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Understanding COVID-19 induced mortality risk is significant for life insurers to better

analyze their financial sustainability after the outbreak of COVID-19. To capture the

mortality effect caused by COVID-19 among all ages, this study proposes a temporary

adverse mortality jump model to describe the dynamics of mortality in a post-COVID-19

pandemic world based on the weekly death numbers from 2015 to 2021 in the

United States. As a comparative study, the Lee-Carter model is used as the base case

to represent the dynamics of mortality without COVID-19. Then we compare the force of

mortality, the survival probability and the liability of a life insurer by considering COVID-19

and those without COVID-19. We show that a life insurer’s financial sustainability will

deteriorate because of the higher mortality rates than expected in the wake of COVID-19.

Our results remain unchanged when we also consider the effect of interest rate risk by

adopting the Vasicek and CIR models.

Keywords: COVID-19, mortality rates, risk, life insurer, financial sustainability

INTRODUCTION

The COVID-19 pandemic has posed a significant challenge to the operation of the insurance
industry around the world. Due to COVID-19, life insurers in Australia suffered a net loss of $1.8
billion for the year ending March 2020, compared with a profit of $759 million in the previous
year (1). The pandemic also causes great damage on the U.S. life insurance industry. For instance,
Prudential reported a $2.41–billion net loss in the second quarter of 2020 as opposed to a $738–
million net income in the second quarter of 2019 (2). Accordingly, rating agencies revised their
outlook from stable to negative for life insurers worldwide. In particular, AM Best changed its
outlook for the U.S. life insurance industry from stable to negative (3). One factor behind these
changes in the life sector’s outlook is: the possibility of higher mortality rates than anticipated.
To address this crucial and timely issue caused by COVID-19, it is significant for life insurers
to adopt an appropriate mortality model by including COVID-19 mortality risk to analyze their
financial sustainability.

The COVID-19 pandemic has adversely affected mortality rates, increasing the mortality risk of
life insurers. Understanding the adverse effect of COVID-19 on mortality rates is very important
because higher mortality rates than expected will affect the future financial sustainability process
of life insurers. Consequently, life insurers must incorporate COVID-19 mortality risk to better
forecast their financial sustainability based on an appropriate mortality model. As the objective of
this study, we provide life insurers in the U.S. with a temporary adverse mortality jump model
by including the effect of COVID-19 on mortality rates to enable better analysis of financial
sustainability during the pandemic. To produce such a model, the direct and indirect effects of
the pandemic on mortality rates must first be understood. The direct effect reflects only the death
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numbers directly caused by COVID-19. However, the under-
diagnosis, limited COVID-19 testing and imperfect test
sensitivity in early 2020 resulted in undercounting of the number
of deaths due to COVID-19 (4–6). Underestimation of the
deaths caused by an emergency is common. For example, only 31
official deaths due to Chikungunya virus were recorded between
2014 and 2015 in Puerto Rico, whereas 1,310 excess deaths were
estimated in a time-series analysis (7). Therefore, the additional
deaths caused by the indirect effects of COVID-19, i.e., the
potential consequences associated with the pandemic, should
not be ignored. Government interventions imposed during
the pandemic may indirectly affect other causes of deaths (8).
For instance, many people with serious existing illnesses were
unable to seek timely medical treatment after the outbreak of
COVID-19, thus influencing their physical and mental health
and decreasing their life expectancy (9–11). Many people lost
their jobs or income in this tough period due to the self-isolation
policies proposed by the government or the economic recession
caused by COVID-19; consequently, suicide rates increased
because of the long-term unemployment (12–16). Crowded
emergency departments were also responsible for additional
deaths (17, 18). Furthermore, even people recovering from
COVID-19 may have temporary or long-term kidney and liver
failure, thus decreasing the survival probability among many
recovered patients (19, 20). The limited access to health services,
physical and psychological effects of social distancing, and
economic changes have had indirect and adverse effects on
mortality rates. Death rates are always higher than expected
during emergencies. According to Weinberger et al. (2020)’s test,
the number of excess deaths was 28% higher than the official
COVID-19-reported death numbers from March 1st to May
30th, 2020 (21). Given that the indirect effects of COVID-19
may be much greater than the direct effect, we use the excess
death numbers to explain the adverse mortality jump caused by
this pandemic rather than using the official COVID-19 death
counts (21, 22). The method of computing the excess deaths has
also been used for other pathogens, such as pandemic influenza
viruses and HIV (23–25).

