating stress-sensitive

kinases, such as c-Jun N-terminal kinase (JNK), phosphokinase C isoforms, mito-

gen-activated protein kinase and inhibitor of kappa B kinase. The JNK pathway

(specifically JNK-1) appears to be a regulator that triggers the oxidative-inflamma-

tion cascade that, if left unchecked, can become chronic and cause abnormal glu-

cose metabolism. This can lead to insulin resistance and dysfunction of the

vasculature and pancreatic b-cell. The series of events set in motion by the interac-

tion between metabolic inflammation and oxidative stress constitutes an ‘oxidative-

inflammatory cascade’, a delicate balance driven by mediators of the immune and

metabolic systems, maintained through a positive feedback loop. Modulating an

oxidative-inflammation cascade may improve glucose metabolism, insulin resistance

and vascular function, thereby slowing the development and progression to cardio-

vascular diseases and type 2 diabetes.

Review Criteria
• This is not an exhaustive review but highlights

key research papers that discuss mediators of

inflammation and oxidative stress.

• Medline and PubMed searched for terms:

inflammation, oxidative stress, redox signalling,

TNF-alpha, cardiovascular, metabolism, immunity,

adhesion molecules, macrophage and insulin

resistance (combinations used and key papers

selected).

Message for the Clinic
Treatments that modulate mediators of the

oxidation-inflammation cascade may represent

strategies for improving glucose metabolism, insulin

resistance, vascular function and pancreatic b-cell

dysfunction. Increases in small-dense low-density

lipoprotein cholesterol, triglycerides, leucocyte

count, platelet count, fasting and postprandial

blood glucose levels, serum insulin concentrations,

visceral adiposity and C-reactive protein represent

clinical expressions of effects of mediators of

inflammation and oxidative stress. Increases in

systolic and ⁄ or diastolic blood pressure are also

signs.
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DM2 are essential to limit the risk of developing

associated complications and improve the manage-

ment and outcome of this disease. But what are

some of the early clinical signs that may alert health-

care practitioners a patient may be at risk for devel-

oping diabetes? The amount of physical activity and

their nutritional habits are two. Low physical activity

and excessive nutrition lead to visceral adiposity,

which can be related to negative outcomes. Other

clinical signs can be more subtle, not as individual

measures, but as a total clinical picture of impending

pathophysiology. Laboratory results showing

increases of small-dense low-density lipoprotein cho-

lesterol (sdLDL-C), triglycerides, leucocyte count,

platelet count, fasting and postprandial blood glucose

levels, serum insulin concentrations and C-reactive

protein (CRP) represent clinical expressions of the

effects of mediators of inflammation and oxidative

stress. Elevations of systolic and diastolic blood pres-

sure elevations can also be signs.

This article is an introduction to the pathophysio-

logic consequences of inflammation and oxidative

stress. Discussions will address how various media-

tors of inflammation and oxidative stress influence

the development of insulin resistance, dysfunction of

the vasculature and pancreatic b-cell dysfunction,

and progression to DM2, and clinical signs that can

be monitored to possibly provide early detection of

these conditions.

Mediators of inflammation

Chronic inflammation associated with the metabolic

and immune systems involves a network of cellular

and systemic responses that integrate many complex

signalling pathways (3). Mediators of these pathways

include major stress hormones, noradrenaline and

adrenaline and cortisol; angiotensin-II (ang-II); pro-

inflammatory cytokines [e.g. tissue necrosis factor-a
(TNF-a), interleukin (IL)-6 and IL-1b]; FFA, which

enter the circulation as a result of lipolysis of adipose

tissue; and, oxidised lipids (4). Each is an important

regulator of pathways involving endocrine systems,

metabolism and immune function, as well as being

crucial components of tissue repair (2,5).

Environmental factors plus a genetic predisposi-

tion can increase adiposity, which is associated with

both a localised and systemic chronic inflammation

characterised by infiltration of inflammatory cells in

adipose tissue, abnormal pro-inflammatory cytokine

production and an increase in acute-phase reactants,

such as CRP. This phenomenon, referred to as meta-

inflammation (metabolic inflammation) (6), links

homeostatic systems of metabolic control and

immune defense, which have been highly preserved

throughout evolution in numerous organisms and

species. Increases in visceral fat and adiposity in tar-

get organs and the associated meta-inflammation

create an imbalance of homeostatic mechanisms that

attempt to maintain a physiologic state.

