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Abstract

The beta distribution is routinely used to model variables that assume values in the standard

unit interval, (0, 1). Several alternative laws have, nonetheless, been proposed in the litera-

ture, such as the Kumaraswamy and simplex distributions. A natural and empirically moti-

vated question is: does the beta law provide an adequate representation for a given

dataset? We test the null hypothesis that the beta model is correctly specified against the

alternative hypothesis that it does not provide an adequate data fit. Our tests are based on

the information matrix equality, which only holds when the model is correctly specified. They

are thus sensitive to model misspecification. Simulation evidence shows that the tests per-

form well, especially when coupled with bootstrap resampling. We model state and county

Covid-19 mortality rates in the United States. The misspecification tests indicate that the

beta law successfully represents Covid-19 death rates when they are computed using either

data from prior to the start of the vaccination campaign or data collected when such a cam-

paign was under way. In the latter case, the beta law is only accepted when the negative

impact of vaccination reach on death rates is moderate. The beta model is rejected under

data heterogeneity, i.e., when mortality rates are computed using information gathered dur-

ing both time periods.

Introduction

Several variables of interest assume values in the standard unit interval, (0, 1). This is the case,

e.g., of rates, proportions and concentration indices. The beta distribution is commonly used

to model such variables. For instance, [1] use the beta law to model the probability of HIV

transmission in male-to-female sexual encounters and [2] lists applications of the beta law to

engineering. Other applications of the beta distribution can be seen in [3] (gear damage analy-

sis), [4] (relative sunshine duration in Malaysia) and [5] (group-based trajectory modeling of

neurological activity of comatose cardiac arrest patients). Additionally, [6] note that “[t]he

beta distributions are among the most frequently employed to model theoretical distribu-

tions”. It is noted that the beta law arises naturally in ‘normal theory’ since Z1/(Z1 + Z2) is beta

distributed if Z1 and Z2 are independent chi-squared random variables. The beta distribution
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can also be obtained as the limiting distribution of eigenvalues ratio in a sequence of random

matrices.

Alternative distributions with support in the standard unit interval have been proposed in

the literature and have been increasingly used in empirical analyses, such as, e.g., the Kumaras-

wamy (see [7]) and simplex distributions (see [8]) and more recently, the unit-Weibull (see

[9]) and reflected unit Burr XII (see [10]) distributions. It would then be useful to provide

practitioners with a test that can be used to determine whether the beta law—which is still the

most used model with fractional data—yields an adequate data fit. If not, an alternative model

should be considered. This is our chief goal in this paper. In particular, we present tests of the

null hypothesis that the beta model is correctly specified against the alternative hypothesis that

it is misspecified. Alternative models should be considered for the application at hand when-

ever the null hypothesis of correct beta model specification is rejected. In particular, we con-

sider a general test of correct model specification that was introduced by [11], known as ‘the

information matrix test’, and also some variants of it. The name of the test stems from the fact

that the information matrix equality is known to only hold when the model is correctly speci-

fied. Information matrix test statistics are based on the sample counterparts of the model

matrices that comprise such an equality. They were derived for several statistical models and

distributions, e.g., the Gaussian linear regression model (see [12]), binary data models (see

[13]), linear regressions with autoregressive and moving average errors (see [14]), logistic

regressions (see [15]), beta-binomial models (see [16]), and the negative binomial law (see

[17]).

We obtain three information matrix test statistics for testing the null hypothesis that the

beta model is correctly specified. They differ in the estimator used for the covariance matrix of

a given random vector. The first two test statistics employ different estimators of the random

vector’s asymptotic covariance matrix whereas the third and final test statistic employs a

resampling-based estimator of its exact covariance matrix. Since our numerical results show

that the first two tests are considerably size-distorted in small to moderately large sample sizes,

we also perform them using bootstrap critical values. It is noteworthy that the tests we develop

are based on the information equality, which only holds when the model specification is not in

error. As a consequence, they have power against any form of model misspecification, not only

of distributional nature.

The Monte Carlo simulation evidence we report shows that the tests perform well, espe-

cially when coupled with bootstrap resampling. As noted above, three variants of the informa-

tion matrix test are considered. For two of them, bootstrap resampling is used to obtain

critical values that do not rely on asymptotic approximations whereas, in the remaining test,

bootstrap resampling is used to estimate a covariance matrix that is used in the test statistic.

Overall, the use of bootstrap resampling yields good control of the type I error frequency. Sim-

ulations in which the data were generated under the alternative hypothesis show that the tests

are typically able to detect incorrect model specification, especially when the sample size is not

small. Consider, e.g., the Kumaraswamy distribution, which is commonly used as an alterna-

tive law for fractional data. The numerical results we report show that when such a law is the

true data-generating mechanism, the information matrix tests reject the beta model with prob-

abilities around 0.9 for samples that contain 250 data points at the 10% significance level. Our

Monte Carlo evidence also shows that the tests can successfully reject the univariate beta

model when the sample size is not very small and the underlying law is beta but with non-con-

stant means.

We model state and county Covid-19 mortality rates in the United States (US) using the

univariate beta model. Three sample periods are considered: the first only includes observa-

tions from prior to the start of the nationwide vaccination campaign, the second encompasses
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data obtained before and after such a date, and the third and final period only includes data

collected when the vaccination drive was under way. The testing inferences suggest that the

beta law yields an adequate data representation for Covid-19 death rates in the first and third

time periods. By contrast, the beta law is rejected when the data are heterogeneous, i.e., when

the mortality rates are computed using information gathered prior to and during the nation-

wide vaccination drive. Interestingly, the univariate beta model is found to adequately describe

the data in the third time period, in which mortality rates are negatively impacted by the reach

of the vaccination drive. This happens because (i) in the initial part of the sample period vacci-

nation was incipient and had little impact on the overall mortality figures and (ii) the negative

relationship between the two variables is weakened by a few states, namely: Alaska, Arizona,

Florida, Massachusetts, North Dakota, and Rhode Island. When all counties in such states are

removed from the data, the inverse relationship between vaccination reach and death rates

become considerably more intense, and the information matrix tests reject the adequacy of the

univariate beta model, thus indicating that a more elaborate model should be used. The infor-

mation matrix tests’ inferences thus indicate that as long as the negative impact of vaccination

reach on death rates is moderate, the beta law can be used to represent Covid-19 mortality

rates. When such a negative impact becomes more pronounced, the univariate beta model

should no longer be used.

The remainder of the paper is organized as follows. The beta distribution and the corre-

sponding maximum likelihood parameter estimation are briefly presented in the next section.

In the third section, information matrix misspecification tests for the beta model are obtained.

In particular, we introduce five tests, three of which based on bootstrap resampling. Monte

Carlo simulation results are presented in the fourth section. We evaluate the tests’ null (size)

and non-null (power) behaviors. An empirical analysis of Covid-19 mortality rates in the US is

presented and discussed in the fifth section. Finally, concluding remarks are offered in the

sixth section together with directions for future research.

The beta distribution

Let Y be a beta-distributed random variable. Its density function, following the parametriza-

tion introduced by [18], can be expressed as

f ðy; m; �Þ ¼
Gð�Þ

Gðm�ÞGðð1 � mÞ�Þ
ym�� 1ð1 � yÞð1� mÞ�� 1

; 0 < y < 1; 0 < m < 1; � > 0; ð1Þ

where IEðYÞ ¼ m and � and ϕ is a precision parameter since, for fixed μ, Var(Y) = μ(1 − μ)/(1

+ ϕ) decreases as ϕ increases. We write Y � Bðm; �Þ. Unlike the standard beta parametrization,

the parameters in (1) can be directly interpreted in terms of the distribution mean and preci-

sion. As we will see in the fifth section, it is useful to compare estimated precisions obtained

from different model fits. The beta density in (1) is symmetric if μ = 0.5 and asymmetric other-

wise, and it reduces to the uniform density if μ = 0.5 and ϕ = 2. The beta density can be asym-

metric to the left or to the right, and it can also be J-shaped, inverted J-shaped, and U-shaped.

It is thus clear, as noted by [6], that “[b]eta distributions are very versatile and a variety of

uncertainties can be usefully modelled by them.” It is noted that “[t]his flexibility encourages

its empirical use in a wide range of applications.”

Let Y1, . . ., Yn be independent and identically distributed (i.i.d.) beta-distributed random

variables and let y1, . . ., yn be their observed, realized values. In what follows, Y and y denote

the n-vectors of such random variables and realizations, respectively. Also, θ = (μ, ϕ)> is the

vector of beta parameters. Whenever required, we refer to μ and ϕ as θ1 and θ2, respectively.

PLOS ONE Beta misspecification tests and Covid-19 mortality rates in the U.S.

PLOS ONE | https://doi.org/10.1371/journal.pone.0274781 September 20, 2022 3 / 30

https://doi.org/10.1371/journal.pone.0274781


The log-likelihood function for Y evaluated at y is

‘ðm; �; yÞ � ‘ðθ; yÞ ¼
Xn

t¼1

‘ðθ; ytÞ;

where ℓ(θ; yt) = log(f(yt; μ, ϕ)) is the tth individual log-likelihood, which is given by

‘ðθ; ytÞ ¼ logðGð�ÞÞ � logðGðm�ÞÞ � logðGðð1 � mÞ�ÞÞ þ ðm� � 1Þy�t þ ð� � 2Þyyt ;

with y�t ¼ logðyt=ð1 � ytÞÞ and yyt ¼ logð1 � ytÞ. Let Y�t ¼ logðYt=ð1 � YtÞÞ, m� ¼ IEðY�t Þ,
Yyt ¼ logð1 � YtÞ and my ¼ IEðYyt Þ. It follows that μ� = ψ(μϕ) − ψ((1 − μ)ϕ) and μ† = ψ((1 − μ)

ϕ) − ψ(ϕ), where ψ is the digamma function, i.e., the first derivative of the logarithm of the

gamma function.