In this study, we aim to compare the difference between
the liability of the whole life insurance during the COVID-
19 pandemic (2020 and 2021) and pre-COVID-19 period
(2015–2019) to show the negative effect of COVID-19 on life
insurer’s financial sustainability. Therefore, life insurers’ financial
sustainability can be viewed as a function of random mortality
rates. Several dynamic mortality models have sought to describe
a three-dimensional surface of mortality by modeling mortality
trends involving both age-dependent and time-dependent terms
(26–36). However, very few studies have considered mortality
jumps (37–40). Our model is inspired by this stream of research.
We first use the well-known Lee-Carter model (1992) as the
basis to calculate the pre-COVID-19 force of mortality without
including information on the Spanish flu in 1918 (26).We choose
the force of mortality to describe the mortality change because
its evolution can describe the cohort effect in the general trend
of the mortality (37). Then we adjust the model of Cox et al.
(37) to capture the adverse mortality effect caused by COVID-
19. We highlight that the adverse effect on mortality rates during

the COVID-19 pandemic should be temporary based on the
historical data of pandemics such as the 1918 flu pandemic.
Moreover, COVID-19 vaccination in 2021 suggests a potential
for mortality to rapidly return to baseline levels (41).We calibrate
our mortality model based on the up-to-date weekly deaths data
from theU.S. Centers for Disease Control and Prevention (CDC).
Our results show that the financial sustainability of a life insurer
typically deteriorates during the COVID-19 pandemic. Given
this, we should forecast future mortality rates by incorporating
the negative effect induced by COVID-19. In addition to the
mortality rates, the financial sustainability of life insurers also
depends on the discount rates, which are correlated with the
interest rate risk. Accordingly, we also forecast the financial
sustainability of life insurers during the pandemic by adding the
interest rate risk based on the Vasicek and CIR models (42, 43).

We contribute to the literature in three aspects. First, our
temporary adverse mortality jump model has the advantages of
capturing the COVID-induced mortality risk and incorporating
the framework of the well-known Lee-Carter model. Second, this
paper investigates the effect of COVID-19 on the mortality rates
among different ages and provides some illustrative results for
the liability and financial sustainability of a life insurer over a
long-term (30 years) horizon. Third, we also consider the term
structure of interest rates (e.g., the Vasicek and CIR models) to
study the effect of interest rate risk on a life insurer’s financial
sustainability during the COVID-19 pandemic.

The remainder of this paper is organized as follows.
Mortality Risk introduces the stochastic mortality models used
to analyze the adverse mortality effect caused by COVID-19.
We then describe the framework of the whole life insurance.
Numerical Illustration provides a numerical example illustrating
the difference in the force of mortality, k-year survival rates and
the financial sustainability of a life insurer during the COVID-
19 pandemic and pre-COVID-19 period. Additional Analysis:
Interest Rate Risk shows the effect of interest rate risk on a life
insurer’s financial sustainability. Finally, Conclusions presents
the conclusion.

MORTALITY RISK

Practitioners usually calculate the present value of a life
insurance company by using fixed mortality rates. However,
this deterministic approach underestimates the uncertainties of
mortality rates. Therefore, we use the stochastic mortality models
in this article to capture the randomness of mortality rates.
Mortality modeling can use different types of mortality rates
because one type of mortality rates is correlated with others. In
this section, we use the force of mortality µ(x, t) to develop two
different mortality models. We further assume that the force of
mortality remains the same in each age interval [x, x+1]. Hence,
for age x + s, at time x + s, we have µ (x+ s, t + s) = µ(x, t),
where 0 ≤ s < 1.

