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ABSTRACT
While the surface charge state of co-catalysts plays a critical role for boosting photocatalysis, studies on
surface charge regulation via their precise structure control remain extremely rare. Herein, metal-organic
framework (MOF) stabilized bimetallic Pd@Pt nanoparticles, which feature adjustable Pt coordination
environment and a controlled structure from core-shell to single-atom alloy (SAA), have been fabricated.
Significantly, apart from the formation of a Mott-Schottky junction in a conventional way, we elucidate that
Pt surface charge regulation can be alternatively achieved by changing its coordination environment and the
structure of the Pd@Pt co-catalyst, where the charge between Pd and Pt is redistributed. As a result, the
optimized Pd10@Pt1/MOF composite, which involves an unprecedented SAA co-catalyst, exhibits
exceptionally high photocatalytic hydrogen production activity, far surpassing its corresponding
counterparts.

Keywords:metal-organic framework (MOF), single-atom alloy (SAA), co-catalyst, surface charge state,
photocatalysis

INTRODUCTION
Photocatalysis, converting solar to chemical energy,
represents a very promising solution to current
energy and environmental issues [1–4]. Photocat-
alytic performance depends largely on the surface
charge state of a catalyst, as it directly correlates with
charge transfer from the catalyst surface to reactant
molecules as well as adsorption and activation of the
latter [5–7]. Various strategies have been developed
to control the surface charge states of photocatalytic
materials [6,7]. Amongst them, the construction
of a Schottky junction by introducing co-catalyst is
one of the most common and effective strategies via
increasing the active sites, promoting charge sepa-
ration, accelerating charge transfer and minimizing
reaction over-potentials [8–12]. Recent studies on
co-catalysts are mostly related to the development
of non-noble metal co-catalysts, the control of
particle sizes, particle distribution, exposed crystal
facets as well as their interface contact with photo-
catalysts, and even synergistic effect among various
co-catalysts [6,8–12]. Nonetheless, specialized reg-
ulation on the surface charge state of co-catalysts,

especially by changing theirmicrostructure, remains
largely unexplored, though this would be highly
desired to boost the photocatalysis [6,10,12].

To achieve surface charge regulation, the intro-
duction of bimetallic nanoparticles (NPs) as co-
catalysts, in which one metal behaves as the active
site and the other as charge regulator, would be a
promising solution. Of the common alloyed or core-
shell bimetallic NPs, the core-shell architecture fea-
turing active metal shell would be preferred, for ease
of access to active sites.Thegradually decreased con-
tent of active metal would cause its varying coor-
dination environment and surface charge. Particu-
larly, atomically dispersed active metal atoms will
be formed when their content goes down to a cer-
tain amount. The microstructure of active metal in
its atomically dispersed form on the other metal
support is called single-atom alloy (SAA) [13–17].
Compared with other single-atom catalysts (SACs)
[18,19], SAA catalysts present geometric/strain,
electronic and synergistic effects originating from
bimetallic components [13–17,20,21], causing the
d-band center change of the surface active metals
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Figure 1. Schematic illustration. Illustration showing the synthetic strategy for
Pd10@Ptx/UiO-66-NH2 toward photocatalytic hydrogen production, highlighting the
much higher activity of Pd10@Pt1 SAA than Pd10@Pt10 core-shell NPs.

and thereby affecting their catalytic performance
[13–17]. Surprisingly, the related exploration on
SAAcatalysts toward their photocatalysis has not yet
been reported. In this context, it is imperative to in-
vestigate the structural evolution of bimetallic NPs
from core-shell to SAA, which might be able to sys-
tematically regulate the charge state of surface active
metal atoms, for boosting photocatalysis.

Meanwhile, the ideal photosensitizers, which not
only have intimate contact with but are also able
to stabilize SAA co-catalysts, are highly desired.
In this regard, metal-organic frameworks (MOFs)
[22–27], a class of crystalline porous materials fea-
turing well-defined and tailored structures, high sur-
face area, as well as semiconductor-like behavior
[28–31], would be ideal candidates. Given the well-
tuned conjugation of linkers, MOFs are able to har-
vest solar light in a broad spectral range and have
shown their great potential as photosensitizers and
photocatalysts [32–45]. Various co-catalysts, par-
ticularly the most classical Pt NPs with low over-
potential, have been introduced and well stabilized
by MOFs, greatly accelerating the charge separa-
tion and photocatalysis, mainly via the formation
of a Pt-MOF ‘Schottky junction’ [9–11,46–49].
Therefore, MOFs would be very promising in sta-
bilizing single atomic Pt-based bimetallic NPs for
photocatalysis.