The score vector isrℓ(θ, y) = @ℓ(θ;y)/@θ = (@ℓ(θ;y)/@ μ, @ℓ(θ;y)/@ ϕ)>, where

@‘ðθ; yÞ
@m

¼
Xn

t¼1

�ðy�t � m
�Þ and

@‘ðθ; yÞ
@�

¼
Xn

t¼1

mðy�t � m
�Þ þ ðyyt � m

yÞ:

Fisher’s information matrix for a single observation, B(θ), is defined as the expected value

of the individual log-likelihood derivative outer product:

BðθÞ ¼ IEð@‘ðθ;YtÞ=@θ � @‘ðθ;YtÞ=@θ>Þ. For the beta model,

BðθÞ ¼
Bmm Bm�

B�m B��

2

4

3

5;

where Bμμ = ϕ2w, Bμϕ = Bμϕ = c and Bϕϕ = (μc)/ϕ + (1 − μ)ψ0((1 − μ)ϕ) − ψ0(ϕ), ψ0 being the tri-

gamma function. The expressions for the quantities w and c can be found in the Appendix.

The total information matrix, i.e., the information matrix for the complete sample, is nB(θ).

The maximum likelihood estimator of θ, say θ̂, cannot be expressed in closed-form. Param-

eter estimates are typically obtained by numerically maximizing the log-likelihood function

using a Newton or quasi-Newton nonlinear optimization algorithm. In what follows, we will

use Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with analytical first derivatives for

maximum likelihood estimation; for details, see [19].

Beta misspecification tests

Our goal in what follows is to obtain tests of correct model specification for the beta distribu-

tion. Our focus is on the information matrix test introduced in full generality by [11]. Let θ0 =

(μ0, ϕ0)> be the true parameter value. The beta model is taken to be correctly specified if Yt fol-

lows the beta law with parameter vector θ0 8 t.
Let AðθÞ ¼ IEð@2‘ðθ;YtÞ=@θ@θ>Þ be the expected Hessian of ℓ(θ; Yt). When the model is

correctly specified and under the assumptions listed in Sections 2 and 3 of [11], the informa-

tion matrix equality holds: B(θ0) = − A(θ0); alternatively, A(θ0) + B(θ0) = 0. Evidence that such

an equality fails to hold is thus taken as evidence of incorrect model specification. Our interest

lies in testing the null hypothesis H0 : Aðθ0Þ þ Bðθ0Þ ¼ 0 (correct beta model specification)

against the alternative hypothesis H1 : Aðθ0Þ þ Bðθ0Þ 6¼ 0 (beta model misspecification).

In what follows, we will present three information matrix test statistics that can be used to

test the correct beta model specification. At the outset, we derive several quantities that are
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used in such test statistics. We obtain, for the beta model,

Anðθ;YÞ ¼
1

n

Xn

t¼1

@
2
‘ðθ;YtÞ
@θ@θ>

¼
1

n

Xn

t¼1

Anmm An�m

Anm� An��

2

4

3

5;

where Anmm ¼ � �
2w, An�m ¼ Anm� ¼ ðY

�
t � m

�Þ � c and

An�� ¼ � ðmcÞ=� � ð1 � mÞc
0
ðð1 � mÞ�Þ þ c

0
ð�Þ. Expressions for c and w can be found, as

noted earlier, in the Appendix. Additionally,

Bnðθ;YÞ ¼
1

n

Xn

t¼1

@‘ðθ;YtÞ
@θ

�
@‘ðθ;YtÞ
@θ>

¼
1

n

Xn

t¼1

Bnmm Bn�m

Bnm� Bn��

2

4

3

5;

where Bnmm ¼ �
2
ðY�t � m

�Þ
2
, Bn�m ¼ Bnm� ¼ � Y�t � m

�
� �

mðY�t � m
�Þ þ ðYyt � m

yÞ
� �

and

Bn�� ¼ mðY�t � m
�Þ þ ðYyt � m

yÞ
� �2

. Notice that An(θ;Y) and Bn(θ;Y) evaluated at θ ¼ θ̂ are

consistent estimators of A(θ0) and B(θ0), respectively.

We also need to obtain

DnðθÞ � Dnðθ;YÞ ¼
1

n

Xn

t¼1

dðθ;YtÞ;

where

dðθ;YtÞ ¼ vech
@

2
‘ðθ;YtÞ
@θ@θ>

þ
@‘ðθ;YtÞ
@θ

�
@‘ðθ;YtÞ
@θ>

� �

is a 3 × 1 vector with lth component given by

dlðθ;YtÞ ¼
@

2
‘ðθ;YtÞ
@yi@yj

þ
@‘ðθ;YtÞ
@yi

�
@‘ðθ;YtÞ
@yj

;

with i = j = 1 for l = 1; i = 1 and j = 2 for l = 2; i = j = 2 for l = 3. For the beta distribution, we

obtain

d1ðθ;YtÞ ¼ �
2
½ðY�t � m

�Þ
2
� w�;

d2ðθ;YtÞ ¼ ðY�t � m
�Þ � cþ �ðY�t � m

�Þ½mðY�t � m
�Þ þ ðYyt � m

yÞ�;

d3ðθ;YtÞ ¼ � m
c
�
� ð1 � mÞc

0
ðð1 � mÞ�Þ þ c

0
ð�Þ þ ½mðY�t � m

�Þ þ ðYyt � m
yÞ�

2
:

Note that Dn(θ;Y) = vech(An(θ;Y) + Bn(θ;Y)) is a vector that contains three elements. The

information matrix test statistics we consider are functions of such a restrictions vector evalu-

ated at θ ¼ θ̂.

Let

VðθÞ ¼ IE ½ðdðθ;YtÞ � rDðθÞAðθÞ
� 1
r‘ðθ;YtÞÞ�

ðdðθ;YtÞ � rDðθÞAðθÞ
� 1
r‘ðθ;YtÞÞ

>
�;

where DðθÞ ¼ IEðdðθ;YtÞÞ andrD(θ) = @D(θ)/@θ>. [11] showed that, under correct model

specification,
ffiffiffi
n
p

Dnðθ̂;YÞ is asymptotically normally distributed with zero mean and
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covariance matrix V(θ0) and noticed that a natural consistent estimator for V(θ0) is

Vn1ðθÞ ¼
1

n

Xn

t¼1

½ðdðθ;YtÞ � rDnðθ;YÞAnðθ;YÞ� 1
r‘ðθ;YtÞÞ�

ðdðθ;YtÞ � rDnðθ;YÞAnðθ;YÞ� 1
r‘ðθ;YtÞÞ

>
�

evaluated at θ ¼ θ̂, whererDn(θ;Y) = @Dn(θ;Y)/@θ>. Closed-form expressions for the ele-

ments ofrDn(θ;Y) in the beta model are given in the Appendix.

The first information matrix test statistic is

z1 ¼ nDnðθ̂Þ
>
ðVn1ðθ̂ÞÞ

� 1Dnðθ̂Þ;

where q is the number of components of Dn(θ;Y) considered (q� 3). Under H0, z1 is asymp-

totically distributed as w2
q. The test is then carried out using critical values from such a distribu-

tion, i.e., H0 is rejected at significance level α 2 (0, 1) if z1 > w2
q;1� a, where w2

q;1� a is the 1 − α w2
q

quantile.

Alternative information matrix test statistics can be obtained by considering different con-

sistent estimators for V(θ0). [20, 21] showed that it is possible to use a covariance matrix esti-

mator that does not require third order log-likelihood derivatives. They use the fact that,

under H0,rDðθ0Þ ¼ � IEðdðθ0;YtÞ � r‘ðθ0;YtÞ
>
Þ; see [21]. Let

Lnðθ;YÞ ¼ �
1

n

Xn

t¼1

dðθ;YtÞ � r‘ðθ;YtÞ
>
:

The Chesher-Lancaster estimator of V(θ0) is

Vn2ðθÞ ¼
1

n

Xn

t¼1

½ðdðθ;YtÞ þ Lnðθ;YÞBnðθ;YÞ� 1
r‘ðθ;YtÞÞ�

ðdðθ;YtÞ þ Lnðθ;YÞBnðθ;YÞ� 1
r‘ðy;YtÞÞ

>
�

evaluated at θ ¼ θ̂. The corresponding information matrix test statistic is

z2 ¼ nDnðθ̂Þ
>
ðVn2ðθ̂ÞÞ

� 1Dnðθ̂Þ:

Under H0, z2 is asymptotically distributed as w2
q and, as before, the test is carried out using

asymptotic critical values.

It is noteworthy that Vn1ðθ̂Þ and Vn2ðθ̂Þ are consistent estimators of V(θ0), the latter being

the asymptotic covariance matrix of
ffiffiffi
n
p

Dnðθ̂;YÞ. A consistent estimator of the exact covari-

ance matrix of such a vector, say VSnðθ0Þ, can be obtained by using parametric bootstrap

resampling, as shown by [22]. The bootstrap estimator of VSnðθ0Þ based on B bootstrap sam-

ples can be computed as follows:

1. Using the original sample Y = (Y1, . . ., Yn)>, compute θ̂.

2. Obtain a random sample of size n, say Y�b ¼ ðY
�
1
; . . . ;Y�nÞ

>
, from the beta law with θ

replaced with θ̂, i.e., perform the pseudo-data generation from f ð�; θ̂Þ.

3. Using Y�b, compute θ̂�b and Dnðθ̂
�
b;Y

�

bÞ.

4. Execute steps (2) and (3) B times, where B is a large positive integer.
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5. Using the bootstrap replicates Dnðθ̂
�
1
;Y�

1
Þ; . . . ;Dnðθ̂

�
B;Y

�

BÞ, compute the bootstrap estimator

of VSnðθ0Þ as

V̂ �n3;B ¼
n

B � 1

XB

b¼1

ðDnðθ̂
�

b;Y
�

bÞ �
�DÞðDnðθ̂

�

b;Y
�

bÞ �
�DÞ>;

where �D ¼ B� 1
PB

b¼1
Dnðθ̂

�
b;Y

�

bÞ.