Mortality Risk Without COVID-19
In this section, we adopt the well-known Lee-Cater mortality
model to describe the mortality dynamics of the insured without
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COVID-19, which can be expressed as follows:

lnµ (x, t)= a (x)+b (x) k (t)+ εx,t , (1)

where εx,t is an error term with mean 0 and variance σ 2
ε , which

explains the historical influences not captured by this model.
ln µ (x,t) is the logarithm of the force of mortality for age x in
year t. The parameters a(x) and b(x) are age-specific constants,
where a(x) is the age group shift effect, and b(x) indicates the
response at each age to the mortality time-series k(t). The time-
varying mortality index k(t) represents general mortality trends,
which can be modeled as a random walk with a drift g:

k (t)= k (t − 1)+g+et , et∼ N(0, σ 2
k ), (2)

where et is the error term with mean 0 and variance σ 2
k
. On the

basis of the estimated k(t) from singular value decomposition
(SVD), the parameters g and σ

k
in (2) can be easily calibrated

with standard statistical techniques. Of note, the drift parameter
g is a negative value, which suggests an improvement in mortality

rates. With the estimated â(x0 + t), b̂(x0 + t) and k̃(t), the future
force rate of mortality µ̂(x0 + t) for age x0 + t at time t can be
expressed as follows:

µ̃ (x0+t, t)=eâ(x0+t)+b̂(x0+t)k̃(t), t = 1, 2, . . . (3)

where k̃(t) can be forecasted by the time series model (2) with
the estimated g and σk. Finally, the forecasted one-year survival
probability p̃x0+t,t at different ages and years is equal to:

p̃x0+t,t= 1−q̃x0+t,t=e−µ̃(x0+t,t), t = 1, 2, . . . , (4)

where q̃x0+t,t denote the forecasted probability that the insured
aged x0 + t at time t dies before reaching age x0 + t + 1.

Mortality Risk Including COVID-19
To capture the adverse mortality effect caused by the pandemic,
we adjust the model of Cox et al. (37) to explain the excess
death rates caused by COVID-19. The force of mortality after the
outbreak of the pandemic µJ (x, t) is given by:

µJ (x, t)= µ (x, t) ∗eH(x,t), (5)

where µ (x, t) is the force of mortality of age x at time t predicted
from equation (3). H(x, t) is the mortality jump process caused
by the pandemic, which is equal to:

H (x, t)=
N(t)
∑

j=1

ej Cj (x) exp
(

−κj
(

t−τj
))

1{t≥τj}, (6)

where jump event j counts the number of the Poisson process
N(t) with an arrival rate of λτ by time t. τj is the time at
which pandemic event j occurs. The factor (t − τj) provides
the cumulative mortality deterioration as t increases after time
τj of the jump event j. Function 1{t≥τj} is equal to 1 if the

jump event j occurs and zero otherwise. The parameter ej is the

maximum severity of the adverse mortality jump event j among
all ages. Cj (x) is an age-specific function measuring the effect of
jump event j on the mortality of people at age x with respect to
the maximum severity ej. Therefore, Cj (x) ranges from 0 to 1.
Cj (x) = 0 indicates that the jump event j has no effect on the
mortality rate at age x, whereas Cj (x) = 1 indicates that people
at age x experience the most severe effect due to the pandemic
j. The parameter κj represents the time period of the pandemic’s
effect on mortality rates: the time span of jump event j increases
(decreases) as κj decreases (increases). For simplicity, we further
assume that each jump event j has the same effect on mortality
rates. Accordingly, we have ej = e, Cj (x) = C (x) and κj = κ .
Then equation (6) can be rewritten as follows:

H (x, t)=
N(t)
∑

j=1

e C (x) exp
(

−κ
(

t−τj
))

1{t≥τj}. (7)