Bearing the above in mind, bimetallic core-
shell Pd@Pt NPs have been in situ fabricated and
stabilized by a representative robust MOF with
good light harvesting capability, UiO-66-NH2, to
afford Pd10@Ptx/UiO-66-NH2 composite (the
10 and x mean the mass permillage, at wt�, of
Pd and Pt to the MOF in synthesis, respectively).
Remarkably, the Pt component on the Pd surface
can be precisely controlled from the shell-form
to single-atom dispersion. Along with structural
evolution of Pd@Pt NPs from core-shell to SAA,
the Pt coordination environment changes and the
regulation of its surface charge state is accordingly
achieved. The obtained Pd10@Ptx/UiO-66-NH2
exhibits excellent photocatalytic activity toward
hydrogen production by water splitting (Fig. 1).
Particularly, thanks to the charge redistribution,
the optimized Pd10@Pt1/UiO-66-NH2 with SAA
structure possesses superb activity, far surpassing
the monometallic NPs and their physical mixture
stabilized by the MOF. Though both size and
location of Pt NPs have been reported to be crucial
for charge separation efficiency and activity [9,11],
to the best of our knowledge, there has not yet been
explored on regulating the Pt coordination envi-
ronment and its surface charge state by controlling
co-catalyst structure in the photocatalytic system.
Moreover, this is the first work investigating the
SAA catalyst for photocatalysis.

RESULTS
The fabrication and characterizations
of Pd10@Ptx/UiO-66-NH2

The Pd precursor was impregnated to UiO-66-
NH2 and subsequently reduced by ammonia borane
(NH3BH3) to give Pd10/UiO-66-NH2. Upon the
exhaustion ofNH3BH3, different amounts of Pt pre-
cursor are added into the synthetic system.The sur-
face Pd-H species, generated during NH3BH3 hy-
drolysis, would serve as both nucleation seed and re-
ducing agent for the Pt precursor, generating core-
shell-structured Pd10@Ptx (x = 0.3, 1, 5, 10) NPs
stabilized by UiO-66-NH2 (Fig. 1) [50–55].

Powder X-ray diffraction (PXRD) patterns indi-
cate that the high crystallinity ofUiO-66-NH2 iswell
maintained during the introduction of Pd@Pt NPs
(Supplementary Fig. 1). The actual contents of Pd
and Pt are determined by the inductively coupled
plasma atomic emission spectrometer (ICP-AES)
(Supplementary Table 1). All Pd10@Ptx/UiO-66-
NH2 have similar Pd loadings, while the Pt steadily
increases as more Pt precursors are introduced.
Transmission electron microscopy (TEM) obser-
vation shows that Pd NPs in Pd10/UiO-66-NH2
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Figure 2. Structural characterizations of Pd10@Pt10 core-shell NPs. (a) TEM (inset:
size distribution for Pd10@Pt10 NPs) and (b) HRTEM images of Pd10@Pt10/UiO-66-NH2.
(c) Dependence of Pd and Pt atomic fractions for the Pd10@Pt10/UiO-66-NH2 (treated
with H3PO4) as a function of photon energy. (d) Elemental line-scanning spectra across
a single Pd10@Pt10 particle (stabilized by UiO-66-NH2) along the direction marked by a
cyan line.

Figure 3. Structural characterizations of Pd10@Pt1 SAA. (a) HAADF-STEM image of
Pd10@Pt1/UiO-66-NH2. The single Pt atoms are highlighted by the red circles and the
lattice fringes are from Pd while the MOF is shaded in black background. (b) The Pt
L3-edge FT-EXAFS spectra for Pd10@Pt1/UiO-66-NH2 and Pd10@Pt10/UiO-66-NH2.

are well dispersed with average sizes of 4.01 nm
(Supplementary Fig. 2). Upon Pt deposition, the
Pd@Pt sizes slightly increase with higher Pt con-
tents (Fig. 2a and b, Supplementary Figs 3–5 and
Supplementary Table 2), in good agreement with
the expectation of the epitaxial Pt shell growth on
Pd NPs. Meanwhile, scanning electron microscope
(SEM) images of Pd10@Ptx/UiO-66-NH2 indicate
the maintained morphology of UiO-66-NH2 after
introducing Pd@Pt NPs (Supplementary Figs 6
and 7).