For fixed n and as B!1, it follows that V̂ �n3;B!
p
VSnðθ̂Þ; see [22]. We thus arrive at a third

information matrix test statistic for testing the correct beta model specification. It is given by

z3 ¼ nDnðθ̂Þ
>
ðV�n3;BÞ

� 1Dnðθ̂Þ:

Under H0, for fixed B and n!1, z3 is asymptotically distributed as T2
q;B� 1

, i.e., as Hotell-

ing’s T-squared distribution with q and B − 1 degrees of freedom; see [22]. As before, the test is

performed using asymptotic critical values.

The information matrix test statistics z1, z2 and z3 measure the sample evidence against the

correct beta model specification. When they assume large values and H0 is rejected at the

usual significance levels, an alternative model should be used. A word of caution, however, is

in order. The test based on z3 is expected to perform well in small to moderately large samples

since the test statistic uses a bootstrap estimator of the exact covariance matrix of
ffiffiffi
n
p

Dnðθ̂;YÞ.
The tests based on z1 and z2, by contrast, may be considerably size-distorted when n is not

large since the test statistics use estimators of the asymptotic covariance matrix of
ffiffiffi
n
p

Dnðθ̂;YÞ
and such an asymptotic covariance matrix may be a poor approximation for its exact counter-

part when n is not large. To remedy that, we recommend that z1 and z2 testing inferences be

based on critical values obtained from bootstrap resampling instead of on w2
q;1� a (asymptotic

critical values). To that end, for i = 1, 2:

1. Using the original sample Y = (Y1, . . ., Yn)>, compute θ̂ and zi.

2. Obtain a random sample of size n, say Y�b ¼ ðY
�
1
; . . . ;Y�nÞ

>
, from the beta law with θ

replaced with θ̂.

3. Using Y�b, compute θ̂�b and z
�

i;b.

4. Execute steps (2) and (3) B times.

5. Reject H0 at significance level α if zi exceeds the 1 − α quantile of z
�

i;1; . . . ; z
�

i;B.

The use of bootstrap resampling when performing testing inferences based on the informa-

tion matrix test statistics z1 and z2 may considerably reduce size distortions since the critical

values used in such tests are now obtained from estimates of the test statistics’ exact null

distributions.

As noted earlier, it is possible to test q� 3 restrictions. In what follows, we will test two

restrictions since numerical evaluations not shown here for brevity revealed that the third ele-

ment of Dnðθ̂;YÞ always assumes very small values and has very small variance, especially

when dispersion is low, which renders near singular estimates of V(θ0). As noted by [11],

when an indicator is identically null it should be ignored; see the example on page 10 of his

article. Unlike what happens in his example, the maximum likelihood estimators in our case

cannot be expressed in closed form, and that is why we had to resort to numerical evaluations

to determine whether there is a non-relevant restriction. We thus test q = 2 restrictions by
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using d(θ; Yt) = (d1(θ; Yt), d2(θ; Yt)))>. Correspondingly, we drop the last row ofrDn(θ;Y).

The asymptotic null distribution of z1 and z2 is w2
2
, and that of z3 is T2

2;B� 1
, where B is the num-

ber of bootstrap replications used in the estimation of VSnðθ0Þ.

According to [11], it is expected that the tests will be consistent (i.e., have unit power

asymptotically) against any alternative which renders the usual maximum likelihood inference

techniques invalid. In our case, maximum likelihood inference involves the estimation of the

beta distribution mean and precision parameters. When Y follows other laws or when the val-

ues of the beta parameters are not the same for all observations, the test statistics are expected

to diverge in probability so that unit power is achieved asymptotically. We performed Monte

Carlo simulations using a number of alternative models as the true data generating mecha-

nism, which include alternative laws, data inflation, and neglected regression structure. The

results from these simulations are presented in the next section. They show evidence of asymp-

totic unit power under all sources of model misspecification we considered.

Numerical evidence

We will now numerically evaluate the performance of the information matrix tests when used

to determine whether the beta distribution yields a satisfactory data fit, i.e., when used to deter-

mine whether the beta model is correctly specified. Data generation is carried out under the

null and alternative hypotheses (correct and incorrect model specification, respectively). Beta

random number generation is performed using the acceptance-rejection method based on

uniform random draws obtained using the Mersenne Twister method. Parameter estimates

are obtained by numerically maximizing the beta log-likelihood function using the BFGS

quasi-Newton algorithm with analytical first derivatives. The starting values used in the esti-

mation of μ and ϕ are, respectively, �y and �yð1 � �yÞ=dVarðYÞ � 1, where �y ¼ n� 1
Pn

t¼1
yt and

dVarðYÞ ¼ ðn � 1Þ
� 1Pn

t¼1
ðyt � �yÞ2. The number of Monte Carlo and bootstrap replications

are, respectively, 5000 and 500. The null hypothesis is H0 : “the beta model is correctly speci-

fied” and the alternative hypothesis is H1 : “the beta model is misspecified”.

The following tests are performed: z1, z1B, z2, z2B, and z3. The z1B and z2B tests employ boot-

strap critical values, and the z3 test statistic uses a bootstrap covariance matrix estimate. The

simulations were performed using the R statistical computing environment; see [23].

At the outset, data generation is carried out under H0, i.e., the observations are obtained as

random draws from the beta distribution with mean μ and precision ϕ. The significance levels

and sample sizes are, respectively, α = 10%, 5%, 1% and n = 50, 100, 250, 500, 1000, 5000.

In what follows, we will report the tests’ null and non-null rejection rates obtained from

size (data generated under H0) and power (data generated under H1) simulations, respectively.

Additionally, we will present p-value plots and size-power plots for the z1, z2 and z3 tests, i.e.,

for the tests that do not employ bootstrap critical values. Based on the size simulations (the

data-generating process is beta), we plot the tests’ empirical sizes (vertical axis) against nomi-

nal sizes, i.e., against values of α 2 (0, 1) (horizontal axis). The 45˚ line indicates perfect agree-

ment between actual and nominal sizes. Curves that lie above (below) such a diagonal line for

a given range of values of α are indicative of liberal (conservative) behavior at those signifi-

cance levels. It should be noted that, in this graphical analysis, α is not fixed at three values

(0.10, 0.05 and 0.01) but varies from close to zero up to close to one. We thus obtain a compre-

hensive view of the tests’ null behaviors. We also present plots that relate the tests’ empirical

powers (vertical axis) to the corresponding sizes (horizontal axis), computed for values of α
ranging from close to zero up to close to one. The non-null rejection rates are computed using

a data-generating process that differs from the beta law. It should be noted that since the non-

null rejection rates are plotted using the empirical critical value for each nominal size (and not
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using asymptotic critical values) it is possible to compare the tests’ non-null behaviors by prop-

erly accounting for any existing size distortions. The higher the curve, the more powerful the

test. For more details on these plots, see [24].

In the first size simulation, the data are generated from the beta law with μ = 0.2 and ϕ = 20,

40, 80, 120. The null rejection rates of the z1, z1B, z2, z2B and z3 tests are shown in Table 1. All

entries are percentages. The reported results lead to interesting conclusions. First, the z1 and z2

tests, which use asymptotic critical values, are quite liberal when the sample size is not very

large; even with n = 1000, considerable size distortions take place. Second, such tests have

effective sizes that are close to the nominal sizes when bootstrap (rather than asymptotic) criti-

cal values are used. For example, when ϕ = 40 and n = 100, the sizes of z1 and z2, at α = 10%,

are 17.6% and 37.4%; when bootstrap critical values are used, these rates drop to 10.7% and

9.8%, respectively. The use of bootstrap resampling thus considerably reduces size distortions.

Third, the size distortions of z1 decrease when the value of ϕ increases. For example, the test’s

null rejection rates for n = 100 and α = 10% are 20.1% and 12.3% when ϕ = 20 and ϕ = 120,

respectively. It is worth noticing that the variance of Y decreases when the value of ϕ increases,

and that translates into more accurate testing inferences. Fourth, the z3 test tends to be conser-

vative when n� 1000, and displays null rejection rates close to the nominal levels with

n = 5000.

In the second set of size simulations, data generation was performed from the beta distribu-

tion with μ = 0.5 and the same precision values as before. The tests’ null rejection rates are pre-

sented in Table 2. All entries are percentages. In general, the new results are similar to those in

the previous scenario. The z1 and z2 tests remain liberal, with z1 exhibiting considerably higher

null rejection rates relative to previous results. For example, when ϕ = 40, α = 10% and

n = 100, the null rejection rate of z1 is 28.4% whereas in the previous scenario it was 17.6%.

The testing inferences are less accurate here because there exists more uncertainty since the

variance of the beta distribution is maximal when μ = 0.5; recall that such a variance is μ(1− μ)/

(1 + ϕ). The figures in Table 2 further show that the z1B and z2B tests display the smallest size

distortions, being accurate even when n is small. For example, when ϕ = 20 and n = 50, the

sizes of z1B and z2B, at α = 10%, are 10.0% and 9.6%, respectively. It is thus clear that bootstrap

resampling works remarkably well. Additionally, the z3 test remains conservative when μ =

0.5, but only for α = 10% and 5%. The test exhibits small size distortions when n� 250. For

instance, when ϕ = 20 and n = 250, the test’s null rejection rate, at α = 10%, is 9.3%.

The third and final set size simulations was performed using μ = 0.75 with the same preci-

sion values as before. We used μ = 0.75 (and not μ = 0.8) to avoid symmetry relative to the first

scenario. The null rejection rates, expressed as percentages, are presented in Table 3. Overall,

the results in this scenario are similar to those in Table 1 (μ = 0.2). The z1 and z2 tests are liberal

when n� 1000 and only become accurate with n = 5000. The z1B and z2B tests have the small-

est size distortions. Such tests deliver accurate inferences even when n is small. For example,

when n = 50, ϕ = 40 and α = 10%, their null rejection rates are 10.1% and 9.7%, respectively. It

should also be noted that the z3 test exhibits conservative behavior when n� 500. For example,

with n = 500, ϕ = 20 and α = 10%, its null rejection rate is 8.7%.