Mediators of oxidative stress

Oxidative stress is defined as a significant imbalance

between the production of reactive oxygen species

(ROS) and antioxidant defenses. It leads to altera-

tions in signalling pathways and to potential tissue

damage (7,8). Generated as by-products of normal

aerobic metabolism, ROS are metabolites of molecu-

lar oxygen (O2). They include unstable oxygen radi-

cals, including superoxide radical (·O2
)), nitric oxide

radical (·NO), hydroxyl radical (·HO)) and non-radi-

cals, such as hydrogen peroxide (H2O2), peroxyni-

trite (ONOO)) (9,10). In an attempt to neutralise

oxidative stress, cells utilise antioxidant defenses that

are comprised of enzymatic and non-enzymatic com-

pounds that determine redox balance (6). Enzymes

include superoxide dismutase, catalase, thioredoxin,

and glutathione peroxidase, and non-enzymatic com-

pounds include glutathione, ascorbate and a-tocoph-

erol (9,10) (see Figure 1).

Meta-inflammation and oxidative stress are inte-

grally involved through the modulation and media-

tion of pro-inflammatory cytokines and ROS.

Although usually regarded as toxic by-products of

metabolism, ROS can serve as signalling functions

involved in physiologic processes (11). For example,

short-term exposures to low levels of ROS trigger

activation of specific pathways, which can result in

insulinomimetic effects (12). However, chronic expo-

sure to ROS results in an imbalance of these effects,

leading to the increased production of mediators that

drive stress-signalling pathways and cause potential

tissue damage of key target organs, such as the vas-

culature and pancreas (6). These effects can be mea-

sured by increases in systolic and diastolic blood

pressure and blood glucose levels.

Sources of oxidative stress

Increases in circulating FFA and hyperglycaemia,

chief characteristics of DM2, can both lead to leakage

of ·O2
) from the mitochondrial respiration process

and activation of nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase, a membrane-bound

enzyme (13,14). NADPH oxidase, a major source of
·O2

) generation, is found in a variety of cells, includ-

ing adipocytes, vascular smooth muscle cells

(VSMC), endothelial cells, fibroblasts and mono-

cytes ⁄ macrophages (15). The immune system is also
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a powerful source of ROS generation. Macrophages

and neutrophil granulocytes have the capacity to

consume O2 and generate ·O2
), and require NADPH

oxidase to do so (14). The phagocytic oxidase pro-

duces several orders of magnitude of more ·O2
) than

does the NADPH oxidase from other cell types such

as endothelial cells, VSMC and adipocytes (16).

Overproduction of ·O2
) appears to be the first and

key event in the activation of other pathways and

systems (e.g. immune and metabolic) involved in the

pathogenesis of vascular dysfunction.

Oxidative-inflammatory cascade

Under conditions of health, cellular processes

associated with oxidation and inflammation function

as compensatory ⁄ homeostatic mechanisms that

maintain a physiologic balance. However, when one

mechanism chronically overwhelms the other, as may

occur with environmental and ⁄ or endogenous stres-

sors, the balance is shifted and the outcome can be

detrimental (17). We propose the series of events set

in motion by the interaction of inflammation and

oxidative stress that leads to disease be referred to as

the ‘oxidative-inflammatory cascade (OIC)’. The OIC

is a delicate balance modulated by mediators of the

immune and metabolic systems and maintained

through a positive feedback loop (18).

Within this cascade, ROS from the immune sys-

tem, adipose tissue and mitochondria mediate ⁄ acti-

vate stress-sensitive kinases, such as c-Jun N-terminal

kinase (JNK), protein kinase C (PKC) isoforms,

mitogen-activated protein kinase (p38-MAPK) and

inhibitor of kappa B kinase (IKK-b). These kinases

activate the expression of pro-inflammatory media-

tors, such as TNF-a, IL-6 and monocyte chemoattr-

actant protein-1 (MCP-1). The action of TNF-a,

MCP-1 and IL-6, locally and ⁄ or systemically, further

induces the production of ROS, thus potentiating the

positive feedback loop (see Figure 2) (18).