To verify whether the Pd@Pt core-shell struc-
ture has been successfully constructed, multiple
characterizations have been adopted by taking
Pd10@Pt10/UiO-66-NH2 as a representative. A
high-resolution TEM (HRTEM) image reveals the
Pd core is covered by a Pt shell, as evidenced by
their exposed {111} facets with clear lattice fringes
(Fig. 2b). The spatial distribution of the constituent
elements of Pd@Pt NPs is detected by synchrotron
radiation photoemission spectroscopy (SRPES)
spectra for Pd 3d and Pt 4f, at photon energies of
450, 710, 970 and 1253.6 eV, respectively (Sup-
plementary Figs 8–10) [56,57]. The peaks at 340.3
and 335.0 eV can be assigned to Pd 3d3/2 and Pd
3d5/2 of metallic Pd0, respectively [56], whereas the
peaks at 74.3 and 70.9 eV clearly correspond to Pt0

(Supplementary Fig. 10) [58,59]. The outside-in
atomic fractions of Pd and Pt in Pd@Pt NPs can
be obtained from their peak areas calibrated by the
beam flux and photoionization cross-section at the
corresponding photon energy. As a direct result, a
decreased atomic fraction of Pt and an increased
atomic fraction of Pd unambiguously suggest that
Pt stays on the external surface of Pd, pointing
to a Pd10@Pt10 core-shell structure (Fig. 2c).
More intuitively, the core-shell structure can also
be clearly identified by elemental line-scanning
spectra for a single Pd10@Pt10 particle (Fig. 2d and
Supplementary Fig. 11).

Furthermore, the thickness of the Pt shell can be
precisely controlled by varying the ratio of Pd/Pt
precursors. As the Pt content decreases to give
Pd10@Pt1/UiO-66-NH2, strikingly, the high-angle
annular dark-field scanning transmission electron
microscopy (HAADF-STEM) image indicates
that Pt is atomically dispersed on the Pd surface
(Fig. 3a). Fourier transformed extended X-ray
absorption fine structure (FT-EXAFS) and X-ray
absorption near-edge structure (XANES) analyses
provide more detailed structural information on
Pd@Pt NPs as well as the Pt coordination en-
vironment (Fig. 3b, Supplementary Fig. 12 and
Supplementary Tables 3 and 4). The absence of
Pt–Pt peak in the Pt L3-edge FT-EXAFS spectrum
of Pd10@Pt1/UiO-66-NH2 further demonstrates
that the Pt, in its single-atom form, locates on the
Pd surface (Fig. 3b) [58,59]. The weak peak at
1.5 Å is ascribed to the Pt-O bonding, which is
possibly caused by partial surface oxidation. The
slightly oxidized Pt also gives rise to aminor increase
in white line intensity in the Pt L3-edge XANES
spectrum for Pd10@Pt1/UiO-66-NH2 (Supple-
mentary Fig. 13) [58,59]. All the HAADF-STEM,
FT-EXAFS and XANES results unambiguously
confirm that the SAA structure is formed in
Pd10@Pt1/UiO-66-NH2. In sharp contrast to
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Figure 4. XPS results. The Pt 4f XPS spectra for Pt1/UiO-
66-NH2, Pd10@Pt1/UiO-66-NH2 and Pd10@Pt10/UiO-66-NH2

(the purple solid and dashed lines represent slightly oxidized
Pt species).