The results presented above show that, in general, the z1 test exhibits less liberal behavior

when the mean of the distribution is not in the middle of the standard unit interval. For

instance, when ϕ = 120, n = 250 and α = 10%, the test’s null rejection rates for μ = 0.2, 0.5, 0.75

are 12.7%, 22.1% and 14.5%, respectively. Recall that the beta density is symmetric if μ = 0.5

and asymmetric otherwise. It seems that the z1 test incorrectly finds increasing evidence

against the beta model as the distribution becomes more symmetric. The results also show that

the z2 test is quite liberal in all scenarios, especially when the sample size is small. Finally, the

z3 test becomes more conservative as the distribution mean moves away from 0.5. For
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Table 1. Null rejection rates (%), μ = 0.2.

n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ϕ = 20 ϕ = 40

α = 10%

50 17.5 9.9 48.6 9.5 5.5 15.4 10.0 50.1 10.0 4.2

100 20.1 11.0 39.1 10.7 6.1 17.6 10.7 37.4 9.8 5.2

250 19.0 11.0 27.9 10.8 7.1 17.0 9.9 27.1 10.2 6.6

500 17.1 10.6 21.3 10.8 8.2 15.8 10.4 20.9 10.5 7.4

1000 14.8 10.1 17.3 9.9 9.1 14.0 10.2 17.1 10.4 8.6

5000 11.9 10.2 12.3 10.3 9.9 11.6 10.4 12.2 10.2 9.7

α = 5%

50 10.1 5.3 41.8 4.8 3.3 9.2 5.3 43.7 5.2 2.5

100 12.4 5.7 31.9 5.5 3.5 10.6 5.3 30.7 5.4 3.0

250 12.6 5.3 21.3 5.4 4.0 10.4 4.9 20.7 5.3 3.7

500 11.1 5.6 15.7 5.5 4.5 9.9 5.5 15.2 5.6 4.1

1000 9.1 5.3 11.7 5.4 4.8 8.5 5.3 11.3 5.4 4.7

5000 6.8 5.5 7.2 5.6 4.9 6.5 5.3 7.1 5.4 4.9

α = 1%

50 3.8 1.1 30.2 1.2 1.2 3.5 1.0 31.6 1.3 0.9

100 4.7 1.4 22.4 1.4 1.4 3.9 1.1 20.8 1.2 0.9

250 4.6 1.0 12.9 1.3 1.5 3.9 1.2 11.9 1.4 1.3

500 4.8 1.1 8.2 1.4 1.5 3.9 1.1 8.0 1.2 1.3

1000 3.7 1.6 5.2 1.6 1.5 3.4 1.3 5.2 1.5 1.6

5000 2.3 1.5 2.5 1.4 1.2 1.8 1.2 2.2 1.2 0.8

ϕ = 80 ϕ = 120

α = 10%

50 13.8 9.9 48.5 10.4 4.3 12.8 10.6 49.0 10.3 4.1

100 14.0 9.8 37.8 10.1 4.5 12.3 10.2 37.7 10.2 4.7

250 14.5 10.1 26.5 9.5 5.8 12.7 10.3 25.7 10.7 5.2

500 14.0 10.2 20.9 9.7 7.0 12.4 9.9 21.0 10.2 6.2

1000 13.4 10.6 17.6 10.6 7.9 12.6 10.8 17.0 10.7 7.6

5000 11.1 9.9 12.0 9.9 9.5 11.0 10.1 12.2 9.9 9.4

α = 5%

50 7.8 4.8 41.5 4.8 2.5 7.7 5.4 42.1 5.3 2.2

100 8.1 5.0 30.7 5.0 2.4 7.3 4.9 30.9 5.3 2.6

250 8.6 5.2 20.7 4.9 3.2 8.0 6.0 19.7 5.8 2.9

500 8.3 5.1 14.6 4.9 3.9 7.1 5.0 14.6 5.3 3.0

1000 7.8 5.3 11.6 4.9 4.1 7.1 5.5 11.5 5.7 3.8

5000 6.3 5.3 7.1 5.2 4.6 5.5 4.9 6.4 5.0 4.4

α = 1%

50 2.6 1.2 29.3 1.5 0.9 3.0 1.2 30.1 1.3 0.6

100 3.0 1.2 20.1 1.2 0.8 2.5 1.1 21.1 1.2 0.9

250 2.9 1.3 11.3 1.1 0.9 3.1 1.6 12.1 1.7 1.1

500 2.7 1.0 7.4 1.0 1.3 2.3 1.4 7.6 1.4 0.8

1000 2.6 1.2 4.7 1.1 1.2 2.6 1.5 5.5 1.3 0.9

5000 1.8 1.1 2.2 1.1 1.1 1.3 1.0 1.7 0.9 0.9

https://doi.org/10.1371/journal.pone.0274781.t001
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Table 2. Null rejection rates (%), μ = 0.5.

n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3
ϕ = 20 ϕ = 40

α = 10%

50 30.5 10.0 49.1 9.6 6.9 31.2 9.6 49.8 10.3 7.1

100 28.2 10.5 38.2 10.8 8.0 28.4 10.9 38.7 10.7 8.3

250 23.2 11.2 27.3 10.8 9.3 21.8 9.6 26.2 9.5 8.5

500 17.6 9.4 19.8 9.3 8.3 19.3 10.9 21.5 10.8 8.9

1000 15.7 10.2 16.8 10.1 9.5 16.1 10.9 17.1 10.8 9.7

5000 12.1 10.2 12.4 10.2 10.3 12.1 10.5 12.3 10.4 9.7

α = 5%

50 22.1 4.9 42.2 4.7 4.8 22.1 5.0 42.1 5.1 4.5

100 20.0 5.4 31.9 5.4 5.0 20.3 5.5 32.2 5.0 5.1

250 16.4 6.0 21.1 6.1 5.3 14.9 4.8 19.4 4.6 4.9

500 12.0 4.8 14.4 4.8 4.8 12.7 5.6 15.2 5.8 5.1

1000 10.2 5.3 11.0 5.4 4.8 10.8 5.6 11.8 5.6 5.1

5000 6.6 5.4 6.9 5.4 5.4 6.4 4.9 6.6 4.9 5.1

α = 1%

50 9.7 1.4 30.3 1.1 2.5 9.4 1.3 29.6 1.3 2.2

100 9.6 1.3 21.4 1.3 2.5 10.1 1.2 21.2 1.3 2.3

250 8.5 1.2 12.6 1.3 2.0 6.7 1.1 11.1 0.9 1.6

500 5.0 1.3 7.0 1.3 1.7 5.9 1.3 8.2 1.4 1.6

1000 4.3 1.4 5.1 1.4 1.6 4.1 1.1 5.2 1.2 1.5

5000 2.1 1.4 2.3 1.4 1.3 1.6 1.1 1.8 1.1 1.0

ϕ = 80 ϕ = 120

α = 10%

50 31.6 10.9 48.9 10.4 8.0 31.7 9.6 50.1 9.2 7.7

100 27.7 10.3 38.9 10.3 7.9 28.1 10.4 38.1 10.3 7.5

250 22.8 10.8 27.3 10.8 8.3 22.1 10.5 26.1 10.7 8.9

500 18.7 10.1 20.8 10.0 9.5 18.5 10.2 20.6 10.3 9.4

1000 14.8 10.5 15.8 10.4 9.4 15.5 10.0 16.7 9.9 9.9

5000 11.3 9.7 11.7 9.7 9.9 12.6 10.8 12.8 10.8 10.3

α = 5%

50 22.3 5.3 41.6 5.6 5.4 22.1 4.9 42.1 4.5 5.2

100 20.5 5.2 31.5 5.1 4.8 20.3 5.3 31.0 5.4 4.8

250 16.0 5.3 20.7 5.1 4.8 15.2 5.3 20.0 5.2 5.1

500 12.4 5.1 14.8 4.9 4.8 12.1 5.0 14.4 5.1 5.2

1000 10.0 5.2 10.9 5.2 5.4 9.6 5.3 10.7 5.4 5.6

5000 6.2 5.0 6.5 5.0 5.2 7.1 5.5 7.4 5.6 5.4

α = 1%

50 10.7 1.1 30.4 1.1 2.9 9.6 0.9 29.7 1.0 2.7

100 9.7 1.2 20.8 0.9 2.2 10.0 1.2 21.0 1.2 2.1

250 7.7 0.9 12.1 1.0 1.8 7.7 1.1 12.0 1.1 1.9

500 5.3 1.1 7.0 1.2 1.6 5.4 1.2 7.5 1.2 1.9

1000 3.9 1.2 4.8 1.2 1.6 4.1 1.4 5.1 1.3 1.4

5000 2.1 1.4 2.2 1.3 1.2 2.1 1.2 2.3 1.2 1.1

https://doi.org/10.1371/journal.pone.0274781.t002
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Table 3. Null rejection rates (%), μ = 0.75.