After calibrating Lee and Carter’s model without the pandemic
event, and using the mortality data correlated with COVID-
19 from CDC to estimate the parameter e and function C (x),
we forecast the force of mortality based on the COVID-19
pandemic µ̃J (x0 + t) with a determined pandemic arrival rate
λτ and pandemic duration κ . Similarly, the forecasted one-year
survival probability with the adverse mortality effect caused by
COVID-19 p̃J x0+t,t at different ages and years equals:

p̃J x0+t,t= 1−q̃J x0+t,t= , t = 1, 2, · · · . (8)

where q̃J x0+t,t denote the forecasted probability that the insured
aged x0 + t at time t dies before reaching age x0 + t + 1 during
the COVID-19 pandemic.

Whole Life Insurance
In this section, we use the liability of the whole life insurance
as an example to aid in analysis of a life insurer’s financial
sustainability. Suppose a life insurer underwrites whole life
insurance policies to N0(x0) participants, where x0 is the age
when the policy issued. In this life insurance contract, if the
insured dies, he or she will receive a benefit of E at the end of the
year; that is, if the insured survives, there are no death payments
are made at the end of each year. Given N0(x0 + t) dead insured
people at age x0+ t at time t, the life insurer’s liability L(t) at time
t is

L (t)=N0 (x0+t) ∗E∗ax0+t , t = 0, 1, 2, . . . (9)

where ax0+t is the conditional expected value of the life insurance
for age x = x0+ t at time t. The present value of the life insurance
ax0+t can be viewed as a special portfolio of zero coupon bonds
with stochastic coupon payment and different maturities:

ax = ax0+t =
∞
∑

k=1

vkt
px,t q̃x,t
k . (10)

The variable
k
px,t is the conditional expected k-year survival

rates for age x at time t, which is a random variable and can be
expressed as follows:

kpx,t=p̃
x,t

∗p̃x+1,t+1
∗p̃x+2,t+2. . .

∗p̃x+k−1,t+k−1. (11)
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Amid COVID-19, formulae (9) and (11) can also be used
to compute the liability LJ(t) and the k-year survival rates

k
pj x,t associated with COVID-19, respectively. The one-year
discount factor vt in (10) is equal to

vt=
1

1+rL,t
, (12)

where rL,t represents the discount rate at time t. In (10), the
conditional expected value ax0+t depends on two variables: the
conditional expected k-year survival rate

k
px,t and the one-year

discount factor vt . To model the liability of the life insurer in
the distant future, we must consider the random feature of the
mortality rates and interest rates. The mortality rates and interest
rates are independent even in the real world; thus, we further
assume independence between the mortality rates and interest
rates in this article. To show the adverse effect of COVID-19 on
the financial sustainability of a life insurer, we only consider the
mortality risk in Numerical Illustration. In Additional Analysis:
Interest Rate Risk, we will consider both mortality risk and
interest risk.

NUMERICAL ILLUSTRATION

In this section, we use an example to show the difference in
the force of mortality, the k-year survival probability and the
liability of the life insurer during the COVID-19 pandemic and
pre-COVID-19 period. We assume that a U.S. life insurer has a
number of N0 (35) = 10, 000 life insurance policies sold at time
2020, and the benefit payment at the end of each year starting
from t = 2021 is E = 1. Furthermore, the mortality dynamics of
the insured are assumed to be the same as the U.S. total (both
male and female) population. Then, on the basis of the U.S.
populationmortality table for both sexes from age 35 to 105 in the
Human Mortality Database from 1933 to 2019, we calibrate the
Lee-Carter mortality model through SVD. Figure 1 represents
the mortality index values k(t). The decreasing trend in the
mortality index k(t) indicates the improvement of mortality rates
along the time. We then use these estimated k(t) to estimate
g = −0.3214 and σk = 0.3590 in equation (2).