Pd10@Pt1/UiO-66-NH2, the Pd10@Pt10/UiO-
66-NH2 apparently shows the presence of a
Pt-Pd/Pt coordination bond. Moreover, the Pt-Pd
coordination number in Pd10@Pt10/UiO-66-NH2
is much lower than that in Pd10@Pt1/UiO-66-NH2
(Supplementary Tables 3 and 4), indicating that
Pt possibly presents a cumulative atomic layer-like
distribution on the Pd surface in the former sam-
ple. Therefore, the Pd@Pt NPs are successfully
stabilized by UiO-66-NH2, and the coordination
environment of Pt is adjustable along with precise
regulation of Pt shells to single Pt atoms on the
surface of Pd NPs.

Charge redistribution effect
Given the different working functions of Pd and Pt
(Supplementary Fig. 14), to balance the Fermi dis-
tribution of electrons in Pd@Pt NPs, electrons tend
to leave Pd (the lower work function and electrons
being less tightly bound) and travel to Pt (the higher
work function) at their interface, causing an altered

Figure 5. Charge redistribution indicated by differential charge density. Differential
charge density of Pd@Pt NPs with SAA and core-shell structure featuring different
Pt layer thicknesses. The red and blue colors represent the increase and decrease in
electron density, respectively.

surface charge state of Pt. It is assumed that, as the
structure of Pd@Pt NPs evolves from core-shell to
SAA, charge redistribution (charge density change
between the core and the surface metals) would
take place and this affects the Pt surface charge
state [12,60]. The work function calculations for
Pd@Pt with SAA and core-shell structure support
the above point (Supplementary Fig. 14). To
further verify this hypothesis, X-ray photoelectron
spectroscopy (XPS) measurements have been
conducted (Fig. 4). Compared to the Pt0 4f7/2 peak
at 70.9 eV for Pt1/UiO-66-NH2, Pd10@Pt1/UiO-
66-NH2 presents lower binding energy to varying
degrees, reflecting that the Pt surface in Pd@Pt NPs
becomes electron-rich and charge redistribution
effect between Pd and Pt exists. Moreover, when
less Ptx (x value from 10 to 1) is covered, the Pt
coordination number increases via surrounding
Pd-Pt bonds (Supplementary Tables 2–4) and the
Pt binding energy decreases (Fig. 4), further man-
ifesting gradually enhanced charge redistribution
effect and the most electron-rich Pt in Pd10@Pt1
NPs. In fact, from the aforementioned SRPES spec-
tra of Pt 4f (Supplementary Fig. 10), when the probe
depth gets close to the Pd core as photon energy in-
creases, the Pt binding energy appears as a negative
shift, which further supports the above conclusion.

In addition, the differential charge density of
Pd@Pt NPs (from core-shell structure with dif-
ferent Pt thicknesses to SAA) based on density-
functional theory (DFT) calculations affords con-
sistent results, manifesting the enhanced charge ac-
cumulation on the Pt surface along with the de-
crease of Pt layer numbers (i.e. from core-shell to
SAA structure, finally) (Fig. 5, red color). From
the differential charge density, the Bader charge
of each Pt atom and the binding energy shift of
Pt 4f7/2 show similar slopes along with the in-
creased Pt layer thickness, indicating the consistent
charge redistribution trend in simulation and ex-
periment (Supplementary Fig. 15, Supplementary
Tables 5 and 6).

Photocatalysis and
photoelectrochemical measurements
Encouraged by the electron-rich Pt surface in
Pd10@Ptx/UiO-66-NH2, we set out to investi-
gate the influence of charge redistribution for
photocatalytic H2 production (Fig. 6a). Prior to
the measurement, UV-Vis absorption spectra of
Pd10@Ptx/UiO-66-NH2 have been examined to
demonstrate their similar light absorption (Sup-
plementary Fig. 16). As expected, as the Pt load-
ing in Pd@Pt NPs decreases (x from 10 to 1),
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Figure 6. Photocatalytic results and photoelectrochemical measurements. (a) Photocatalytic hydrogen production rate of:
A, Pt1/UiO-66-NH2; B, Pd10/UiO-66-NH2; C, Pd10 + Pt1/UiO-66-NH2; D, Pd10Pt1/UiO-66-NH2 and E–H, Pd10@Ptx/UiO-66-NH2

(x = E, 0.3; F, 1; G, 5; H, 10). (b) Recycling performance of Pd10@Pt1/UiO-66-NH2. (c) Photoluminescence spectra under
excitation at λ = 360 nm. (d) Photocurrent response.

