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The segmentation of a skin lesion is regarded as very challenging because of the low contrast between the lesion and the
surrounding skin, the existence of various artifacts, and different imaging acquisition conditions. The purpose of this study is to
segment melanocytic skin lesions in dermoscopic and standard images by using a hybrid model combining a new hierarchical K
-means and level set approach, called HK-LS. Although the level set method is usually sensitive to initial estimation, it is widely
used in biomedical image segmentation because it can segment more complex images and does not require a large number of
manually labelled images. The preprocessing step is used for the proposed model to be less sensitive to intensity inhomogeneity.
The proposed method was evaluated on medical skin images from two publicly available datasets including the PH2 database
and the Dermofit database. All skin lesions were segmented with high accuracies (>94%) and Dice coefficients (>0.91) of the
ground truth on two databases. The quantitative experimental results reveal that the proposed method yielded significantly
better results compared to other traditional level set models and has a certain advantage over the segmentation results of U-net
in standard images. The proposed method had high clinical applicability for the segmentation of melanocytic skin lesions in
dermoscopic and standard images.

1. Introduction

Melanoma is a dangerous skin cancer that mostly appears in
pigmented cells (melanocytes) in the skin. It is a major cause
of death associated with skin cancer [1]. Early diagnosis of
melanoma is essential because early-stage detection and
proper treatment increase the survival rate [2, 3]. Melanoma
is mostly detected by expert dermatologists through visual
inspection using the naked eye alone with a diagnostic accu-
racy of about 60% [4, 5].

Clinical images are normally obtained using digital cam-
eras. However, the imaging conditions are frequently incon-
sistent because images are acquired from different distances
or under variable illumination conditions. These may lead
to problems when the size of the lesion is too small. Dermo-
scopy, a technique whereby a hand-held device is used to
detect a mole and inspect the underlying skin, is better than

unaided visual inspection and increases the sensitivity of
detection by 10-30% [6]. Nevertheless, the within- and
between-observer concordance is very low, even for expert
clinicians [7]. An additional problem is related to the pres-
ence of intrinsic noise and artifacts, such as hair, blood ves-
sels, air bubbles, and frames; variegated colors inside the
lesion; and the lack of distinct boundaries to the surrounding
skin [8]. These make it difficult to distinguish the skin lesion
[9]. Thus, a growing interest has developed in the computa-
tional analysis of skin lesion images to assist clinicians in dis-
tinguishing early melanoma from benign lesions [10].

The first step in the computerized analysis of skin lesion
images is the segmentation of the lesion. The segmentation
of skin lesions from the surrounding skin is essential to pro-
vide important information for an accurate analysis of skin
lesions and to extract important clinical features such as
atypical pigment networks, blue-white areas, and globules
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[11, 12]. Moreover, this step is the key process by which
lesion diameters are quantified and the extent of border irreg-
ularities are evaluated. Effective methods have been proposed
to improve the segmentation accuracy.

Active contour-based medical image segmentation, such
as a level set, is a well-established approach [13]. It was first
introduced by Osher and Sethian. Level set evolution, which
is established on partial differential equations and dynamic
implicit interfaces, has been widely used in the field of med-
ical image segmentation. Silveira and Marquez [13], Nour-
mohamadi and Pourghassem [14], and Li et al. [15] used
the level set method with clustering-based initial estimation
models, such as the Otsu thresholding, weighting combina-
tion of fuzzy C-mean and K-means, and spatial fuzzy cluster-
ing. The level set method is an efficient way to identify low
contrast boundaries [16]. Schmid [17] presented a color
clustering-based technique with a modified version of fuzzy
C-means clustering. Donadey et al. [18] also detected a bor-
der by using the intensity component of hue-saturation-
intensity (HSI) space. However, traditional models such as
the region-based active contour model often failed when
applied to images containing inhomogeneities. These are
very sensitive to parameter tuning [16]. Recently, machine
learning algorithms, including deep learning architectures,
such as Residual net [1] or U-net [9], have emerged as reli-
able segmentation methods for skin lesion images. However,
these algorithms can deal with inhomogeneities but require
postprocessing and a large training set [16]. Some cases still
show a low performance of skin lesion segmentation due to
very low contrast and hair artifacts in skin lesion images
[8]. These make it hard to train effectively deep networks
with a large number of parameters [1].

To tackle the abovementioned problems, a hybrid model
which integrates unsupervised learning with a region-based
active contour model is proposed in this study. The proposed
method combined the hierarchical K-means clustering and
level set methods. This model thus can be less sensitive to
parameter controlling of the level set model and to intensity
inhomogeneity. The rest of this study was organized as fol-
lows. Section 2 introduces the overall processes used in the
segmentation: (a) preprocessing, (b) segmentation, and (c)
performance evaluation. Sections 3 and 4 provide the exper-
imental results and discussions, respectively. Finally, Section
5 concluded the paper and identified future directions.

