organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*S*,6*S*)-1-Methyl-2,6-*trans*-distyrylpiperidinium chloride

Guangrong Zheng,^a Sean Parkin,^b Linda P. Dwoskin^a and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40536, USA Correspondence e-mail: pcrooks@email.uky.edu

Received 18 November 2009; accepted 19 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.091; data-to-parameter ratio = 15.7.

In the crystal structure of the title compound, $C_{22}H_{26}N^+ \cdot Cl^-$, the piperidine ring is in a chair conformation and the two styryl groups are in axial and equatorial positions. The molecule has a hydrogen bond between the NH group and the chloride anion.

Related literature

The title compound is a *des*-oxygen derivative of epimerized (–)-lobeline (Zheng *et al.*, 2005).

Experimental

Crystal data

 $C_{22}H_{26}N^+ \cdot Cl^ M_r = 339.89$ Orthorhombic, $P2_12_12_1$ a = 9.9355 (4) Å b = 12.3075 (5) Å c = 15.8299 (7) Å $V = 1935.70 (14) \text{ Å}^3$ Z = 4 Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.930, T_{\rm max} = 0.984$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.054 & \Delta\rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) &= 0.091 & \Delta\rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3} \\ S &= 1.11 & {\rm Absolute \ structure: \ Flack \ (1983),} \\ 3416 \ {\rm reflections} & 1457 \ {\rm Friedel \ pairs} \\ 218 \ {\rm parameters} & {\rm Flack \ parameter: \ 0.06 \ (7)} \\ {\rm H-atom \ parameters \ constrained} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1\cdots Cl^i$ 0.932.103.027 (2)176

T = 173 K

 $R_{\rm int} = 0.065$

 $0.38 \times 0.28 \times 0.08 \text{ mm}$

11921 measured reflections 3416 independent reflections

2957 reflections with $I > 2\sigma(I)$

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in Siemens *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and local procedures.

This research was supported by National Institute of Health grants DA13519 and DA00399.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2599).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. pp. 5551–5560.

supplementary materials

Acta Cryst. (2010). E66, o78 [doi:10.1107/S1600536809049587]

(2S,6S)-1-Methyl-2,6-trans-distyrylpiperidinium chloride

G. Zheng, S. Parkin, L. P. Dwoskin and P. A. Crooks

Comment

The title compound is a *des*-oxygen derivative of epimerized (-)-lobeline (Zheng *et al.*, 2005). The molecular structure is illustrated in Fig. 1. The piperidine ring of the molecule is in the chair conformation and the *N*-methyl group is bonded equatorially to the piperidine ring. The N atom has an axial H atom that is hydrogen bonded to the chloride anion (HN..Cl = 3.027 (2) Å). One styryl group is attached equatorially to the piperidine ring and the other styryl group is pseudo-axial, with C15—C2—N1 [111.67 (18)°] and C15—C2—C3 [113.7 (2)°] bond angles slightly different from the ideal 109.5°. The piperidine ring is not mirror symmetric, as indicated by unequal bond lengths and angles (Table 1). The double bond and phenyl ring of the styryl side chain are not coplanar, as evidenced by the C15—C16—C17—C18 and C7—C8—C9—C14 torsion angles, -165.4 (3)° and -169.0 (2)°, respectively.

Experimental

The title compound was prepared from (-)-lobeline (Zheng *et al.*, 2005). Crystals suitable for X-ray diffraction studies were obtained by slow recrystallization from a solution in methanol and diethyl ether.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH₃), 0.99 Å (R_2 CH₂), 1.00 Å (R_3 CH), 0.95 Å (R_2 CH), 0.93 Å (N—H), and with U_{iso} (H) values set to either 1.2 U_{eq} or 1.5 U_{eq} (RCH₃) of the attached atom.

Figures

Fig. 1. A view of the molecule. Displacement ellipsoids are drawn at the 50% probability level.