This paper focuses on the overall (i.e., both direct and indirect)
effects of the COVID-19 pandemic on mortality rates. One way
of monitoring the excess death rates is to compare the number
of deaths after the outbreak of COVID-19 with the number of
deaths before COVID-19. On the basis of the weekly deaths in
the U.S. provided by the CDC from January 2015 to May 2021,
we first compute the excess death numbers of each age group in
2020 by comparing the death numbers from the 9th week to the
52nd week in 2020 with the average death numbers in the same
period from 2015 to 2019. The excess number of deaths in 2021
can also be obtained by comparing the death numbers within the
17th week with the average number of deaths in the same period
from 2015 to 2019. The age groups in our data include: under
25 years, 25–44 years, 45–64 years, 65–74 years, 75–84 years, as
well as 85 years or older. The results of excess death numbers
correlated with COVID-19 for each age group are shown in
Figure 2. In Figure 2A, the blue histograms denote the average

FIGURE 1 | Estimated k(t) from t = 1933 to t = 2019.

deaths between 2015 and 2019 from the 9th week to the 52nd

week, and the red histograms denote the deaths in 2020 in the
same period. The excess deaths of 0–24 years, 25–44 years, 45–64
years, 65–74 years, 75–84 years and 85 years or older are 2,980,
42,267, 105,455, 152,510, 175,379, and 170,409, respectively, thus
indicating that COVID-19 had the greatest impact on people
older than 65 years old in the United States in 2020. The U.S.
government has had better control of COVID-19 in 2021, so the
excess death numbers have substantially decreased in this year.
Specifically, the excess death numbers for each group are−1,742,
13,178, 27,318, 51,415, 45,604 and 10,960, respectively. Of note,
the excess death number for people younger than 25 years is
negative in 2021, which suggests an improvement of mortality
along the time. Therefore, we assume that the excess death rate of
age under 25 is 0 in 2021.

With the observed excess deaths, the excess death rate of each
age group can be computed by a simple equation:

excess death rate2020,2021=
excess deaths2020,2021

the average deaths2015−2019
. (13)

The results of the excess death rate for each age group are shown
in Table 1, which provides further support for COVID-19 having
more serious impact on mortality rates in 2020 than 2021 in the
United States. For example, COVID-19 has had only a small effect
on people 85 years or older in 2021, as compared with 2020,
because the government has taken better measures to protect
the elderly from the effects of this pandemic, and people also
have a better understanding of the transmission mechanisms
of COVID-19. Consequently, the effects of COVID-19 will be
much smaller with good compliance with stringent distancing
measures, high treatment rates and health-system capacity (44).

To obtain the excess death rate of each age, we further assume
that the excess death rates are the same for people under 25 and
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FIGURE 2 | (A) The death numbers from the 9th week to the 52nd week in 2020 and the average death numbers in the same period from 2015 to 2019. (B) The

death numbers from the 1st week to the 17th week in 2021 and the average death numbers in the same period from 2015 to 2019.

TABLE 1 | Excess death rate for each age group in 2020 and 2021.

Age group 2020 2021

under 25 years 0.0559 0

25–44 years 0.3649 0.3001

45–64 years 0.2345 0.1494

65–74 years 0.3469 0.2848

75–84 years 0.3218 0.1987

85 years or older 0.2391 0.0354

over 95 years of age. For any other ages, the excess death rates
are assumed to be the excess death rate of the median age of
each age group. Therefore, the excess death rates of each age after
the COVID-19 pandemic can be computed by the assumption of
linear interpolation, which can be expressed as follows:

f (x)=











































d1, x ≤ 24

d1+ x−24
35−24 (d2−d1) , 25 < x ≤ 35

d2+ x−35
55−35 (d3−d2) , 35 < x ≤ 55

d3+ x−55
70−55 (d4−d3) , 55 < x ≤ 70

d4+ x−70
80−70 (d5−d4) , 70 < x ≤ 80

d5+ x−35
55−35 (d6−d5) , 80 < x ≤ 95

d6 , x ≥ 95

, (14)

where di, i = 1, 2, · · · , 6 denotes the excess death rate of each age
group from under 25 years (i = 1) to 95 years or older (i = 6).
On the basis of the linear interpolation assumption, our results
indicate that people at age 35 experienced the highest excess death
rate in both 2020 (e2020 = 0.3649, C2020 (35) = 1) and 2021

FIGURE 3 | Adverse mortality effect of COVID-19 on µ̃ (x0 + t, t) across ages.