2. Materials and Methods

To segment a melanocytic skin lesion accurately, the pro-
posed method was implemented through four steps: image
acquisition, preprocessing, a two-stage segmentation model,
and postprocessing. The statistical significance of the sug-
gested method was evaluated by the Jaccard index, the Dice
coefficient, sensitivity, and other measures. Figure 1 shows
an overall flowchart of the suggested approach for the seg-
mentation of each skin lesion. The detailed procedures are
described below.

2.1. Image Acquisition. This study used dermoscopic and
standard images from the following two dermatology atlases:

(1) The PH2 data [19] is a dataset that includes 200 der-
moscopic images, including 40 malignant melano-
mas and 160 melanocytic nevus (80 common nevi
and 80 atypical nevi) at 768 × 560 resolution, col-
lected by a group of researchers from the Technical
Universities of Porto and Lisbon in the Dermatology
Service of Pedro Hispano Hospital. Each image has 8-
bit red, green, and blue (RGB) channels.

(2) The Edinburgh Dermofit Image Library [20] is a
dataset that includes high-quality skin lesion images
(1,300 biopsy-proven cancers and moles) collected
across 10 different classes, including 331 melanocytic
nevus images and 76 malignant melanoma images.
The images are snapshots of the skin lesions sur-
rounded by normal skin captured using a Canon
EOS 350D SLR camera with a pixel resolution of
about 0.03mm.

Figure 2 shows the sample images with different artifacts
and aberrations. The skin images obtained from these atlases
were annotated by expert dermatology resource providers.
All images were allocated to diagnosis labels and binary seg-
mentation masks that denote the lesion area. In the binary
segmentation mask, the pixels outside the lesions were
assigned pixel intensity values of 0 and pixels inside the lesion
were assigned pixel intensity values of 255. 116 images of
malignant melanoma and 491 images of melanocytic nevus
were acquired from two different atlases (Table 1).

2.2. Preprocessing. Dermoscopic and standard images usually
contain artifacts such as illumination variations, dermo-
scopic gel, air bubbles, and outlines (hair, skin lines, vignett-
ing around the lesion, ruler markers, and blood vessels).
These artifacts can attenuate the accuracy of border detection
and increase computational time. As a result, there is a need
for robust methods to attenuate artifacts. To do this, the first
step of this study is to create an image that converts the image
into a different color space and removes artifacts including
hair, vignetting around the lesion, and ruler markings as
shown in Figure 3.

All skin images are RGB-colored images, which are the
combination of gray values from the individual R, G, and B
channels [21]. This color space is not as sensitive as human
vision. The segmentation of skin lesions on RGB-colored
images is difficult because of the influence of the pixel inten-
sity [10]. Specifically, a skin lesion is likely to show different
visual colors due to various conditions, such as illumination
variations and low contrast between the skin lesions and a
surrounding skin region. The RGB-colored images were con-
verted to International Commission on Illumination (CIE)
L ∗ a ∗ b color space to clearly detect the color differences
between the skin lesion and the background skin. In the
CIE L ∗ a ∗ b color space, L indicates the luminance (light-
ness) and a and b are chromaticity coordinates. The a axis
represents a complementary color of the green-red compo-
nent, and the b axis represents a complementary color of
the blue-yellow component [22]. After color space trans-
forming, only both of the two channels (a and b) were
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extracted and the lightness channel was excluded. The histo-
gram equalization was applied to only two channels. Finally,
we created a new 3-channel fusion image that reduces the
illumination variations and skin color difference.

After the first step, maximum filters with a 5 × 5 kernel
were also applied before the border detection to remove
noise, such as hair and air bubbles. Vignetting around the
image was removed by extracting the largest blobs in the
binary image.

2.3. A Hybrid Two-Stage Segmentation Model. After prepro-
cessing, a hybrid two-stage model was constructed for the
segmentation of a melanocytic skin lesion. To obtain an ini-
tial contour mask of a melanocytic skin lesion area, the
hybrid HK clustering was implemented first. Secondly, the
Distance Regularized Level Set Evolution (DRLSE) was used
to segment the fine border of the lesion. The detailed lesion
segmentation step is described below.