Activation of PKC by glucose has been implicated

in the regulation and activation of membrane-associ-

ated NADPH-dependent oxidases and subsequent

production of ·O2
), whereas activation of IKK-b ulti-

mately leads to the generation of nuclear factor kB

(NF-kB), an important transcription factor that

controls NADPH oxidase, numerous inflammatory

cytokines and ultimately adhesion molecules, such as

intracellular adhesion molecule-1 (ICAM-1) and vas-

cular cell adhesion molecule-1 (VCAM-1) (19). These

adhesion molecules are ROS dependent and facilitate

the attraction, adhesion and infiltration of white

blood cells into sites of inflammation and the forma-

tion of vascular dysfunction (20). In a retrospective

evaluation, individuals with diabetes tended to have

higher leucocyte counts, irrespective of body mass

Figure 1 A combination of nutritional excess and physical inactivity, enhanced by a genetic predisposition, can lead to

chronic hyperglycaemia, which can increase adiposity in target organs and NADPH oxidase, leading to increases in various

reactive oxygen species (ROS). With a significant overproduction of ROS and a decrease in production of cellular

antioxidant defenses, oxidative stress ensues. ·O2
), superoxide radical; ·NO, nitric oxide radical; ·HO), hydroxyl radical;

H2O2, hydrogen peroxide; ONOO), peroxynitrite; NADPH, nicotinamide adenine dinucleotide phosphate
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index (21). Thus, increases in leucocyte counts driven

by ICAM-1 and VCAM-1 reactions and other media-

tors may be a clinical indicator of inflammation and

oxidative stress.

Influence of OIC on the development
of insulin resistance

Insulin resistance is an early event in the onset, and

plays a critical role in the development of DM2

(22,23). Physiologically, insulin binds to its receptor

on the cell surface of insulin sensitive tissues, such as

muscle, liver and adipose tissue, and activates various

insulin signalling pathways through tyrosine phos-

phorylation of the insulin receptor substrate (IRS)

proteins. The pathophysiology of IR involves the

same complex network of insulin signalling path-

ways; however, attenuation of insulin’s effect in tar-

get tissues (skeletal muscle, fat and liver) occurs (24).

A clinical sign of IR is an increase in serum insulin

levels.

Reactive oxygen species can damage cellular DNA,

membranes, lipids, and proteins, and drive inflam-

matory gene expression that inhibits metabolic path-

ways induced by insulin, leading to IR. Although

numerous stress-sensitive kinases ⁄ pathways contrib-

ute to ROS generation, the JNK pathway (specifically

JNK-1) appears to be a regulator of IR (14,25)

through increased serine phosphorylation of IRS-1

and subsequent decrease in insulin-stimulated tyro-

sine phosphorylation of IRS-1. This mechanism is

also believed to be the molecular basis of TNF-a-

induced IR (26), leading one to conclude TNF-a-

induced phenomena and JNK-1 activation are inter-

related. Results of a study by Solinas et al. (27) reveal

increases in mitochondrial ROS production and

apoptosis signal-regulating kinase-1 activity by TNF-

a-induced phenomena are associated with JNK-1

activation.

c-Jun N-terminal kinase-1 also appears to be a

major contributor of fat accumulation (perhaps

through decreased energy consumption) and obesity-

induced glucose intolerance, leading to chronic JNK

activation, and creating a vicious cycle that fuels the

progression to IR, vascular and b-cell dysfunction

(26). This progression leads to chronic hyperglyca-

Figure 2 Chronic hyperglycaemia, driven by nutritional excess and physical inactivity, greatly influences the positive

feedback loop that drives mediators of meta-inflammation and oxidative stress, such as TNF-a, MCP-1, IL-6, and reactive

oxygen species (ROS). These activate stress-sensitive signalling pathways, which include JNK, PKC, p38-MAPK and IKK-b.

Activation of these pathways leads to insulin resistance and dysfunction of the b-cell dysfunction and vasculature. Insulin

resistance and b-cell dysfunction cause an increase in blood glucose levels, which can create a vicious cycle leading to

pathophysiology of target organs. If left unchecked, chronic hyperglycaemia eventually causes b-cell destruction (designated

by the dotted line), leading to the development of type 2 diabetes and cardiovascular disease (CVD). Potential areas for

therapeutic intervention (designated by *) may modulate the mediators of the oxidation-inflammation cascade to improve

glucose tolerance, b-cell dysfunction and vascular function, thereby slowing the development of type 2 diabetes. TNF-a,

tissue necrosis factor-a; IL-6, interleukin-6; MCP-1, monocyte chemoattractant factor-1; JNK, c-Jun N-terminal kinase;

PKC, protein kinase C; MAPK, mitogen-activated protein kinase; IKK-b, inhibitor of kappa b kinase
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emia and an elevation in A1C, an indicator of glycae-

mic control. Approaches to ameliorate oxidative

stress have improved IR and decreased A1C (28),

leading one to conclude oxidative stress may be intri-

cately involved in glucose metabolism.