(e2021 = 0.3001,C2021 (35) = 1). Then we can derive the age-

specific function C (x)2020,2021 = f (x)2020,2021
e2020,2021

for each year. Our

results are shown in Figure 3.
On the basis of the age-specific function C(x), we derive the

future force of mortality µ̃J (x0 + t, t) for age x0 + t at time t by
assuming the value of arrival rate λτ = 0.01 and the value of
time period κ = 1 of the jump event j. Since jump events such
as the 1918 flu occur only approximately once per 100 years, and
pandemics only last only a few years, the assumptions of λτ =
0.01 and κ = 1 are reasonable (37). Given this, evolutions of the
force of mortality in one simulation iteration from 2020 to 2090
between ages 51 and 56 are shown in Figure 4. The decreasing

Frontiers in Public Health | www.frontiersin.org 5 September 2021 | Volume 9 | Article 756977

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zhang et al. COVID-19 Negatively Impacts Life Insurers

FIGURE 4 | (A) Simulated force of mortality from µ̃J (51, t) to µ̃J (56, t). (B) The difference in conditional expected k-year survival rate for age 35 at time t during the

COVID-19 pandemic and pre-COVID-19 period.

trend of the force of mortality indicates the improvement of
mortality over time as described previously. Specifically, the
purple, cyan and pink curves represent the force of mortality
following the COVID-19 pandemic. A sudden surge in the force
of mortality occurs for several years when a jump event j occurs,
but then the force of mortality rapidly decreases to normal levels,
owing to the hypothesis that the pandemic lasts only a short
period. If a jump event does not occur in the future, then the
force ofmortality based on the COVID-19 pandemic will be equal
to that in Lee-Carter’s model µ̃J (x0 + t, t) = µ̃ (x0 + t, t), as
shown by the gold, blue and green curves. To further highlight
the difference between these two mortality models, we also
compare the conditional expected k-year survival rate for age 35
at time t during the COVID-19 pandemic (i.e., 2020 and 2021)
and those before COVID-19 (i.e., 2015–2019) in Figure 4B. On
the basis of the average of the 1,000 simulation paths for the k-
year survival probability

k
px,t and k

pj x,t , we compute the average

difference between these two survival rates Pd =
k
pj x,t− k

px,t <

0, which indicates that the higher COVID-19 force of mortality
induces a lower survival rate. Our results in Figure 4B show that
COVID-19 produces a more serious effect on the conditional
expected k-year survival probability in 2020 (red curve) than in
2021 (black curve). For example, the conditional expected k-year
survival probability for age 35 will decrease by a maximum of
0.0013 in 2020, which is almost two times higher than that in 2021
(0.0007). Moreover, on the basis of the deaths data in 2020, the
adverse mortality impact caused by COVID-19 will continue to
increase (decrease) for a 35-year-old individual who lives before
(after) the age of 90, which indicates the importance of adopting
an appropriatemortality model for life insurers after the outbreak
of COVID-19.

The financial sustainability of a life insurance company usually
improves (deteriorates) as liability decrease (increase). To analyze

FIGURE 5 | The liability difference in 2020 and 2021 with COVID-19 induced

mortality risk.

the difference in the liability of the life insurer over the decision
period of T = 30 based on the COVID-19 induced mortality
risk, we assume that the term structure of interest rate is flat:
rL,t = r = 0.05. Given that the insured will receive the benefit
payment as long as he or she is dead at year t, we hypothesize
the lower survival probability caused by COVID-19 will induce
higher average benefit payments and so do the average liability.
Figure 5 supports our hypothesis, where Ld = LJ (t) − L (t) >