2.3.1. Hybrid Hierarchical K-Means Clustering (HK
Clustering). The basic concept of HK is to recursively split
the dataset into a tree of clusters with predefined branches
at each node. There are two approaches to hierarchical clus-
tering. One is the top-down technique, and the other one is
the bottom-up technique [23–25]. The top-down is more

efficient than bottom-up because of the fast task and greedy
attributes, meaning that it cannot cross the boundaries
imposed by the top level [26, 27]. In other words, nearby
points may end up in different clusters. The proposed
method was a modified version of the top-down approach
by Chen et al. [24]. At first, the data starts as one combined
cluster. Next, the cluster splits into distinct parts of K1
according to some degree of similarity (level 1). Finally, the
clusters separate into distinct parts of K2 again and again
until the clusters only contain some small fixed number of
points (level 2). Figure 4 shows a visualization of the hybrid
HK clustering used in this study. Kn represents the number
of clusters at the hierarchical level of n. The optimal number
of clusters were set toK1 of 2 at level 1 and K2 of 3 at level 2 as
shown in Figures 4(b) and 4(c). The number of iterations for
each level of K-means was set to 20. The squared Euclidean
distance measure was adopted for a similarity function.

2.3.2. A Fine Border Segmentation Based on DRLSE Model.
To segment the fine border of the melanocytic skin lesion,
the DRLSE, which is one of the level set evolution
approaches, was employed. The traditional level set methods
consider the front as the zero-level set of an embedded func-
tion on a track moving front, called the level set function
(LSF) [28–31]. The objects were detected in a given image
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Figure 1: Overall flowchart of the proposed scheme for the segmentation of each skin lesion image in dermoscopic and standard images.
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(a) (b)

(c) (d)

Figure 2: Continued.
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(e) (f)

(g) (h)

(i) The samples of dermoscopic images (PH2) are

shown in (a), (c), (e), (g), and (i)

(j) The samples of standard images (Dermofit) are

shown in (b), (d), (f), (h), and (j)

Figure 2: Illustrative examples of dermoscopic images (a, c, e, g, and i) and standard images (b, d, f, h, and j).
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by curve evolution [32]. To stop the curve evolution, the tra-
ditional level set method is influenced by the gradient of the
given image by changing the LSF value. However, the LSF
typically develops irregularities during its evolution in con-
ventional level set formulations, which make an impact on
numerical errors and eventually destroy the stability of the
evolution [33]. Thus, to eliminate the need for reinitialization
and avoid numerical errors, the DRLSE was employed to seg-
ment the fine border of the melanocytic skin lesions.

Each border of a skin lesion image can be regarded as the
zero-level set of an LSF. Although the final segment result of
the level set method is the zero-level set of the LSF, it is essen-
tial to maintain the LSF in a balanced state. This requirement
can be satisfied by using signed distance functions with the
unique property of j∇ϕj = 1, which is referred to as the signed
distance property.

Given the LSF ϕ : Ω→R in a rectangular domain, the
energy function EðϕÞ is defined by

E fð Þ = μRp fð Þ + Eext fð Þ, ð1Þ

where ϕ is the level set function, and RpðϕÞ and ΕextðϕÞ indi-
cate the level set regularization term and external energy
function, respectively. μ > 0 is a constant, and the level set
regularization term RpðϕÞ can be defined by

Rp ϕð Þ ≜
ð
Ω

p ∇ϕj jð Þdx, ð2Þ

where p indicates the potential function (p : ½0,∞�→R).
The energy ΕextðϕÞ is designed to achieve a minimum value
when the zero-level set of the skin lesion is located at the
desired position. Moreover, the edge indicator function g is
stated by

g =
1

1 + ∇ Gσ ∗ Ið Þj j2 , ð3Þ

where I is the image Iðx, yÞwith a smoothing Gaussian kernel
Gσ, and σ is the standard deviation. The edge indication
function stops the level set evolution when the zero-level set
of the skin lesion approaches the optimal position. The
energy functional EðϕÞ is determined by

E fð Þ = μRp fð Þ + λAg fð Þ + αBg fð Þ, ð4Þ

where λ > 0 and α represent the coefficients of the energy
functions ΑgðϕÞ andΒgðϕÞ, which can be written as follows:

Ag ϕð Þ ≜
ð
Ω

gδ ϕð Þ ∇ϕj jdx, ð5Þ

Bg ϕð Þ ≜
ð
Ω

gH −ϕð Þdx, ð6Þ

where δ and H represent the Dirac delta function and the
Heaviside function, respectively. Since a signed distance
function is used as the initial level set function (ϕ0) in the
standard level set and initialization should be done periodi-
cally to retain a stable evolution of zero level set function,
the computational cost of these methods is high [34]. The
level set evolution is derived as the gradient flow that mini-
mizes an energy functional with a distance regularization
term and an external energy that drives the motion of the
zero-level set toward the desired location. The distance regu-
larization term is defined by a potential function which
includes a unique forward-and-backward (FAB) diffusion
effect [33]. For instance, when the initial borders were located
outside of the desired borders, alfa was set to a positive value
to force the zero-level set to shrink toward the region of inter-
est. In contrast, alfa was assigned a negative value to expand
the borders when the initial borders were located on the
inside. The detailed equation has been described previously
[33].