n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ϕ = 20 ϕ = 40

α = 10%

50 21.6 10.8 52.3 10.3 5.6 18.0 10.1 49.3 9.7 5.7

100 20.7 9.6 37.1 9.8 5.9 20.0 10.4 37.7 10.1 6.0

250 18.8 10.1 26.0 9.9 7.2 18.3 10.5 27.1 10.5 7.2

500 16.5 9.4 20.3 9.4 8.7 16.1 9.9 20.6 9.5 7.9

1000 15.1 10.1 16.9 10.1 9.2 14.0 10.3 16.5 9.8 8.5

5000 11.2 9.7 11.5 9.7 10.0 12.2 10.8 12.7 11.0 9.3

α = 5%

50 12.9 5.4 44.5 5.4 3.5 10.5 5.5 42.3 4.9 3.4

100 13.2 4.9 30.4 4.7 3.6 12.1 5.2 30.8 5.4 3.3

250 12.9 5.0 20.0 5.0 4.4 12.3 5.0 20.8 5.4 4.1

500 10.5 4.7 14.2 4.9 4.6 10.4 4.9 14.6 4.5 4.1

1000 9.1 5.1 11.2 5.0 4.5 8.8 4.8 10.8 4.7 5.0

5000 6.3 4.8 6.6 4.9 4.8 6.5 5.3 7.1 5.2 5.1

α = 1%

50 4.8 1.3 31.8 1.4 1.8 4.4 1.3 29.3 1.1 1.4

100 4.5 0.9 20.0 0.8 1.4 4.2 1.3 20.2 1.1 1.2

250 5.5 1.2 11.8 1.2 1.6 4.5 0.9 12.2 1.3 1.4

500 4.2 1.0 7.1 1.0 1.7 3.9 1.1 7.1 1.2 1.5

1000 3.3 1.1 4.9 1.0 1.3 3.0 1.3 4.7 1.1 1.4

5000 1.8 1.0 2.0 0.9 1.2 1.8 1.1 2.1 1.2 1.2

ϕ = 80 ϕ = 120

α = 10%

50 15.5 10.4 48.9 10.5 4.0 14.4 10.8 49.7 10.5 4.6

100 16.4 10.3 38.0 9.9 5.2 14.5 10.3 37.9 10.2 5.3

250 15.3 9.8 26.7 10.0 5.6 14.5 10.4 27.4 10.9 5.6

500 14.6 10.1 20.0 10.4 7.2 13.3 10.5 19.8 10.5 6.7

1000 14.5 11.4 18.1 11.5 8.1 13.9 11.4 17.5 11.1 8.0

5000 12.0 10.7 12.9 10.7 10.3 11.3 10.2 12.3 10.3 9.5

α = 5%

50 9.5 5.4 42.6 5.3 2.5 8.7 5.5 42.9 5.3 2.8

100 9.4 5.3 31.5 5.4 3.0 8.3 5.3 30.4 5.1 2.9

250 9.2 5.0 19.9 5.3 3.3 8.7 5.6 20.6 5.4 3.1

500 9.1 5.3 14.8 5.5 4.0 8.3 5.4 14.7 5.9 3.4

1000 8.8 5.6 12.5 5.4 4.1 8.3 5.8 11.9 5.7 3.9

5000 6.8 5.6 7.4 5.5 5.0 5.9 5.2 6.7 5.1 4.7

α = 1%

50 3.9 1.3 29.7 1.2 0.9 3.2 1.1 31.2 1.0 0.9

100 3.3 1.0 20.6 1.4 1.2 2.8 1.1 20.0 0.9 1.0

250 3.6 1.4 11.4 1.3 1.3 3.0 1.3 12.5 1.3 0.9

500 3.3 1.2 7.5 1.1 1.2 3.1 1.3 8.0 1.2 0.8

1000 3.1 1.3 5.2 1.4 1.1 2.7 1.2 5.1 1.2 0.9

5000 1.7 1.1 2.0 1.2 1.3 1.6 1.2 2.1 1.2 1.1

https://doi.org/10.1371/journal.pone.0274781.t003
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example, when ϕ = 80, n = 500 and α = 10%, the test’s null rejection rates for μ = 0.2, 0.5, 0.75

are 7.0%, 9.5% and 7.2%, respectively.

Fig 1 contains p-value plots for the z1, z2 and z3 tests corresponding to different values of μ.

The sample sizes are n = 100, 250 and ϕ = 120. The three curves move closer to the diagonal

line when the sample increases from n = 100 to n = 250, thus indicating that the tests’ size dis-

tortions for all nominal sizes decrease as n increases. It is also clear that z1 and z2 are liberal

and z3 is conservative regardless of the value of α, z1 being less size-distorted than z2, especially

when the underlying beta law is asymmetric (μ 6¼ 0.5). Interestingly, for all values of α, under

distributional asymmetry (symmetry), z1 (z3) is the most accurate test.

We will now shift the focus to the tests’ powers, i.e., to their ability of correctly identifying

that the null hypothesis is false. In these simulations, the true data-generating process is not

the standard beta law, i.e., it is not the beta distribution with constant parameters. Since the z1

and z2 tests are oftentimes considerably size-distorted, they are carried out using exact (not

asymptotic) critical values obtained from the size simulations. The significance levels are α =

10%, 5%.

At the outset, we use the Kumaraswamy law (see [7]), KWðo; �Þ, as the true data-generat-

ing mechanism. Here, ω is the distribution median and ϕ is a precision parameter. The param-

eter values are (i) ω = 0.2 and ϕ = 5, 7.5, (ii) ω = 0.5 and ϕ = 10, 15, and (iii) ω = 0.75 and ϕ =

15, 25. The tests’ non-null rejection rates are presented in Table 4. All entries are percentages.

The figures in this table show that the tests’ powers are similar for n� 100, being close to

100% when n� 250. When n = 50, the z3 test is generally the most powerful test. The reported

results also show that the tests’ powers increase with ϕ. That is, higher precision translates into

more powerful tests. Also, when ω = 0.2, the z3 test exhibits slightly higher powers than the z1

and z1B tests, and these in turn exhibit noticeably higher powers than z2 and z2B. For illustra-

tion, with ω = 0.2, ϕ = 7.5, n = 100 and α = 5%, the non-null rejection rates of the z1, z1B, z2,

Fig 1. P-value plots; panel (a): Bð0:2; 120Þ and n = 100, panel (b) Bð0:5; 120Þ and n = 100, panel (c) Bð0:75; 120Þ
and n = 100, panel (d) Bð0:2; 120Þ and n = 250, panel (e) Bð0:5; 120Þ and n = 250, panel (f) Bð0:75; 120Þ and

n = 250.

https://doi.org/10.1371/journal.pone.0274781.g001
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Table 4. Non-null rejection rates (%), data generated from KWðω; ϕÞ.

n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3
ω = 0.2 and φ = 5 ω = 0.2 and φ = 7.5

α = 10%

50 37.6 36.6 29.8 30.2 37.6 48.9 52.7 41.5 42.3 49.0

100 59.4 57.7 56.4 56.3 65.3 76.6 80.2 72.0 72.6 79.0

250 93.1 92.7 96.2 95.9 98.0 98.4 98.9 99.3 99.2 99.4

500 99.5 99.4 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%

50 23.9 21.4 17.6 17.3 29.6 35.1 36.9 28.0 28.1 40.8

100 40.3 39.0 38.8 39.0 54.6 61.3 65.2 56.7 56.8 69.7

250 82.8 81.8 91.6 90.5 95.6 94.6 96.5 97.9 97.5 98.8

500 97.8 97.7 99.8 99.8 100.0 99.4 99.7 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω = 0.5 and ϕ = 10 ω = 0.5 and ϕ = 15

α = 10%

50 20.5 22.2 32.8 33.7 40.9 29.1 27.8 46.2 44.0 51.9

100 43.3 45.2 59.2 60.1 69.1 54.2 55.3 73.8 74.0 80.9

250 92.8 93.7 96.2 96.3 98.1 96.9 97.1 99.3 99.3 99.7

500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%

50 8.9 10.2 20.0 21.3 32.6 12.5 12.4 31.4 30.3 42.9

100 24.0 25.6 43.8 44.4 59.0 33.7 34.6 58.5 59.7 71.9

250 83.0 83.4 91.5 91.4 95.7 91.3 91.2 97.6 97.6 98.9

500 99.8 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω = 0.75 and ϕ = 15 ω = 0.75 and ϕ = 25

α = 10%

50 32.7 30.7 23.1 24.0 25.7 49.1 51.9 37.6 38.2 41.9

100 55.8 52.4 39.7 39.3 47.7 77.9 78.6 64.1 64.0 69.2

250 88.9 87.8 79.7 79.0 86.5 99.2 99.2 97.3 97.7 98.3

500 99.2 99.1 98.6 98.6 99.1 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%

50 18.2 16.9 13.9 14.5 19.3 32.3 34.4 25.3 25.5 32.3

100 39.1 36.4 25.4 27.1 38.6 64.3 65.3 49.1 49.1 60.3

250 81.6 78.2 64.3 65.7 79.3 97.7 98.2 93.4 93.5 96.5

500 98.0 97.7 95.6 95.6 98.1 100.0 100.0 99.9 99.9 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pone.0274781.t004
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z2B and z3 tests are 61.3%, 65.2%, 56.7%, 56.8% and 69.7%, respectively. Here, z3 is the best per-

former. It is also noteworthy that z3 is the most powerful test when ω = 0.5 for all values of ϕ
and α. Additionally, it is seen that the z2 and z2B tests are more powerful than the z1 and z1B

tests. Finally, when ω = 0.75, for all values of α and ϕ, the z1, z1B and z3 tests display similar

powers, which are considerably higher than those of z2 and z2B.

Fig 2 contains size-power plots for z1, z2 and z3. The sample size is n = 100 and the empirical

powers were computed using KWðo; �Þ data-generating processes. The tests’ powers are very

similar for empirical sizes in excess of 0.4. For empirical sizes up to 0.4, z3 is the clear winner,

especially in the left and middle panels; in the right panel, the curves relative to z1 and z3 nearly

coincide, both clearly lying above that of z2. Also, z1 is the worst performer when the distribu-

tion median lies at the center of the standard unit interval, i.e., ω = 0.5; see panel (b).

In the second scenario of power simulations, all samples are randomly generated from the

unit Weibull law (see [9]), UWðo; �Þ, where ω is the distribution median and ϕ is a precision

parameter. For brevity, we only report results obtained using ω = 0.2, 0.5, 0.75 and ϕ = 5. The

tests’ non-null rejection rates are given in Table 5. All entries are percentages. It is worth notic-

ing that all empirical powers are nearly equal to 100% when n = 250. When ω = 0.2, z1 is the

best performer. The z3 test is slightly more powerful than the other tests when ω = 0.5 and

0.75.