(25,65)-1-Methyl-2,6-trans-distyrylpiperidinium chloride

Crystal data

$C_{22}H_{26}N^+ \cdot Cl^-$
$M_r = 339.89$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 9.9355 (4) Å

F(000) = 728 $D_x = 1.166 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 21849 reflections $\theta = 1.0-27.5^\circ$ b = 12.3075 (5) Å c = 15.8299 (7) Å $V = 1935.70 (14) \text{ Å}^3$ Z = 4

Da

Data collection	
Nonius KappaCCD diffractometer	3416 independent reflections
Radiation source: fine-focus sealed tube	2957 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.065$
Detector resolution: 18 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
$ω$ scans at fixed $\chi = 55^{\circ}$	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -14 \rightarrow 14$
$T_{\min} = 0.930, \ T_{\max} = 0.984$	$l = -18 \rightarrow 18$
11921 measured reflections	

 $\mu = 0.20 \text{ mm}^{-1}$

Irregular plates, colourless

 $0.38 \times 0.28 \times 0.08 \text{ mm}$

T = 173 K

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0332P)^2 + 0.1721P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
3416 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
218 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1457 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.06 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 \boldsymbol{Z}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

х

y

 $U_{\rm iso}*/U_{\rm eq}$

Cl	0.49125 (6)	1.13417 (4)	0.35616 (4)	0.03556 (19)
N1	0.44499 (17)	0.82481 (15)	0.25784 (13)	0.0275 (5)
H1	0.4661	0.7643	0.2253	0.033*
C1	0.4017 (3)	0.9121 (2)	0.19752 (16)	0.0358 (7)
H1A	0.3144	0.8928	0.1729	0.054*
H1B	0.4687	0.9192	0.1524	0.054*
H1C	0.3938	0.9812	0.2278	0.054*
C2	0.3304 (2)	0.79138 (19)	0.31510 (17)	0.0305 (6)
H2	0.2579	0.7607	0.2783	0.037*
C3	0.3774 (3)	0.7007 (2)	0.37336 (17)	0.0372 (7)
H3A	0.3035	0.6812	0.4125	0.045*
H3B	0.3991	0.6356	0.3392	0.045*
C4	0.5004 (3)	0.7336 (2)	0.42414 (16)	0.0395 (7)
H4A	0.4780	0.7958	0.4612	0.047*
H4B	0.5298	0.6724	0.4602	0.047*
C5	0.6127 (2)	0.76520 (19)	0.36400 (16)	0.0331 (6)
H5A	0.6390	0.7008	0.3304	0.040*
H5B	0.6920	0.7884	0.3972	0.040*
C6	0.5726 (2)	0.85631 (19)	0.30435 (15)	0.0272 (6)
Н6	0.5545	0.9232	0.3383	0.033*
C7	0.6841 (2)	0.87992 (19)	0.24306 (15)	0.0292 (6)
H7	0.7039	0.8283	0.2002	0.035*
C8	0.7558 (2)	0.9709 (2)	0.24688 (15)	0.0283 (6)
H8	0.7260	1.0241	0.2861	0.034*
С9	0.8759 (2)	0.9986 (2)	0.19738 (15)	0.0281 (6)
C10	0.9516 (2)	1.0897 (2)	0.22012 (17)	0.0342 (7)
H10	0.9237	1.1327	0.2667	0.041*
C11	1.0659 (2)	1.1182 (2)	0.17623 (18)	0.0391 (7)
H11	1.1164	1.1800	0.1932	0.047*
C12	1.1074 (3)	1.0578 (2)	0.10788 (17)	0.0444 (8)
H12	1.1859	1.0780	0.0775	0.053*
C13	1.0347 (3)	0.9682 (2)	0.08396 (17)	0.0460 (8)
H13	1.0629	0.9266	0.0366	0.055*
C14	0.9202 (3)	0.9378 (2)	0.12838 (17)	0.0419 (7)
H14	0.8715	0.8750	0.1116	0.050*
C15	0.2714 (2)	0.88730 (18)	0.36100 (16)	0.0278 (6)
H15	0.3300	0.9378	0 3875	0.033*
C16	0.1402(2)	0 90289 (19)	0 36523 (17)	0.0307 (6)
H16	0.0856	0.8520	0 3359	0.037*
C17	0.0685 (2)	0.9906 (2)	0 41046 (14)	0.0257 (6)
C18	-0.0696(2)	0.9803(2)	0 42416 (15)	0.0227(0)
H18	-0 1147	0.9167	0 4054	0.037*
C19	-0.1417(3)	1.0608 (2)	0 46452 (16)	0.0383(7)
H19	-0.2359	1.0527	0.4729	0.046*
C20	-0.0774(3)	1 1519 (2)	0.49227(17)	0.0390(7)
H20	-0.1269	1 2071	0 5204	0.047*
C21	0.0595 (3)	1 1644 (2)	0 47978 (16)	0.0342 (7)
H21	0.1037	1 2278	0 4998	0.041*
C22	0 1322 (3)	1.0848 (2)	0.43814 (15)	0.0290.(6)
011	0.1522 (5)	1.0010(2)	0.15011(15)	0.0270(0)