The DRLSE parameters were set as follows: a constant
controlling the gradient strength of the initial LSFðc0Þ of 3,
a coefficient of the weighted length term (λ) of 5, a width of
the Dirac delta function (δ) of 1.5, a coefficient of the distance
regularization term (μ) of 0.02, a time-step of 8, and a stan-
dard deviation of the Gaussian kernel (σ) of 1.5. The initial
LSF (R0) of this study was automatically detected by using
the results of the HK clustering as shown in Figure 5. A set
of if-then rules were applied to optimize the parameters at
different conditions of images. An α, the coefficient of the
weighted area term, was set to 3 or 5 regarding the size of
the initial LSF. Double-well potential was used for a distance
regularization term, and the iteration numbers were set to
600 and 1000 for the images of malignant and melanocytic
nevi, respectively. A binary image was obtained with a
threshold of 80. The area inside the fine border was filled in
during the postprocessing step. A morphological erosion of
the mask, using a square with a width of 5 pixels, and Delau-
nay triangulation were also carried out in the postprocessing
step. Examples of the border segmentation results for the der-
moscopic image (PH2 dataset) and standard image (Dermofit
dataset) are presented in Figure 6.

2.4. Performance Evaluation. The output of the proposed
method was binarized with a lesion mask. The performance
of the proposed method was evaluated on two different data-
sets of melanocytic skin lesion images from the PH2 database
[19] and the Dermofit database [20], which are publicly avail-
able on the ground truth data. To evaluate the proposed
method, the well-known segmentation measures were calcu-
lated, including accuracy, specificity, sensitivity, Jaccard

Table 1: Dataset statistics.

Atlas (the number of
images)

Skin lesion
The number of

images

PH2 data (200)
Malignant melanoma 40

Nevus (common,
melanocytic)

160

Dermofit (407)
Malignant melanoma 76

Melanocytic nevus 331

Total (607)
Malignant melanoma 116

Melanocytic nevus 491
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(a) (f)

(b) (g)

Figure 3: Continued.
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(c) (h)

(d) (i)

Figure 3: Continued.
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index (JI), Dice coefficient (DC), F-measure, and Hausdorff
distance (HD). Specifically, these measures were calculated
from the following four error factors: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)

Accuracy =
TP + TNð Þ

TP + TN + FP + FNð Þ , ð7Þ

Sensitivity =
TPð Þ

TP + FNð Þ , ð8Þ

Specificity =
TNð Þ

TN + FPð Þ , ð9Þ

where TP represents the pixel numbers of a skin lesion
correctly segmented as a skin lesion, TN represents the

(e) (j)

Figure 3: Example results of preprocessing on PH2 (a, c, e, g, and i) and Dermofit (b, d, f, h, and j). The first row (a, b) contains original
images. The second row (c, d) contains the images converted from RGB to CIE LAB color space. The 3rd row (e, f) contains histogram
equalization images of channel a and (g, h) channel b. The 4th row (i, j) contains the final fusion images.

(c) Level 2

(b) Level 1

(a) Input image

Figure 4: Visualization of the hybrid hierarchical K-means (HK) clustering method with K1 = 2 and K2 = 3 at level 1 and level 2, respectively.
(a) Input image which was obtained after the preprocessing step. (b) Initial contour mask with K1 = 2 at level 1. (c) Final initial contour mask
with K2 = 3 at level 2. K is the number of clusters at each hierarchical level.
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pixel numbers of background skin correctly characterized
as background, FP denotes the pixel numbers of back-
ground skin incorrectly characterized as a skin lesion, FN
denotes the pixel numbers of a skin lesion incorrectly
characterized as background skin. Accuracy was defined
as the ability to segment all areas correctly. Sensitivity
was the ability to segment skin lesions. Specificity was
the ability to segment the background of the skin. F
-measure is a statistical measure of a method’s accuracy
that considers both the recall and the precision of the
method [35]. An F-measure value close to 1.0 indicated
that the accuracy of the proposed approach was very high.
HD was calculated to measure the resemblance of two sets
of points [36]. It measures how far two subsets are from
each other. The smaller the HD, the greater is their degree
of similarity. Additionally, the Bland-Altman plots, known
as the scatter plots of the difference against the mean
between the area inside the automatic border and the area
inside the manual border, were also used to visualize
errors and potential bias in the border detection. Further-
more, linear regression was utilized to quantitatively com-
pare the area inside the border drawn by the two
measurements. These analyses were carried out using SPSS
version 23 software (SPSS Inc., Chicago, IL, USA). A p
value < 0.05 was considered to indicate statistical
significance.