Low-grade inflammation is associated with obesity

because of chronic activation of the innate immune

system (5,29). Meta-inflammation may be the com-

mon factor that links obesity to many of its patho-

logical sequelae, such as IR, lipid accumulation and

atherosclerosis. Experimentally, ROS is implicated in

the development of obesity-induced IR. Systemic

markers of oxidative stress are increased with adipos-

ity because of dysregulation of adipocytes (30).

Increased adiposity in target organs is associated with

an accumulation of macrophages, which are a major

source of TNF-a (31,32). Localised production of

ROS by NADPH oxidase in adipose tissue increases

oxidative stress in remote tissues, causing dysregula-

tion of adipocytes, increasing secretion of TNFa,

plasminogen-activating inhibitor-1 (PAI-1), and

MCP-1, resistin, and leptin; and, decreased secretion

of adiponectin, leading to a worsening of IR (33).

Adiponectin is a circulating adipokine from adi-

pose tissue that has salutary effects on insulin signal-

ling and vascular function that is also known to

suppress systemic and cellular ROS generation (34).

Resistin and leptin are molecules that promote lipol-

ysis and FFA fluxes from adipocytes, contributing to

IR (28). Hyperglycaemia changes platelet function

through macrophage release of TNF-a and an

increase in PAI-1. PAI-1 increases platelet activation

and aggregation, which play a significant role in the

pathophysiology underlying vascular dysfunction and

myocardial infarction.

Obesity is also associated with an increased density

of angiotensin type 1 (AT-1) receptors (14). The

causative ligand, ang-II, binds to these receptors to

augment NADPH oxidase-mediated ROS production,

leading to elevated circulating ROS levels that can

impair insulin signalling (35) and have detrimental

effects in organs, such as liver, skeletal muscle and

vasculature (24,36). Clinical sign of this effect

includes an increase in systolic and ⁄ or diastolic

blood pressure.

Manipulation of mediators of oxidative stress can

lead to disease modification both short- and long-

term. In an experimental study by Warnholtz et al.

(37), blocking the effects of ang-II on AT1 receptors

not only inhibited NADPH oxidase and improved

endothelial function, but also reduced early plaque

formation. This suggests that oxidative stress plays a

central role in the early stages of atherosclerosis and

vascular dysfunction, especially when it can be blocked

at the cellular level where the process is initiated (28).

OIC and vascular dysfunction

The endothelium is a continuous layer of cells that

acts as a barrier between circulating factors, includ-

ing hyperglycaemia, increased FFA, derivatives of gly-

cation and oxidation, and cells of the arterial intima

and media (38). The vasculature is a target for injury

because oxidative stress can damage the endothelial

layer, leading to meta-inflammation, leucocyte and

platelet extravasation, vascular damage and athero-

sclerosis. To maintain the integrity of this barrier,

endothelial cells produce NO, adenosine and plas-

minogen activator to counter the effects of procoagu-

lant factors (e.g. fibrinogen and PAI-1) (39).

Nicotinamide adenine dinucleotide phosphate oxi-

dase, along with other enzymes (e.g. lipoxygenases,

myeloperoxidase, inducible nitric oxide synthase),

has also been shown to contribute to oxidation of

LDL-C, resulting in oxidised LDL (oxLDL), although

the exact mechanism is not known (40). After mono-

cytes migrate although the endothelial layer into the

intima, they differentiate into macrophages. The

resulting in oxLDL is taken up by scavenger macro-

phage receptors on macrophages to produce oxLDL-

laden macrophages. These stimulate the production

of MCP-1 (41) that triggers further macrophag-

es ⁄ monocytes to migrate into the intima of arterial

walls and organs and initiate the process of foam cell

formation. Foam cells further increase the produc-

tion of MCP-1 and other chemoattractants to perpet-

uate the vicious cycle of monocyte ⁄ macrophage

migration, ultimately leading to oxidative stress in

the intima.