Size-power plots are presented in Fig 3. The sample size is n = 100 and the tests’ empirical

powers were computed using unit Weibull data-generating mechanisms. In Fig 3 panel (a), the

size-power curves of the z1 and z3 tests are clearly above that of the z2 test for empirical sizes

up to approximately 40%. In panel (b) of Fig 3, for empirical sizes up to about 50%, the curve

of the z3 test is above the curve of the z2 test, which in turn is above that of the z1 test. Finally,

panel (c) of Fig 3 clearly favors z3 for empirical sizes up to approximately 50%.

The next set of power simulation results was obtained using simplex (see [8]) data-generat-

ing mechanisms: all samples are randomly generated from Sðm;sÞ, where μ is the distribution

mean and σ is the dispersion parameter. For brevity, we only present results for μ = 0.75 and σ
= 2. The tests’ non-null rejection rates, expressed as percentages, can be found in Table 6. It is

noteworthy that the powers of the z1, z1B, z2 and z2B tests are quite high for n� 250. Also, the

z3 test is clearly less powerful than the competing tests. For example, when n = 100 and α =

10%, the powers of the z1, z1B, z2 and z2B tests exceed 60% whereas that of the z3 test is approxi-

mately equal to 22%.

We present size-power plots constructed using the tests’ empirical powers under simplex

laws in Fig 4. The sample size is n = 100. It can be seen that the curves relative to the z1 and z2

Fig 2. Size-power plots, KWðω; ϕÞ, n = 100; panel (a): KWð0:2; 7:5Þ, panel (b): KWð0:5; 15Þ, panel (c):

KWð0:75; 25Þ.

https://doi.org/10.1371/journal.pone.0274781.g002
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tests are similar. They both lie considerably above that of the z3 test for effective sizes up to

40%.

Next, we consider the case in which the data are generated from the beta law but with a

regression structure for the mean. That is, we use the beta regression model introduced by [18]

as the true model. Here, log(μt/(1− μt)) = β1 + β2xt2. The true parameter values are β1 = −0.25,

β2 = 0.5 and ϕ = 120. The covariate values were generated from LN(0, 0.5), i.e., as realizations

from the log-normal distribution with parameters 0 and 0.5. Table 7 contains the tests’ non-

null rejection rates, all expressed as percentages. In general, all tests have high powers when

the sample size is not very small. In particular, for n = 250 and α = 10%, the tests have powers

close to or equal to 100%. When n = 50, z1 is clearly less powerful than z2 and z3.

In Fig 5, we present the size-power plot of z1, z2 and z3 for n = 50. In general, the tests have

similar powers when the effective size is smaller than 20% or larger than 60%. In the middle

region of the graph, z3 is the most powerful test.

We also performed simulations using the inflated beta distribution introduced by [25] as

the true model. It combines continuous and discrete components, and is used when Y assumes

Table 5. Non-null rejection rates (%), data generated from UWðω; ϕÞ.

n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ω = 0.2 and ϕ = 5 ω = 0.5 and ϕ = 5 ω = 0.75 and ϕ = 5

α = 10%

50 68.0 60.9 54.1 53.3 53.4 24.1 26.2 41.2 42.4 49.6 45.6 44.0 39.7 40.2 47.1

100 94.8 91.1 83.9 83.6 85.1 55.6 57.4 74.7 75.2 81.2 72.2 68.9 72.0 71.3 77.6

250 100.0 100.0 99.9 99.9 99.9 97.4 97.9 99.5 99.6 99.8 96.9 95.8 99.3 99.4 99.5

500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.4 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%

50 51.7 43.3 40.7 40.4 44.0 10.2 11.8 27.5 28.5 40.3 28.2 26.0 25.8 25.9 37.9

100 89.4 82.7 72.3 72.9 77.4 34.8 36.3 60.9 61.1 72.9 54.8 49.3 56.3 55.7 69.0

250 100.0 99.9 99.5 99.5 99.7 92.8 92.7 98.4 98.4 99.1 91.0 89.1 97.9 97.8 98.8

500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.5 98.3 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pone.0274781.t005

Fig 3. Size-power plots, UWðω; ϕÞ, n = 100; panel (a): UWð0:2; 5Þ, panel (b): UWð0:5; 5Þ, panel (c):

UWð0:75; 5Þ.

https://doi.org/10.1371/journal.pone.0274781.g003
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values in [0, 1), (0, 1] or [0, 1] (inflation at zero, inflation at one, and double inflation, respec-

tively). A common practice is to fit the standard beta distribution after replacing the inflated

data points by [Yt(n−1) + 0.5]/n; see [26]. We consider inflation at zero with Pr(Y = 0) = λ.

After the data were generated, all inflated values (zeros) were replaced by 0.5/n, and then the

standard beta law was fitted. The null hypothesis is false since the beta model is not the true

data generating process. We wish to evaluate the information matrix tests’ ability to detect that

the beta model is misspecified. Data generation was carried out using μ = 0.5, ϕ = 20 and λ =

0.025. We will not present the simulation results for brevity, but we note that the information

matrix tests proved to be very powerful in this setting with non-null rejection rates close to

100% at α = 5% for n = 100.

Overall, the results presented above favor the z1B, z2B and z3 tests. The z1 and z2 tests typi-

cally display very large size distortions and their use should be avoided except when n is large.

Table 6. Non-null rejection rates (%), data generated from Sðμ;σÞ.

n ζ1 ζ1B ζ2 ζ2B ζ3

μ = 0.75 and σ = 2

α = 10%

50 39.5 27.8 42.0 40.4 9.8

100 80.6 62.9 68.0 66.2 22.2

250 99.3 98.1 97.5 97.6 79.0

500 100.0 100.0 100.0 100.0 99.6

1000 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0

α = 5%

50 20.4 13.7 28.9 26.5 5.9

100 61.6 37.0 53.7 51.3 12.6

250 97.6 94.7 94.8 94.0 58.0

500 100.0 100.0 100.0 100.0 98.8

1000 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pone.0274781.t006

Fig 4. Size-power plot, Sðμ;σÞ, n = 100.

https://doi.org/10.1371/journal.pone.0274781.g004
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Regarding the z1B, z2B and z3 tests, we note that the latter may be considerably conservative for

some beta law parameter values. As a result, we recommend the use of the z1B and z2B tests in

empirical analyses. Such tests showed good control of the type I error frequency and also good

power in situations in which the data-generating process is not beta, in particular when

n� 250.

It is also possible to test the null hypothesis that the variable of interest is beta-distributed

using two alternative tests, namely: Anderson-Darling (AD) and Cramér-von Mises (CVM).

They are usually carried with the modification proposed by [27], which accounts for unknown

parameters in the distribution under test (in our case, beta). We performed Monte Carlo simu-

lations to assess the finite sample behaviors of such tests using the configurations previously

described. We do not present such results for brevity. We note, however, that both tests are

conservative, i.e., their null rejection rates are smaller than the significance levels. For instance,

when n = 100 (n = 500) the AD and CVM null rejection rates at the 10% significance level are,

respectively, 7.6% and 6.3% (9.2% and 8.5%). Also, such non-parametric tests are substantially

Table 7. Non-null rejection rates (%), data generated from the beta distribution with a mean regression structure.

n ζ1 ζ1B ζ2 ζ2B ζ3

α = 10%

50 37.3 42.1 56.1 53.3 47.8

100 89.3 90.9 91.0 90.7 91.8

250 97.7 97.7 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0

α = 5%

50 16.3 19.9 40.6 38.2 30.2

100 72.1 75.0 81.8 82.3 79.6

250 87.3 87.7 99.6 99.5 100.0

500 99.9 99.9 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0

5000 100.0 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pone.0274781.t007

Fig 5. Size-power plot, Bðμt ; ϕÞ, n = 50.

https://doi.org/10.1371/journal.pone.0274781.g005
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less powerful than the information matrix tests introduced in this paper. For instance, when

the true data-generating process is UWð0:5; 7:5Þ (KWð0:5; 15Þ), the AD and CVM non-null

rejection rates at α = 10% are, respectively, 29.1% and 42.0% (28.9% and 39.3%) when

n = 5000.

Covid-19 mortality rates in the US

We will now present and discuss an analysis of Covid-19 mortality rates in the US. We use the

three information matrix tests to determine whether the standard beta model provides an ade-

quate representation of the data. We will also briefly comment on inferences drawn from the

AD and CVM tests. Maximization of the beta log-likelihood function was performed using the

BFGS method with analytical first derivatives. We used B = 1000 bootstrap replications for per-

forming the z1B, z2B and z3 information matrix tests. In what follows, we model state and

county level data for three time periods. In each case, we will report the information matrix

tests’ p-values, the point estimates of the beta parameters and their standard errors. We report

clustered standard errors computed using information on each state’s region and on to each

county’s state.

The Covid-19 epidemic began in late 2019. It is estimated that approximately 247 million

people had been infected with the new coronavirus by October 2021. The United States was

the first country in the Americas to face a serious public health crisis brought on by the new

coronavirus. In December 2020, on the 14th to be exact, the US government began a campaign

to vaccinate healthcare workers and followed by vaccinating the general population. Covid-19

death rates started to decrease as vaccination progressed.

Our variable of interest are Covid-19 mortality rates per one hundred people. At the outset,

we will work with statewide data, i.e., we use data on the 50 US states (n = 50). The death rates

were computed using the cumulative number of deaths between January 22 and December 14

of 2020. We refer to this period as ‘period 1’. The source of the data on Covid-19 deaths is the

Centers for Disease Control and Prevention (https://data.cdc.gov/). Data on state populations

in 2020 were obtained from [10]. Since the sample size is small, we only consider bootstrap-

based information matrix testing inferences. We wish to determine whether the univariate

beta model provides an adequate representation of the data. The model has a simple structure

and is based on the assumption that the observations are i.i.d. Can it provide an acceptable and

useful representation of the US Covid-19 mortality rates?

The minimum, mean, median, and maximum mortality rates, and the standard deviation

are 0.0164, 0.0903, 0.0894, 0.2001 and 0.0423, respectively. The maximal value corresponds to

New Jersey. The maximum likelihood estimates of the beta parameters (clustered standard

errors in parentheses) are m̂ ¼ 0:0900 (0.0099) and �̂ ¼ 39:8208 (15.5240). The p-values of

the z1B, z2B and z3 tests of correct beta specification are 0.2870, 0.6070 and 0.4472, respectively.