The algorithm was implemented on an Intel® Core™ i5-
7500 CPU at 3.40GHz with 16.00GB RAM. All procedures
were implemented with the MATLAB software package
(R2018b, MathWorks Inc., Natick, MA, USA).

3. Results

3.1. Comparison Results of Accuracy and Run-Time for
Different Numbers of Clusters at Each Level (K1 and K2). To
obtain good segmentation results, the number of clusters
for each level of HK clustering was experimentally deter-
mined. Figure 7 shows the mean accuracy and speed of the
proposed method in different conditions of the number of

clusters from set 1 to set 4 at each hierarchical level. The
run-time performance was calculated by the total time taken
from the preprocessing phase to the postprocessing phase.
The run-time performance for each different condition had
the following relationship: set 2 ð19:2 secondsÞ < set 1 ð19:28
secondsÞ < set 3 ð19:72 secondsÞ < set 4 ð20:4 secondsÞ. This
suggests that set 2 outperforms other conditions in terms of
run-time performance. The experimental results showed that
the optimal numbers of clusters were 2 and 3 at level 1 and
level 2, respectively, which achieved an accuracy of 94.6%
and a speed of 19.2 seconds.

3.2. Quantitative Evaluation of the Proposed Two-Stage
Segmentation Approach in Dermoscopic and Standard
Images. The performance of the segmentation-based level
set scheme depends on an initial contour mask [15, 23].
Thus, the initial segmentation is a key step to increasing sen-
sitivity. Our method was evaluated for two different datasets
as shown in Table 2. The mean accuracy for each of the two
atlases was greater than 90%. The F-measure for each of the
two datasets was high (>0.91), and a very small difference of
0.02 was found between the two atlases. Small average HDs of
0:07 ± 0:02 and 0:09 ± 0:03 were obtained for each dataset.
Our method achieved higher performance in the PH2 data-
base for all evaluation parameters, including sensitivity, spec-
ificity, and accuracy, than in the Dermofit database. All
evaluation parameters showed promising results of over
90%, except for the Jaccard index which was 0.826 and
0.833 for the Dermofit and PH2 data, respectively.

3.3. Comparison of Results of Segmentation between Different
Disease Classes (Melanocytic Nevus and Malignant
Melanoma). The proposed segmentation model was com-
pared in two different disease classes, melanocytic nevus
(common nevi, atypical nevi, and melanocytic nevi) and
malignant melanoma. Table 3 shows the segmentation
results that were obtained by processing the melanocytic
nevus images and melanoma images. Our method
obtained good accuracy for 607 skin lesion images, includ-
ing an accuracy of 93.4% for 331 images of melanocytic
nevus images and 95.6% for the 76 melanoma images in
the Dermofit dataset. In the PH2 dataset, the proposed
method achieved an accuracy of 95.6% for the 160 mela-
nocytic nevus images and 90.8% for the 40 melanoma
images. Of note, the proposed method obtained a higher
sensitivity of 92.6% for the melanocytic nevus images
compared to a sensitivity of 86.4% for the melanoma
images in the Dermofit dataset. Moreover, the F-mea-
sures showed 0.921 and 0.887 for the melanocytic nevus
and melanoma images, respectively. In contrast, our
method achieved a higher sensitivity of 92.5 for melanoma
images compared to 91.7% for the melanocytic nevus
images in the PH2 dataset. The F-measures became 0.920
and 0.907 for the melanoma and melanocytic nevus
images, respectively.

3.4. The Bland-Altman Plots and Linear Regression Analysis
for the Area inside Each Border Detected Manually and by
the Proposed Method. The mean values of the differences in

Figure 5: One example of the proposed method for the detection of
a melanocytic skin lesion. The red rectangle indicates the boundary
selection scheme, which includes the outline of a skin lesion.
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(a) (d)

(b) (e)

(c) (f)

Figure 6: Examples of lesion segmentation results from the hierarchical K-means level set scheme for the PH2 and Dermofit atlases. (a)
IMD144 dermoscopic image from the PH2 dataset. (c) IMD168 dermoscopic image from the PH2 dataset. (e) D105 dermoscopic image
from the Dermofit dataset. (b, d, and f) Error evaluations: white pixels show true positives (TP), black pixels show true negatives (TN),
pink pixels show false positives (FP), and green pixels show false negatives (FN).
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the Bland-Altman plots detected by the ground truth and the
proposed approach are illustrated in Figures 8 and 9. In
the PH2 database, the average differences between the
areas inside the borders detected by the ground truth
and our method were 82:077 ± 15951:228 and −2702:371
± 1498:615 for melanoma and melanocytic nevus images,
respectively. In the Dermofit database, the average differ-
ences were 5025:59 ± 27,250:079 and −2279:233 ±
5734:517 for melanoma and melanocytic nevus images,
respectively. All results showed differences close to 0,
which were generally included within the limits of the
agreement range.