supplementary materials

H22	0.2258	1.0945	0.4284	4 0.0	35*	
Atomic displa	icement parameter	$rs(A^2)$				
1	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0428 (4)	0.0231 (3)	0.0408 (4)	-0.0033 (3)	0.0079 (3)	-0.0019 (3)
N1	0.0250(11)	0.0208(11)	0.0369 (12)	0.0017 (9)	0.0023 (10)	-0.0077(10)
C1	0.0337 (16)	0.0357(15)	0.0379 (16)	0.0067 (13)	-0.0034(13)	-0.0001(14)
C2	0.0190 (14)	0.0247 (14)	0.0478 (16)	-0.0070(11)	0.0024 (13)	-0.0055(13)
C3	0.0334 (16)	0.0283 (15)	0.0500 (18)	-0.0045(12)	0.0089 (14)	0.0034 (14)
C4	0.0414 (16)	0.0329 (14)	0.0442 (17)	0.0019 (15)	0.0055 (16)	0.0147 (13)
C5	0.0243 (14)	0.0306 (15)	0.0445 (17)	0.0002 (12)	-0.0047 (13)	0.0062 (14)
C6	0.0194 (13)	0.0244 (14)	0.0377 (15)	-0.0057 (12)	-0.0040 (12)	-0.0056 (13)
C7	0.0256 (13)	0.0319 (15)	0.0301 (15)	0.0050 (13)	-0.0009(12)	-0.0023 (13)
C8	0.0236 (14)	0.0294 (15)	0.0319 (15)	0.0007 (12)	-0.0023(12)	-0.0012 (13)
C9	0.0218 (14)	0.0360 (16)	0.0264 (14)	0.0004 (12)	-0.0029(12)	0.0050 (13)
C10	0.0288 (15)	0.0325 (15)	0.0412 (16)	0.0026 (12)	-0.0026(13)	0.0033 (13)
C11	0.0294 (15)	0.0356 (17)	0.0523 (19)	-0.0086 (13)	-0.0001 (14)	0.0098 (16)
C12	0.0300 (16)	0.061 (2)	0.0427 (18)	-0.0069 (16)	0.0042 (14)	0.0142 (16)
C13	0.0379 (18)	0.066 (2)	0.0339 (17)	-0.0039 (16)	0.0074 (14)	-0.0072 (15)
C14	0.0347 (16)	0.0530 (18)	0.0380 (18)	-0.0100(14)	-0.0044 (14)	-0.0036 (16)
C15	0.0241 (14)	0.0235 (14)	0.0359 (15)	-0.0025 (11)	0.0007 (12)	-0.0038 (12)
C16	0.0280 (15)	0.0262 (14)	0.0379 (15)	-0.0046 (11)	-0.0065 (13)	-0.0035 (13)
C17	0.0231 (14)	0.0276 (15)	0.0265 (14)	0.0052 (12)	-0.0040 (11)	0.0030 (12)
C18	0.0238 (15)	0.0347 (16)	0.0350 (15)	-0.0033 (13)	-0.0051 (12)	-0.0003 (13)
C19	0.0237 (15)	0.0502 (19)	0.0410 (18)	0.0055 (14)	0.0035 (13)	-0.0038 (15)
C20	0.0382 (18)	0.0449 (19)	0.0338 (16)	0.0115 (15)	0.0034 (13)	-0.0065 (15)
C21	0.0378 (17)	0.0297 (17)	0.0352 (16)	-0.0010 (13)	0.0011 (13)	-0.0052 (13)
C22	0.0224 (14)	0.0335 (15)	0.0311 (15)	-0.0016 (12)	0.0019 (12)	0.0009 (13)
Geometric pa	vrameters (Å, °)					
N1		1 500 (3)	C9(710	1 30	7 (3)
N1 - C2		1.500(3) 1.512(3)	C10-	-C11	1.37	(7, (3))
N1-C6		1.512(3)	C10-	-H10	0.95	() ()
N1—H1		0.9300	C11-	-C12	1.37	76 (3)
C1—H1A		0.9800	C11-	-H11	0.95	i00
C1—H1B		0.9800	C12—	-C13	1 37	°° '1 (4)
C1—H1C		0.9800	C12-	-H12	0.95	500
C2-C15		1.505 (3)	C13—	-C14	1.38	9 (3)
C2—C3		1.522 (3)	C13—	-H13	0.95	i00
С2—Н2		1.0000	C14—	-H14	0.95	500
C3—C4		1.518 (3)	C15—	-C16	1.32	20 (3)
С3—НЗА		0.9900	C15—	-H15	0.95	500
С3—НЗВ		0.9900	C16—	-C17	1.47	(3)
C4—C5		1.517 (3)	C16—	-H16	0.95	500
C4—H4A		0.9900	C17—	-C22	1.39	2 (3)
C4—H4B		0.9900	C17—	-C18	1.39	94 (3)
С5—С6		1.519 (3)	C18—	-C19	1.38	30 (3)