The model is not rejected at the usual significance levels. We thus conclude that it adequately

represents the US state mortality rates. In Fig 6 we present the histogram of the mortality rates

together with the beta density evaluated at the maximum likelihood estimates. The estimated

density clearly provides a good approximation to the data histogram.

The previous analysis was performed using mortality rates computed up to December 14,

2020. Next, we will conduct a similar analysis, but based on more recent data. We consider

state mortality rates calculated using data from January 22, 2020 to October 31, 2021. We refer

to this more extended time period as ‘period 2’. The minimum, mean, median, maximum and

standard deviation values are 0.0550, 0.2120, 0.2227, 0.3370 and 0.0709, respectively. The max-

imum likelihood point estimates are m̂ ¼ 0:2112 (0.0199) and �̂ ¼ 27:8235 (8.9936). The esti-

mated precision is now approximately 30% smaller than in the previous scenario. The p-values

PLOS ONE Beta misspecification tests and Covid-19 mortality rates in the U.S.

PLOS ONE | https://doi.org/10.1371/journal.pone.0274781 September 20, 2022 19 / 30

https://data.cdc.gov/
https://doi.org/10.1371/journal.pone.0274781


of the z1B, z2B and z3 tests are 0.0600, 0.0570 and 0.0269, respectively. All tests reject the correct

specification of the univariate beta model at the 10% significance level; z3 rejects H0 at 5%.

Fig 7 presents the data histogram and the estimated beta density. The estimated beta density

does not adequately represent the data asymmetry.

Unlike the previous results, all tests now reject the beta distribution at α = 10%. The data

now cover two very different periods, namely: before and after the start of the nationwide vac-

cination campaign. There is thus clear data heterogeneity. The much smaller estimated preci-

sion (approx. 28 vs approx. 40) is probably due to such heterogeneity.

The mortality rates in the two periods show high positive correlation (0.8252), as expected,

given the cumulative nature of the observations. The univariate beta model is not rejected by

the information matrix tests when the shorter time period is used. It thus provides a good

description of the statewide Covid-19 mortality rates. The second time period, however, covers

the Covid-19 vaccination campaign. Since the reach and impact of such a campaign was

uneven across the 50 states, for reasons that include partisan political connotations and other

Fig 6. Histogram and fitted beta density, period 1, state data.

https://doi.org/10.1371/journal.pone.0274781.g006

Fig 7. Histogram and fitted beta density, period 2, state data.

https://doi.org/10.1371/journal.pone.0274781.g007
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factors, Covid-19 mortality rates greatly differ before and after the beginning of the immuniza-

tion campaign. There is thus clear heterogeneity in the two periods.

The two analyses presented so far are based on cumulative time periods, namely: (i) January

22 to December 14, 2020 (without vaccination) and (ii) January 22, 2020 to October 31, 2021

(without and with vaccination). In the following, we will only consider the most recent period

(December 15, 2020 to October 31, 2021), ‘period 3’. The minimal and maximal values are

0.0385 and 0.1985 whereas the mean and median values are 0.1218 and 0.1174, respectively;

the standard deviation is 0.0432. The maximum likelihood estimates of μ and ϕ are 0.1216

(0.0153) and 52.8670 (11.1468), respectively. The estimated precision is even larger than that

obtained by only considering the pre-vaccination time period (approx. 53 vs approx. 40).

Recall that much lower precision was obtained when the longest time period was considered

(approx. 28). The z1B, z2B and z3 p-values are, respectively, 0.5900, 0.2860 and 0.5087. These

large p-values indicate that there is very little evidence against the beta law. We thus conclude

that despite the impact of vaccination on Covid-19 mortality, the univariate beta model still

provides a good representation of the data. The data histogram and the fitted beta density are

presented in Fig 8. Visual inspection of such a figure suggests that the beta law yields a reason-

ably good data fit. Interestingly, there is less skewness than in the previous two cases.

The three fitted beta densities are presented in Fig 9. Notice that the estimated densities for

periods 1 and 3 are similarly shaped and with somewhat similar precisions. By contrast, the fit-

ted beta density obtained using data that cover both the period in which there was no vaccina-

tion and that of the vaccination drive is much more disperse. As noted earlier, heterogeneity in

the data leads to poor data fit. The information matrix tests indicated that the beta model yields

an adequate data representation in periods 1 and 3, but in for period 2. It seems that the tests

correctly detected that the heterogeneous nature of the data renders the beta law unable to ade-

quately represent Covid-19 mortality rates.

We presented above an analysis of statewide Covid-19 mortality data in the US. The infer-

ences obtained from the information matrix tests were quite informative. Such tests indicated

that the beta law is able to adequately represent the data in two disjoint periods—before and

after the start of the nationwide vaccination campaign —, but not when the two periods are

combined.

Fig 8. Histogram and fitted beta density, period 3.

https://doi.org/10.1371/journal.pone.0274781.g008
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In what follows we will use death rates per 100 persons computed for US counties for peri-

ods 1, 2 and 3. The data on the cumulative total of deaths was obtained from the New York

Times repository (https://github.com/nytimes/covid-19-data). In order to avoid inaccurate

records, we only considered, in each time period, counties with at least one Covid-19 death

and at least 15000 inhabitants. The sample sizes for periods 1, 2 and 3 are n = 2073, n = 2080

and n = 2080 respectively. Since the sample sizes are large, we will use all tests, i.e., z1, z1B, z2,

z2B and z3. Mortality rates were calculated using the estimated populations in 2020 obtained

from the Economic Research Service of the US Department of Agriculture (https://www.ers.

usda.gov).

Initially, we will consider period 1. The minimum, mean, median, maximum and standard

deviation values of the mortality rates are 0.0013, 0.0883, 0.0764, 0.4554 and 0.0596, respec-

tively. The maximum likelihood estimates are m̂ ¼ 0:0884 (0.0055) and �̂ ¼ 22:1618 (1.9529).

The z1, z1B, z2, z2B and z3 tests’ p-values are 0.0978, 0.1370, 0.0927, 0.1540 and 0.1022, respec-

tively. No test rejects the beta law at α = 5%. The tests that use bootstrap resampling also do

not reject such a hypothesis at α = 10%. The p-values of the tests that use asymptotic critical

values are slightly smaller than 0.10. Overall, we conclude that Covid-19 mortality rates can be

adequately represented by the beta law in period 1.

We will now consider the second period. The minimum, mean, median, maximum and

standard deviation values are, respectively, 0.0122, 0.2513, 0.2418, 0.7376 and 0.1133. Also,

m̂ ¼ 0:2512 (0.0118) and �̂ ¼ 13:3931 (1.1877). The estimate of ϕ is approximately 40%

smaller than in the previous scenario. There is thus considerably more uncertainty. The p-val-

ues of the z1, z1B, z2, z2B and z3 tests are 0.0157, 0.0570, 0.0155, 0.0650 and 0.0087, respectively.

The beta law is rejected at α = 1% (α = 5%) [α = 10%] by z3 (z1 and z2) [z1B and η2B]. Overall,

we conclude that the beta law does not provide an adequate data representation in period 2.

Next, we will perform inferences with data from period 3. The minimum, mean, median,

maximum and standard deviation of the mortality rates are 0.0085, 0.1632, 0.1528, 0.4734 and

0.0786 respectively. The point estimates are m̂ ¼ 0:1631 (0.0083) and �̂ ¼ 20:4761 (1.5648).

The p-values of the z1, z1B, z2, z2B, and z3 tests are 0.0529, 0.0830, 0.0360, 0.0750, and 0.0903,

respectively. Except for z2, no test rejects the beta law at α = 5%. We thus conclude that it can

be used to adequately represent county-level Covid-19 mortality rates in the third and final

period. We will return to these results later.

Fig 9. Fitted beta densities, state data.

https://doi.org/10.1371/journal.pone.0274781.g009
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Fig 10 contains the estimated densities for the three time periods obtained using county

data. They are similar to those obtained using statewide data; see Fig 9. Notice that there is

considerably more uncertainty when data from period 2 are used.

Interestingly, similar testing inferences were obtained with state and county data, namely:

(i) the univariate beta model provides an adequate description of Covid-19 mortality rates

with data either from prior to the nationwide vaccination drive or from when such a drive was

under way; (ii) there is evidence against the correct specification of the beta model when

Covid-19 mortality rates are computed using data that cover both periods (no vaccination and

nationwide vaccination). The tests thus indicate that the beta distribution is not an adequate

model for Covid-19 mortality rates under substantial data heterogeneity.

As noted earlier, we also performed the AD and CVM tests using both state and county

data. The corresponding p-values for state data are: 0.4691 and 0.8734, period 1; 0.2277 and

0.4339, period 2; 0.9413 and 0.3360, period 3. With county data, we obtained the following p-

values: 0.7414 and 0.5299, period 1; 0.3250 and 0.4856, period 2; 0.8765 and 0.8010, period 3.

All p-values are quite large, and hence the beta model is accepted in all scenarios, i.e., for the

three time periods and when state or county data are used. In particular, unlike the informa-

tion matrix tests, the two non-parametric tests are not able to reject the beta model when there

is marked data heterogeneity (period 2). By contrast, our tests indicate that the univariate beta

model is only appropriate when there is reasonable homogeneity in the data (periods 1 and 3).