The linear regression analysis shown in Figure 10
reports a high correlation (>0.97 and >0.96 for the Der-
mofit database and the PH2 database, respectively)
between the areas inside the automated extracted borders

and contours of the ground truth. These results showed
that the proposed segmentation method strongly corre-
lated with the segmentation ground truth datasets.

3.5. Comparison of Segmentation Performance with Other
Automated Segmentation Methods. The proposed method
was compared with traditional segmentation methods in
the same dataset. Results of the comparison between tra-
ditional classifiers and the proposed method are summa-
rized in Table 4. Traditional classifiers showed relatively
poorer results for melanocytic lesion segmentation com-
pared to the proposed method. Specifically, the Otsu
thresholding method showed the lowest segmentation
accuracies in the Dermofit and PH2 data (68.3% and
65.2%, respectively). The proposed method achieved a
higher specificity of 94.4% than that of K-means

K1 = 2, K2 = 2 K1 = 2, K2 = 3 K1 = 3, K2 = 2 K1 = 3, K2 = 3
Total run-time (s) 19.28 19.2 19.72 20.4
Preprocessing (s) 5.14 5.09 5.07 5.27
HK-LS (s) 11.08 11.06 11.58 12.07
Postprocessing (s) 3.06 3.05 3.07 3.06
Mean of accuracy (%) 94.4 94.6 93.7 91.6
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Figure 7: Comparison of the mean accuracy and computation time (s) for different conditions of K1 and K2 at each level (p value < 0.05). K
indicates the number of clusters at each hierarchical level.

Table 2: Quantitative evaluation of the segmentation for the Dermofit and PH2 atlases in terms of accuracy, sensitivity, specificity, Jaccard
index, Dice coefficient, F-measure, and Hausdorff distance.

Group Jaccard index Dice coefficient Sensitivity Specificity Accuracy F-measure Hausdorff distance

Dermofit 0:826 ± 0:08 0:912 ± 0:07 0:919 ± 0:08 0:944 ± 0:06 0:942 ± 0:05 0:912 ± 0:07 0:07 ± 0:02

PH2 data 0:833 ± 0:09 0:914 ± 0:05 0:923 ± 0:08 0:964 ± 0:05 0:946 ± 0:03 0:914 ± 0:05 0:09 ± 0:03

Table 3: Comparative results of segmentation between melanocytic nevus and melanoma images.

Group Class Jaccard index Dice coefficient Sensitivity Specificity Accuracy F-measure Hausdorff distance

Dermofit
Nevus 0:858 ± 0:08 0:921 ± 0:08 0:926 ± 0:09 0:936 ± 0:7 0:934 ± 0:04 0:921 ± 0:08 0:067 ± 0:02

Melanoma 0:813 ± 0:08 0:887 ± 0:07 0:864 ± 0:07 0:971 ± 0:05 0:956 ± 0:06 0:887 ± 0:07 0:097 ± 0:038

PH2 data
Nevus 0:823 ± 0:09 0:907 ± 0:06 0:917 ± 0:09 0:978 ± 0:03 0:956 ± 0:02 0:907 ± 0:06 0:078 ± 0:03

Melanoma 0:855 ± 0:06 0:920 ± 0:04 0:925 ± 0:05 0:845 ± 0:07 0:908 ± 0:04 0:920 ± 0:04 0:101 ± 0:05
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clustering implemented on the same color space (CIE L
∗ a ∗ b). In addition, Pennisi et al. [37] segmented mela-
noma lesion images in the PH2 database using ASLM
with Delaunay triangulation. They showed the accuracy
of 89.7% in the PH2 data. In contrast, the overall accu-
racy of the proposed method was also better than that
of the other techniques when the same dataset was used.
These results demonstrated the feasibility of the proposed
method for skin image segmentation.

In the comparative results between U-net [40] and our
method for the PH2 dataset, although U-net performed better
according to the Jaccard index of (0:87 ± 0:19) and Dice coef-
ficient (0:93 ± 0:13) compared to our method, U-net pro-
duced a much larger standard deviation than that of the
proposed method (Table 5). Moreover, our method had bet-
ter segmentation results for the Dermofit dataset compared
to that of U-net [41]. These results confirm its effectiveness
for melanocytic skin lesion segmentation in standard images
compared to U-net.