С5—Н5А	0.9900	C18—H18	0.9500
С5—Н5В	0.9900	C19—C20	1.363 (4)
C6—C7	1.501 (3)	С19—Н19	0.9500
С6—Н6	1.0000	C20—C21	1.383 (3)
С7—С8	1.329 (3)	C20—H20	0.9500
С7—Н7	0.9500	C21—C22	1.384 (3)
C8—C9	1.468 (3)	C21—H21	0.9500
С8—Н8	0.9500	C22—H22	0.9500
C9—C14	1.395 (3)		
C1—N1—C2	111.13 (18)	С7—С8—С9	127.4 (2)
C1—N1—C6	111.45 (18)	С7—С8—Н8	116.3
C2—N1—C6	114.09 (19)	С9—С8—Н8	116.3
C1—N1—H1	106.5	C14—C9—C10	117.5 (2)
C2—N1—H1	106.5	C14—C9—C8	123.4 (2)
C6—N1—H1	106.5	C10C9C8	119.1 (2)
N1—C1—H1A	109.5	C11—C10—C9	121.2 (3)
N1—C1—H1B	109.5	C11-C10-H10	119.4
H1A—C1—H1B	109.5	С9—С10—Н10	119.4
N1—C1—H1C	109.5	C12—C11—C10	120.4 (3)
H1A—C1—H1C	109.5	C12—C11—H11	119.8
H1B—C1—H1C	109.5	C10—C11—H11	119.8
C15—C2—N1	111.67 (18)	C13—C12—C11	119.6 (3)
C15—C2—C3	113.7 (2)	С13—С12—Н12	120.2
N1—C2—C3	109.39 (19)	C11—C12—H12	120.2
С15—С2—Н2	107.2	C12—C13—C14	120.6 (3)
N1—C2—H2	107.2	С12—С13—Н13	119.7
C3—C2—H2	107.2	C14—C13—H13	119.7
C4—C3—C2	111.81 (19)	C13—C14—C9	120.7 (3)
С4—С3—НЗА	109.3	C13—C14—H14	119.7
С2—С3—НЗА	109.3	C9—C14—H14	119.7
С4—С3—Н3В	109.3	C16—C15—C2	121.6 (2)
С2—С3—Н3В	109.3	С16—С15—Н15	119.2
НЗА—СЗ—НЗВ	107.9	C2—C15—H15	119.2
C5—C4—C3	109.2 (2)	C15—C16—C17	127.4 (2)
C5—C4—H4A	109.8	С15—С16—Н16	116.3
C3—C4—H4A	109.8	С17—С16—Н16	116.3
C5—C4—H4B	109.8	C22—C17—C18	118.3 (2)
C3—C4—H4B	109.8	C22—C17—C16	122.8 (2)
H4A—C4—H4B	108.3	C18—C17—C16	118.9 (2)
C4—C5—C6	112.74 (19)	C19—C18—C17	121.2 (3)
C4—C5—H5A	109.0	C19—C18—H18	119.4
С6—С5—Н5А	109.0	С17—С18—Н18	119.4
C4—C5—H5B	109.0	C20—C19—C18	119.7 (2)
С6—С5—Н5В	109.0	C20—C19—H19	120.1
H5A—C5—H5B	107.8	C18—C19—H19	120.1
C7—C6—N1	110.65 (18)	C19—C20—C21	120.5 (3)
C7—C6—C5	110.60 (19)	C19—C20—H20	119.8
N1—C6—C5	109.39 (19)	C21—C20—H20	119.8
С7—С6—Н6	108.7	C20—C21—C22	120.2 (3)
			× /