the Pt-Pd coordination number increases, charge
redistribution effect strengthens and Pt becomes
more electron-rich. Accordingly, the activity of
Pd10@Ptx/UiO-66-NH2 exhibits gradual increase.
Strikingly, Pd10@Pt1/UiO-66-NH2 featuring SAA
structure achieves the highest photocatalytic H2
production rate, 1200.5μmol · g−1 · h−1, among all
investigated samples, which is 25, 30 and∼4.5 times
higher than that of Pd10/UiO-66-NH2, Pt1/UiO-
66-NH2, Pd10 +Pt1/UiO-66-NH2 with amixture of
monometallic NPs, and Pd10Pt1/UiO-66-NH2, re-
spectively (Fig. 6a and Supplementary Figs 17–20).
When the Pt content continues to decline (x from 1
to 0.3), unexpectedly, the photocatalytic hydrogen
production activity slightly decreases, possibly due
to the decreased Pt sites in the catalyst.

The calculated Gibbs free energy (�GH
∗) of

Pt and Pd atoms in the Pd10@Pt1 SAA structure
indicates that Pt is the more favorable active site
than Pd for hydrogen production (Supplemen-
tary Fig. 21). Together with the overwhelmingly
higher activity of Pd10@Pt1/UiO-66-NH2 than
Pd10/UiO-66-NH2, the H2 generation taking

place on Pd should be negligible and turnover
frequencies of Pt (TOFPt) are a reasonable de-
scriptor for the activity for the catalysts in SAA
structure. The significantly higher TOFPt for
Pd10@Pt0.3/UiO-66-NH2 and Pd10@Pt1/UiO-66-
NH2 than all other counterparts further indicates
the superiority of SAA structure in photocatalysis
(Supplementary Table 7).

In addition, this optimized Pd10@Pt1/UiO-66-
NH2 catalyst shows good recyclability and its activ-
ity does not present obvious decay in five consecu-
tive runs and a continued test for 25 h (Fig. 6b, Sup-
plementary Fig. 25). Thanks to the good stability,
PXRD patterns confirm that the structural integrity
and crystallinity of the MOF in all samples are well
retained after catalysis (Supplementary Fig. 22). Es-
pecially, both the SAA structure and the dispersion
of Pd10@Pt1 NPs are almost maintained, thanks to
the excellent stabilization effect by the MOF (Sup-
plementary Figs 23 and 24).

The activity promotion by surface charge regu-
lation based on Pd10@Ptx/UiO-66-NH2 for photo-
catalysis has also been demonstrated by enhanced
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charge transfer. Photoluminescence (PL) emission
spectra for all samples show that Pd10@Pt1/UiO-
66-NH2 has the weakest fluorescence intensity,
indicating its best charge separation efficiency, and
the peak intensity order is in perfect reverse correla-
tionwith that of photocatalytic activity (Fig. 6c).The
photocurrent and electrochemical impedance spec-
troscopy (EIS) measurements also manifest such a
trend (Fig. 6d and Supplementary Fig. 26), further
confirming the discriminative charge separation
efficiency and being in good agreement with the re-
sults by XPS, SRPES spectra and DFT calculations,
and well explaining the activity trend.Moreover, the
cathodic polarization curves indicate Pd10@Pt1/
UiO-66-NH2 has lower over-potential for hydrogen
evolution (Supplementary Fig. 27). Therefore,
the regulation of Pt surface charge state by charge
redistribution at the interface of Pd and Pt plays
an important role in optimizing photocatalytic
performance. Base on the results above and previ-
ous reports [9,48,49], the photocatalytic process
of Pd@Pt/UiO-66-NH2 is clear that the MOF
is excited by visible light to produce photogen-
erated electron-hole pairs. Due to the Schottky
junction, the electrons transfer to Pd, and finally
to Pt (catalytic center), promoted by the charge
redistribution effect between Pd and Pt (Fig. 1).
The charge redistribution effect is influenced by the
Pt coordination environment and microstructure,
which causes distinct charge accumulation on the
Pt surface in Pd10@Ptx/UiO-66-NH2, resulting
in different H2 production activity. The results
unambiguously manifest that, in addition to the
well-established Schottky junction, the microstruc-
ture regulation of a co-catalyst reported herein
might be another effective and novel strategy to
enhance charge separation and thus photocatalysis.