4. Discussion

The segmentation of skin lesions in dermoscopic and stan-
dard images is crucial for quantifying the clinical diagnos-
tic factors of melanoma lesions. The segmentation
accuracy can greatly affect the next diagnostic procedure
[45]. One issue with the level set model is its sensitivity
to the initial contours. Recently, machine learning algo-
rithms, such as U-net, have emerged as reliable segmenta-
tion methods for skin lesion images. However, the limited
training dataset is a challenging task for skin lesion seg-
mentation. The important challenge in machine learning
algorithms is that these models require a large training
set to reduce overfitting. Some cases still show a low per-
formance due to low contrast and hair artifacts. Current
state-of-the-art research using machine learning algorithms
is sometimes required on postprocessing techniques, such
as level sets [46]. Another challenge in machine learning
such as CNN is that, when a network goes deeper, it is
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Figure 8: The Bland-Altman plots between the ground truth and automated segmentation of skin images obtained from the PH2 database. (a)
Area inside the skin lesion border of the melanoma image and (b) the melanocytic nevus image (unit: pixels2).
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difficult to tune the parameters of the early layers [8]. To
tackle these problems, the purpose of this study was to
propose a new two-stage segmentation model which inte-
grates the Distance Regularization Level Set Evolution
and the hierarchical K-means clustering. The proposed
method that combines two different methods has the
advantage of improving the final result of the image seg-
mentation process, such as accurately defining the initial
contours, and finding the approximate location of the
lesion. The quantitative experimental results revealed that
the proposed method yielded significantly better results
compared to other traditional level set models, and has a
certain advantage over the segmentation results of U-net
in standard images.

The contribution of this paper can be summarized in the
following aspects. Firstly, the proposed model integrates
hierarchical K-means clustering with DRLSE. Some studies
have attempted to use a mono-K-mean clustering-based level
set evolution model with unsatisfactory results [15, 28].
However, this study showed the reliable accuracy of the seg-
mentation of skin lesions under intrinsic noise and artifacts.
To the best of our knowledge, no such studies for skin lesion
segmentation have been reported previously. Secondly, the
controlling parameters of level set segmentation are now
derived from the results of the simple decision tree approach
by using a set of if-then rules. Thirdly, the experimental
results indicate that a new gray-scale image by using only
the color components of a and b from CIE L ∗ a ∗ b color
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Figure 9: The Bland-Altman plots between the ground truth and automated segmentation of skin images obtained from the Dermofit
database. (a) Area inside the skin lesion border of the melanoma image and (b) the melanocytic nevus image (unit: pixels2).
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Figure 10: Continued.
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Figure 10: Linear regression analysis between the manual and automated segmentations of skin images obtained from the PH2 and Dermofit
databases. (a) Area inside the skin lesion border of melanoma images from the PH2 database, (b) melanocytic nevus images from the PH2

database, (c) melanoma images from the Dermofit database, and (d) melanocytic nevi images from the Dermofit database (unit: pixels2).

Table 4: Comparative results of segmentation between the existing and proposed methods for images from the PH2 and Dermofit atlases.

Methods Dermofit PH2 data
SEN SPE ACC SEN SPE ACC

Otsu with RGB (MATLAB 2018b) 0.611 0.723 0.683 0.522 0.706 0.652

Level set with RGB (MATLAB 2018b) 0.712 0.878 0.805 0.719 0.800 0.784

FC-LS with RGB [28] 0.873 0.926 0.918 0.891 0.914 0.904

Adaptive thresholding with YIQ [38] 0.618 0.980 0.937 0.703 0.949 0.879

K-means with CIELAB [21] 0.809 0.789 0.824 0.869 0.953 0.932

Local binary pattern clustering [39] 0.787 0.923 0.704 0.884 0.948 0.859

Proposed method (HK-LS with CIELAB) 0.919 0.944 0.942 0.923 0.964 0.946
∗FC-LS: fuzzy C-mean thresholding-based level set; HK-LS: hierarchical K-means clustering-based level set; SEN: sensitivity; SPE: specificity; ACC: accuracy.
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space makes it less sensitive to illumination artifacts. Finally,
we also evaluated the proposed method on two different
datasets including the PH2 database (dermoscopic image
repository) and the Dermofit database (standard image
repository). All skin lesions were segmented with high accu-
racy (>94%) and high correlation (>0.96) of the ground truth
in the two databases. The segmentation results outperformed
other initial estimation methods for level set models of mela-
noma and nonmelanoma images with various artifacts.