We will now further examine (i) the data heterogeneity that caused the rejection of beta law

in period 2 and (ii) the acceptance of the beta law in period 3 when the vaccination drive was

under way. As noted earlier, the Covid-19 mortality rates computed for period 2 cover two

quite distinct periods: January 22, 2020 through December 14, 2020 (period 1) and December

15, 2020 through October 21, 2021 (period 3). (Recall that period 2 consists of the merging of

periods 1 and 3.) The correlation coefficient between statewide death rates in periods 1 and 3

is weak: 0.3735. This small correlation strength is indicative that the mortality rates in such

periods obey different dynamics. This was expected because, unlike what took place in period

3, there was no nationwide vaccination drive in period 1. Additionally, the states with the low-

est mortality rates in period 1 (period 3) are Vermont, Hawaii, Maine, Oregon, and Utah (Ver-

mont, Hawaii, New York, Alaska, and Maine) whereas those with the highest death rates in

period 1 (period 3) are New Jersey, Massachusetts, Mississippi, Rhode Island, and North

Dakota (Arizona, Alabama, West Virginia, Florida, and Georgia). Consider, e.g., New Jersey

Fig 10. Fitted beta densities, county data.

https://doi.org/10.1371/journal.pone.0274781.g010
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and Massachusetts. They are the states with the highest Covid-19 mortality rates in period 1,

and yet their corresponding ranks in period 3 are 28 and 32. Arizona and Alabama display the

highest death rates in period 3, and yet their ranks in period 1 are 14 and 9, respectively.

Again, it is clear that the death rates in periods 1 and 3 (which are combined in period 2) are

considerably heterogeneous.

Next, we will examine again Covid-19 mortality rates in period 3; in particular, we will

examine the finding that the univariate beta model yields an adequate representation for such

rates. There was a nationwide vaccination drive under way in period 3, and its reach negatively

impacted death rates. We obtained data on the total number of fully vaccinated people by

October 31, 2021. The source of the data is the Our World in Data repository (https://

ourworldindata.org/us-states-vaccinations). The correlation between death and vaccination

rates in period 3 is −0.5858 (state data). A natural question is: Given that mortality rates are

negatively impacted by vaccination rates, why was the univariate beta model found to be cor-

rectly specified? Why use a fixed mean model if the distribution mean appears to be impacted

by an explanatory variable (vaccination rate)? At the outset, we note that some states consider-

ably weaken the inverse relationship between the two variables in period 3, namely: Alaska,

Arizona, Florida, Massachusetts, North Dakota, and Rhode Island. In particular, the Arizona,

Florida, Massachusetts, and Rhode Island (Alaska and North Dakota) Covid-19 mortality rates

are higher (lower) than expected based on the corresponding vaccination levels. The inverse

correlation between death and vaccination rates becomes considerably stronger when com-

puted without such states: −0.7592 (state data). We removed from the data all counties of the

six states that weaken the impact of vaccination reach on death rates, and performed the tests

again. The z1, z1B, z2, z2B, and z3 p-values become 0.0289, 0.0600, 0.0162, 0.0530, and 0.0460,

respectively. The z1, z2 and z3 tests now reject the univariate beta model at α = 5% whereas the

z1B and z2Bp-values are only marginally larger than 0.05. Hence, there is now evidence against

the model. Overall, the information matrix tests’ inferences suggest that, as long as the negative

impact of vaccination reach on death rates is moderate (complete data), the beta law can be

adequately used to represent Covid-19 mortality rates. When such a negative impact becomes

more pronounced (incomplete data, counties of six states removed from the data), the univari-

ate beta model no longer should be used. In that case, practitioners should search for a more

elaborate model. By contrast, the two non-parametric tests continue to accept the univariate

beta model even when the Alaska, Arizona, Florida, Massachusetts, North Dakota, and Rhode

Island counties are not considered; the AD and CVM p-values are 0.3025 and 0.5788,

respectively.

Finally, using the three county data samples, we compare the data fits yielded by the beta

distribution to those obtained with the following alternative laws: Kumaraswamy, simplex,

and unit Weibull. To that end, we computed, for each sample period and for each distribution,

the values of the following information criteria: Akaike Information Criterion (AIC), Cor-

rected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), Hannan-

Quinn Information Criterion (HQIC), Weighted-Average Information Criterion (WIC) and

Empirical Information Criterion (EIC). The latter employs bootstrap resampling and proved

to be very effective in dynamic beta modeling; see [28]. We used 1000 bootstrap replications,

i.e., 1000 pseudo-samples were generated for computing the EIC values. We also computed the

AD and CVM statistics. For all measures, smaller values indicate better data fits. The results

are presented in Table 8. They show that, according to all information criteria (AIC, AICc,

BIC, HQIC, WIC, and EIC), the best data fits in the three sample periods are yielded by the

beta law. Considering the two non-parametric test statistics, in period 1 (period 2) [period 3],

the beta model was the winner according to both of them (the runner-up according to both

statistics, slightly behind the Kumaraswamy law) [the winner according to CVM and the

PLOS ONE Beta misspecification tests and Covid-19 mortality rates in the U.S.

PLOS ONE | https://doi.org/10.1371/journal.pone.0274781 September 20, 2022 24 / 30

https://ourworldindata.org/us-states-vaccinations
https://ourworldindata.org/us-states-vaccinations
https://doi.org/10.1371/journal.pone.0274781


runner-up according to AD, behind the Kumaraswamy model]. Considering the eight mea-

sures and the three sample periods, the beta law was the winner in 21 out of the 24 cases.

Fig 11 contains the data histogram and the estimated beta density for period 3, as in Fig 8,

together with the fitted Kumaraswamy (KW), simplex and unit Weibull (UW) densities. Visual

inspection of the figure shows that the beta law best fits the data histogram. In order to further

examine the two best data fits, we produced quantile-quantile (QQ) plots for the beta and

Table 8. Goodness-of-fit measures.

Period Criterion beta KW simplex UW

1 AIC −6466.687 −6441.745 −5993.029 −6144.892

AICc −6466.681 −6441.739 −5993.023 −6144.887

BIC −6455.413 −6430.471 −5981.755 −6133.619

HQIC −6462.555 −6437.613 −5988.897 −6140.760

WIC −6457.755 −6432.813 −5984.096 −6135.960

EIC −6477.157 −6452.015 −6013.894 −6160.247

AD 2.958 3.170 5.544 3.788

CVM 0.652 0.657 1.387 0.911

2 AIC −3287.865 −3266.338 −3076.004 −3033.648

AICc −3287.859 −3266.332 −3075.994 −3033.643

BIC −3276.584 −3255.058 −3064.720 −3022.368

HQIC −3283.731 −3262.204 −3071.866 −3029.515

WIC −3278.926 −3257.399 −3067.061 −3024.710

EIC −3300.680 −3279.034 −3093.013 −3049.644

AD 4.031 3.114 5.707 4.181

CVM 0.674 0.471 0.966 2.120

3 AIC −4873.815 −4862.928 −4666.304 −4558.565

AICc −4873.809 −4862.922 −4666.298 −4558.559

BIC −4862.534 −4851.647 −4655.024 −4547.284

HQIC −4869.681 −4858.794 −4662.170 −4554.431

WIC −4864.876 −4853.989 −4657.365 −4549.626

EIC −4885.201 −4875.239 −4680.756 −4571.892

AD 2.595 2.335 4.443 4.093

CVM 0.522 0.606 1.020 0.881

https://doi.org/10.1371/journal.pone.0274781.t008

Fig 11. Histogram and fitted densities, period 3.

https://doi.org/10.1371/journal.pone.0274781.g011
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Kumaraswamy laws, again using data from period 3. In both panels of Fig 12, empirical quan-

tiles are plotted against theoretical quantiles, the 45˚ degree line indicating perfect agreement

between both sets of quantiles. The Kumaraswamy and beta laws fit the data quite well up to

approximately 0.35 and 0.45, respectively. It is then clear that the latter outperforms the former

in the sense that it yields better agreement between empirical and theoretical quantiles.

Concluding remarks

The beta distribution is commonly used to model variables that assume values in the standard

unit interval. We developed information matrix tests that can be used to test whether the uni-

variate beta model yields an adequate representation of the data. The null hypothesis of correct

model specification is tested against the alternative hypothesis that the model specification is

in error. The tests seek to verify whether the information matrix equality holds. As is well

known, this equality only holds when the model is correctly specified. The tests’ small sample

behavior can be improved by using data resampling (bootstrap). We presented the results of

extensive Monte Carlo simulations that showed that the tests have good power against differ-

ent forms of model misspecification, including the case in which the univariate beta model is

fitted using data that have an underlying regression structure.

We presented an empirical analysis of Covid-19 mortality rates in the US. We considered

three sample periods: (i) before, (ii) before and after, and (iii) after the beginning of the nation-

wide vaccination drive. The testing inferences indicated that the beta law yields a good repre-

sentation of the data in the pre-vaccination period. There is also evidence in favor of such a

model when mortality rates are computed using data that only cover the vaccination drive

period as long as the negative impact of vaccination reach on death rates is moderate; when

such an impact is strong, the univariate beta model is rejected. The beta law is also rejected by

the information matrix tests when mortality rates are computed using data that cover both

periods (before and after the start of the vaccination campaign). The rejection of the beta dis-

tribution in this case is due to data heterogeneity.

Fig 12. Quantile-quantile plots, period 3.

https://doi.org/10.1371/journal.pone.0274781.g012
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Our results should be viewed as an initial exploration on the usefulness of information

matrix tests for fractional data analysis. The tests we presented proved to be quite useful when

applied to the univariate beta model. In future research, we will extend the results presented in

this paper to cover other univariate laws that are used to model fractional data (e.g., Kumaras-

wamy and simplex). We will also seek to extend our results to regression settings, in particular

to the beta regression model introduced by [18], and to dynamic beta models, such as the

βARMA model introduced by [29, 30]; see also [28, 31]. The beta parameterization used in this

paper, which is indexed by mean and precision parameters, will be helpful for the aforemen-

tioned extensions of our results.

Appendix

We present below the quantities required to compute the information matrix test statistics for

the beta model. It is possible to show that

w ¼ c0ðm�Þ þ c0ðð1 � mÞ�Þ; c ¼ �ðmw � c0ðð1 � mÞ�ÞÞ;

m ¼ c00ðm�Þ � c00ðð1 � mÞ�Þ;
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Additionally, we obtain, after some algebra,
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Recall that we only use the first two rows ofrDn(θ;Y) (evaluated at θ̂) in the information

matrix test statistics.
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