Advanced glycation products (AGE) are products

of intracellular auto-oxidation of glucose. Hyper-

glycaemia increases the production of AGE, which

can contribute to the progression of diabetic compli-

cations, such as diabetic retinopathy and nephropa-

thy (42). AGE also contributes to the OIC by

binding to specific receptors for advanced glycation

products on macrophages, increasing macrophage

production of TNF-a. This pro-inflammatory media-

tor activates the immune system to further increase

production of ROS, which leads to decreased bio-

availability of endothelial nitric oxide synthase

(eNOS) and subsequent impairment of endothelial-

directed vasodilation and decreased vascular compli-

ance (43,44). The end result is an increase in systolic

and ⁄ or diastolic blood pressure.

Impact of OIC on b-cell dysfunction

As research has shown the impact of lipids on the

progression of DM2, there has been a shift from the

traditional ‘glucocentric’ view of diabetes to include
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a ‘lipocentric’ viewpoint (45). ‘Lipocentric’ holds that

abnormalities in FFA metabolism may result in inap-

propriate accumulation of lipids in muscle, liver, and

b-cells. It also proposes that ectopic lipid accumula-

tion is involved in the development of IR in muscle

and liver as well as impairing b-cell function (46).

Glucotoxicity and lipotoxicity induce oxidative stress

and upregulate the TNF-a and IL-6.

Research in the past few years has linked oxidative

stress and inflammation to b-cell dysfunction (22,47)

resulting from chronic exposure to hyperglycaemia,

FFA or a combination of the two. This chronic expo-

sure is dependent on the activation of NF-jB and

other stress-sensitive pathways by mediators of oxi-

dative stress (48). b-cells are vulnerable to cell

destruction by oxidative stress because of: mitochon-

dria drive production of ROS through increased

NADPH oxidase activity; and, a relatively low expres-

sion of antioxidant enzymes in the b-cells (12,44,49).

c-Jun N-terminal kinase-mediated serine phos-

phorylation of IRS-1 inhibits glucose-induced insulin

production in b-cells; therefore, evidence suggests

activation of the JNK pathway is the main pathway

involved in pancreatic b-cell dysfunction found in

diabetes (50). A study of obese DM2 mice showed

that suppression of the JNK pathway restored b-cell

function and insulin sensitivity, and lead to amelio-

ration of glucose tolerance (47). One might conclude

that inhibiting the mediators of OIC that lead to

b-cell dysfunction and allow the development and

progression of DM2 may actually allow a reversal of

the disease process.

Resetting the OIC to enhance glucose
metabolism and reverse IR

Modulation of OIC mechanisms involved in meta-

bolic and immune processes can improve glucose

metabolism, insulin resistance, improve vascular

function. This mitigation may slow the development

of DM2. How might interfering with one or more of

these mediators modulate and reset the OIC, bring-

ing pathophysiologic processes back into balance?

Tissue necrosis factor-a influences actions on

endothelium, brain, b-cells, bone, muscle, and adi-

pose, and drives production of ROS through interac-

tion with macrophages and mitochondria; therefore,

it may be considered a key target when attempting

to reset the OIC balance, although IL-6 and MCP-1

are also involved. Cytokines derived from muscle

(myokines) have been shown to be involved in

protection against chronic diseases associated with

low-grade inflammation, and in mediating the

health-beneficial effects of exercise (51). All of

these pro-inflammatory cytokines ⁄ enzymes stimulate

production of ROS and all are maintained through a

positive feedback loop.

Cytokines and ROS activate JNK, IKK-b, PKC and

perhaps other stress- and inflammation-activated

kinases in the pathogenesis of ROS-induced IR. As

JNK-1 deficiency results in reduced adiposity and

improved insulin sensitivity, this also may be a key

regulator of the OIC. Thus, all these kinases might

be attractive pharmacological targets for increasing

insulin sensitivity and resetting the OIC (52).

A key enzyme involved in the formation of ROS is

NADPH oxidase, which drives many cellular reac-

tions in VSMC, mitochondria and endothelial cells.

Depending on cell type, variations in the expression

of isoforms of NADPH oxidase can differ. For exam-

ple, phagocytic oxidase contains the specific mem-

brane-bound catalytic subunit, Nox2 (as do

endothelial cells and fibroblasts), which drives the

reaction to produce ·O2
), whereas VSMC also contain

Nox1 and Nox4 (53). The regulation of Nox activity

is an active area of promising research.