One of the main concerns of existing image segmentation
methods resides mainly in the noise and artifacts of dermo-
scopic and standard images [47]. Moreover, another factor
that complicates the lesion segmentation is the low contrast
of the lesion boundaries [48]. Our designated model
improved the segmentation performance in most cases, espe-
cially the proportion of true positive results. Experimental
results show that this approach is insensitive to the low
contrast between background around the lesion and skin
lesion pixels. The main difference between the proposed
method and other models was that only the color channels
of CIE L ∗ a ∗ b were used to constitute a new gray-scale
image for the initial contour mask. Unlike the RGB and
CMYK color spaces, the CIE L ∗ a ∗ b is designed to
approximate human vision. This color space is approxi-
mately perceptually uniform because the similarities
between the perceived and the measured color are propor-
tional [11]. Additionally, CIE L ∗ a ∗ b color space is
known to be less sensitive to artifacts from digital cameras
and scanner images [21].

When our method and other segmentation methods are
compared, especially with a classifier such as U-net, our
model can get better segmentation results in standard
images. The latest deep learning segmentation approaches
such as U-net have been applied to segment melanoma
lesions because these algorithms can handle complex pat-
terns, but the limited quality training dataset and degradation
problems are often limitations [1]. In addition, data augmen-
tation, such as flipping, rotating, shifting, scaling, and chang-
ing the contrast of the original image, is usually required
when the classifier is trained on medical images [49]. How-
ever, it is easier to lose the important features of melanocytic
skin lesions in data augmentation because the proportional
size of the skin lesion on the images is very small [50].

Although the proposed model achieved admirable seg-
mentation accuracy in most of the images in the two inde-
pendent atlases, there were cases where the proposed model

revealed the need for further improvement. The challenge
in the proposed method is the increase of the run-time when
the size of the image is large, compared with deep learning
approaches. The proposed method can be further improved
for the more effective segmentation pipeline, in terms of
average run-time.

5. Conclusions

The segmentation of the skin lesions is regarded as very chal-
lenging because of the low contrast between the lesion and
the surrounding skin, the existence of various artifacts, and
different imaging acquisition conditions. The traditional
model such as the region-based active contour model has
often failed when applied to images containing inhomogene-
ities. These are very sensitive to parameter tuning. The
appropriate initialization and optimal configuration of con-
trolling parameters in the presence of various artifacts are
important to obtain the accurate performance of the level
set segmentation. The important challenge in machine learn-
ing algorithms is that these models require a large training set
to reduce overfitting. Current state-of-the-art research using
machine learning algorithms is usually required on postpro-
cessing techniques, such as level sets. The contribution of this
study is to propose a new two-stage segmentation model in
dermoscopic and standard images. This method integrates
a new hierarchical K-means and level set approach. For the
initial estimation of the level set function, the hybrid hierar-
chical K-means clustering was carried out. After initial seg-
mentation by the hybrid HK clustering, DRLSE was
implemented to achieve fine border segmentation. Moreover,
only the color channels of a and b from CIE L ∗ a ∗ b were
used by this model to obtain robust image segmentation
results in the presence of noise and artifacts. The generaliza-
tion ability of the proposed model was validated by the inde-
pendent testing of two publicly available databases. The
experimental results showed the superior performance of
the proposed method compared to other traditional level
set models, and a certain advantage over the segmentation
results of U-net in standard images. Additionally, the linear
regression analysis demonstrated a good correlation of
>0.98 and >0.96 with the proposed method for melanoma
and melanocytic nevus images. The proposed model gives
accurate segmentation results and requires a small dataset
because our model is not sensitive to parameter tuning.
Our experimental results revealed that integrating

Table 5: Comparative Jaccard index and Dice coefficient results for segmentation of images from the PH2 and Dermofit atlases by U-net and
the proposed method.

Group
Dermofit PH2 data

Jaccard index Dice coefficient Jaccard index Dice coefficient

U-net [40, 41] 0.781 0.887 0:87 ± 0:19 0:93 ± 0:13
U-net with illumination-based
transformation [42]

0:774 ± 0:006 0:867 ± 0:004 0:756 ± 0:009 0:853 ± 0:007

Mutual bootstrapping DCNN [43] — — 0.894 0.942

FCN-16s [44] 0.802 0.881

Proposed method 0:826 ± 0:008 0:912 ± 0:07 0:833 ± 0:09 0:914 ± 0:05
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hierarchical K-means clustering and DRLSE had high clinical
applicability even in the presence of various artifacts and
small datasets. The proposed model may facilitate the combi-
nation of machine learning and level set models in skin lesion
images.

Data Availability

The datasets that were used in this study are openly available
in the PH2 database (https://www.fc.up.pt/addi/ph2%
20database.html) [19] and the Dermofit image library
(https://licensing.edinburgh-innovations.ed.ac.uk) [20].
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