DISCUSSION
In summary, a bimetallic NPs/MOF system,
Pd@Pt/UiO-66-NH2, has been rationally fabri-
cated to investigate the structural influence of a
Pd@Pt co-catalyst on its surface charge state and
resulting photocatalytic activity. Remarkably, the
Pt shell on Pd surface can be precisely controlled
and the structure evolves from core-shell to SAA,
so as to change the Pt coordination environment.
Consequently, the surface charge on Pd and Pt is
redistributed, which regulates the electronic state
of Pt active sites and is found to be crucial for the
resulting activity. As a result, the photocatalytic
hydrogen production activity of Pd10@Ptx/UiO-66-
NH2 can be optimized to exponentially increase by
precisely fabricating the Pd10@Pt1 SAA co-catalyst,

based on the rational control of Pt loading. This
work not only presents SAA behaving as a very
promising co-catalyst for photocatalysis for the first
time, but also opens a novel avenue to the surface
charge regulation of co-catalysts for boosting
photocatalysis.

METHODS
Preparation of Pd10@Ptx/UiO-66-NH2

Typically, 100 mg UiO-66-NH2 was put in a porce-
lain crucible and a certain amount of 50 mg/mL
Pd(NO3)2 aqueous solution (Pd/UiO-66-NH2 =
1 wt%) was added.Then, 200μLMeOHwas added
into the mixture and rapidly stirred with a glass rod
and heated at 80◦C to evaporate the solution. This
procedurewas repeated twice and the obtained solid
was dried in a 85◦C drying oven for 15 min to give
Pd2+/UiO-66-NH2. After that, a 15 mg sample of
Pd2+/UiO-66-NH2 was dispersed in 5 mL MeOH
by ultrasonication, and 5 mg NH3BH3 was added
during stirring. After H2 bubbling was completed,
a certain amount of H2PtCl6 aqueous solution (the
mass ratio of Pt/Pd= 0.3, 1, 5, 10/10, respectively)
was quickly added and stirred for 1 h. The solid was
collected by centrifugation and washed by MeOH
several times, and dried at 60◦C under vacuum
overnight.The product was named Pd10@Ptx/UiO-
66-NH2 (the 10 and x mean the mass permillage,
at wt�, of Pd and Pt to the MOF in the synthesis,
respectively).

Synchrotron radiation photoemission
spectroscopy (SRPES)
The SRPES spectra were measured with photon en-
ergies of 450 eV, 710 eV, 970 eVand1253.6 eVat the
BL10B beamline in the National Synchrotron Ra-
diation Laboratory (NSRL, Hefei, China) [56,57].
Before the SRPES test, 30 mg Pd10@Pt10/UiO-66-
NH2 was dispersed in 1 mL H3PO4 and stirred for
2 h at room temperature to dissolve theMOF to im-
prove the electrical conductivity of the sample.

The X-ray absorption spectra
ThePt L3-edge X-ray absorption spectra (XAS) data
were collected at 1W1Bbeam line of theBeijing Syn-
chrotron Radiation Facility (BSRF, Beijing) oper-
ated at 2.5 GeV at room temperature. The Si (111)
double crystal monochromator was calibrated via
Pt foil and then the Pt foil XAS data was collected
as the reference spectrum. The XAS measurement
for the samples was performed in the fluorescence
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mode using a Lytle detector. Data analysis was per-
formed with Athena and Artemis included in the IF-
EFFIT version 0.8.012. A first-shell single scattering
path was used in fitting the FT-EXAFS data.

Photocatalytic experiments
Typically, 3 mg photocatalyst was dispersed in
27 mL acetonitrile containing 0.2 mL deionized wa-
ter and 3 mL triethylamine (as a sacrificial reagent).
Then the suspension was transferred into an optical
reaction vessel (160 mL) and purged with nitrogen
for 15 min to remove air. The reaction solution was
irradiated by the 300 W Xe lamp (LX-300F, Japan)
equipped with a UV cut-off filter (>380 nm). Hy-
drogen gas was measured by gas chromatography
(Shimadzu GC-2014) using a thermal conductivity
detector.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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