Hyperglycaemia has been shown to inhibit eNOS

activity and expression in endothelial cells by increas-

ing ·O2
) production by mitochondria (54). Mitochon-

drial biogenesis in in vitro models is affected by

TNF-a through downregulation of eNOS, and treat-

ment with NO donors has been shown to reverse

these effects. Defects of NO-induced mitochondrial

biogenesis and a decreased peroxisome-proliferator-

activated receptor c co-activator 1a (PGC-1a)

expression are relevant in the pathophysiology of CV

disease linked to obesity. Therefore, several steps in

mitochondrial processes may also be considered as

targets for therapeutic intervention.

Adenosine monophosphate-activated protein

kinase (AMPK) is an enzyme that has been impli-

cated in regulating glucose uptake, FFA oxidation,

and mitochondrial biogenesis in heart, liver, and

skeletal muscle (55,56). To increase efficiency of

mitochondria, evidence suggests increases of AMPK

from endothelial cells promotes oxidation of fatty

acids as a source of ATP production, decreasing

the production of ·O2
) (46). Thus, this enzyme may

be a key target in modulating the balance of the

OIC.

Exercise has been shown to increases NO synthesis

through stimulation of PGC-1a, increasing oxidative

phosphorylation and mitochondrial biosynthesis, and

possibly improves glucose utilisation (57). The Dia-

betes Prevention Program study showed the combi-

nation of diet and exercise was effective in decreasing

the incidence of DM2 in patients with impaired glu-

cose tolerance compared with pharmacologic therapy

(58). One could speculate that diet and exercise in

this study population modulated regulators that
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comprise the OIC, to improve glucose metabolism,

insulin resistance and patient outcomes.

Clinical evidence

Many classes of drugs possess antioxidant activity.

These include antioxidant vitamins, such as vitamin

E, vitamin C and b-carotene; oestrogen and hor-

monal replacement therapy; and, drugs that impact

the renin-angiotensin-aldosterone system (RAAS)

[e.g. angiotensin converting enzyme (ACE), angio-

tensin II receptor blockers (ARBs)] (59).

Although evidence from preclinical studies of the

effects of antioxidant vitamin therapy has been

encouraging, results from clinical outcome studies,

such as the vitamin E arm of the HOPE Study (60),

the Heart Protection Study (61), GISSI Prevention

(62) and the Primary Prevention Project (63) failed

to show clinical benefit. Explanations for this lack of

observed benefit in the majority of randomised trials

include oxidant stress status of the participants and

dose and combination of vitamins administered (64).

Large prospective-controlled clinical trials utilising

hormone replacement therapy also failed to show CV

benefits. These studies include HERS (65), Estrogen

Replacement and Atherosclerosis (66) and the

Women’s Health Initiative Randomised Controlled

Trial (67).

However, other large-scale studies with drugs that

possess antioxidant activity, specifically those that

impact the RAAS, have shown benefit. In the ACE

inhibitor arm of HOPE Study (68), there was a 34%

reduction in the onset of new DM2. And in the LIFE

Study (69), which compared an ARB to a b-blocker,

there was a 25% in the onset on new DM2. We

hypothesise these data differ from dietary antioxidant

supplements in that blocking ROS generation at the

cellular level is apparently more efficacious than

reacting to systemic ROS with a dietary reagent.

Conclusions

The series of events set in motion by the interaction

of inflammation and oxidative stress that lead to dis-

ease may be referred to as the OIC, a delicate balance

modulated by mediators of the immune and meta-

bolic systems and maintained through a positive feed-

back loop. Activation of stress-signalling pathways,

such as JNK-1, IKK-b, PKC and perhaps other OIC-

activated kinases, may be involved in the pathogenesis

of adiposity in target organs, vascular dysfunction, IR,

b-cell dysfunction and possibly DM2. Identification of

the molecular basis and additional sites of action for

protection against oxidative stress-induced damage

may lead to designing a therapy that can modulate

and reset the delicate balance of the OIC. Various

clinical signs can be indicators to clinicians that path-

ophysiology is underway. These signs include CRP,

sdLDL-C, increased visceral adiposity, elevations in

systolic and diastolic blood pressure and leucocyte

count. Of course, these signs may, in and of them-

selves, not be meaningful; however, when taken in

their totality, they can alert the clinician that the

patient may be at an increased risk for a clinical event.

Early detection and intervention can possibly improve

glucose utilisation, lower the risk from hyperglycaemic

insults, delay, reverse or prevent the onset of oxidative

stress-induced insulin resistance, and provide long-

term DM2 and CV morbidity and mortality benefits.
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