supplementary materials

N1—C6—H6	108.7	C20-C21-H21	119.9
С5—С6—Н6	108.7	C22-C21-H21	119.9
C8—C7—C6	122.0 (2)	C21—C22—C17	120.1 (2)
С8—С7—Н7	119.0	C21—C22—H22	119.9
С6—С7—Н7	119.0	C17—C22—H22	119.9
C1—N1—C2—C15	-54.9 (3)	C8—C9—C10—C11	179.3 (2)
C6—N1—C2—C15	72.2 (2)	C9-C10-C11-C12	0.7 (4)
C1—N1—C2—C3	178.35 (18)	C10-C11-C12-C13	-0.4 (4)
C6—N1—C2—C3	-54.6 (3)	C11—C12—C13—C14	-0.4 (4)
C15—C2—C3—C4	-69.2 (3)	C12—C13—C14—C9	0.9 (4)
N1—C2—C3—C4	56.4 (3)	C10-C9-C14-C13	-0.6 (4)
C2—C3—C4—C5	-58.0 (3)	C8—C9—C14—C13	180.0 (2)
C3—C4—C5—C6	57.4 (3)	N1-C2-C15-C16	133.2 (3)
C1—N1—C6—C7	-57.5 (2)	C3—C2—C15—C16	-102.5 (3)
C2—N1—C6—C7	175.62 (18)	C2-C15-C16-C17	177.6 (2)
C1—N1—C6—C5	-179.60 (19)	C15—C16—C17—C22	16.4 (4)
C2—N1—C6—C5	53.5 (2)	C15-C16-C17-C18	-165.4 (3)
C4—C5—C6—C7	-176.7 (2)	C22-C17-C18-C19	-0.4 (4)
C4—C5—C6—N1	-54.6 (3)	C16-C17-C18-C19	-178.7 (2)
N1—C6—C7—C8	129.0 (2)	C17—C18—C19—C20	-0.5 (4)
C5—C6—C7—C8	-109.6 (3)	C18—C19—C20—C21	0.4 (4)
C6—C7—C8—C9	172.7 (2)	C19—C20—C21—C22	0.6 (4)
C7—C8—C9—C14	10.4 (4)	C20-C21-C22-C17	-1.5 (4)
C7—C8—C9—C10	-169.0 (2)	C18—C17—C22—C21	1.4 (4)
C14—C9—C10—C11	-0.2 (3)	C16—C17—C22—C21	179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···Cl ⁱ	0.93	2.10	3.027 (2)	176
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1/2$.				