0. For simplicity, the average difference in the liability of the
life insurer during the COVID-19 pandemic and pre-COVID-
19 period Ld is called the liability difference hereafter. In our
example, the liability difference Ld is in million dollars. As time
passes, the number of survivors in this life insurance policy
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gradually declines, so the liability difference Ld in 2020 gradually
increases from 0.68 (0.61) million dollars to 3.00 (2.50) million
dollars in 2050 based on the 2020 (2021) weekly deaths data from
CDC. Therefore, COVID-19 has a negative and growing effect
on a life insurer’s financial sustainability, which indicates that
mortality models without considering the impact of COVID-19
on life insurers cannot be applied in a post-COVID-19 world.
Furthermore, our results suggest that the liability of the life
insurer in 2020 is higher than that in 2021, which provides further
support to the hypothesis that COVID-19 had posed more
adverse effect on mortality rates and the financial sustainability
of a life insurer in 2020 than that in 2021.

Given that the COVID-19 induced mortality risk will impose
a negative effect on the financial sustainability of life insurer, a
natural question that follows is: what is the relative importance
of the jump event j in determining the liability? Answering this
question is very important because it describes the characteristics
of the jump event j in determining the liability, which directly
affects the life insurer’s financial sustainability. Therefore, we
consider the arrival rate λτ and the duration κ of the jump event
j by varying their assumed values to extend our analysis. The
sensitivity analysis results are based on the COVID-19 mortality
rates in 2020, which are shown in Figure 6. In Figure 6A, the
red curve, blue curve and green curve represent the basic case
λτ = 0.01, λτ = 0.02 and λτ = 0.03, respectively. As can be seen
from this plot, the value of the liability difference Ld markedly
increases with the value of arrival rate λτ . For example, if the
pandemic is a two (three)-in-one-hundred year event, λτ = 0.02
(λτ = 0.03); that is, the jump event j will occur with greater
frequency than λτ = 0.01, and then the maximum value of the
liability difference will increase from 3.00 million dollars to 6.16

(9.44) million dollars; thus suggesting that a life insurer’s financial
sustainability is an decreasing function of the arrival rate λτ . We
then retain the assumption that pandemics usually last for short
time periods by changing the value of κ from κ = 1 into κ = 2
and κ = 3 to analyze the effect of duration κ on the liability
difference Ld. However, in Figure 6B, the liability difference Ld is
less sensitive to the duration κ of the jump event j. This is because
the randomness of the Poisson process denominates the value of
the liability difference Ld. The time of the jump event τj cannot be
controlled and may not occur simultaneously for each duration
κ , thus having an uncertain effect on the liability difference Ld.
Therefore, the parameter κ does not have a clear influence on the

liability difference Ld and the financial sustainability based on the
short-term effect of a pandemic onmortality rates. In general, the
arrival rate λτ of the jump event j produces a much more serious
effect on the financial sustainability of the life insurer than the
short-term duration κ .

ADDITIONAL ANALYSIS: INTEREST RATE
RISK

Interest rate risk is indispensable in life insurers’ financial
sustainability. To model the liability of the life insurer more
appropriately, we must include both mortality and interest rate
risk. Therefore, we need a model of future interest rates, which
involves stochastic simulation. In this section, we assume that the
interest rates instead follow a mean-reverting diffusion process
in continuous time. With sufficiently strong mean reversion, the
interest rates will tend to move toward the long-term mean.
For simplicity, the commonly used one-factor Vasicek and CIR
models meet our requirements.

Vasicek Interest Rate Model
Under the Vasicek model, the dynamics of the interest rates can
be expressed as follows:

drt=aV (bV−rt) dt+σVdWt . (15)

In (15), the interest rate rt will revert to the long term
mean bV with the reversion speed aV , and random increments
will be captured by the standard Brownian motion dWt

with instantaneous volatility σV . Following Zhou and Mamon
(2012), the closed form solution for each parameter based
on the quasi-maximum likelihood estimation is given by (45):

âV= −
(M − 1)

(

∑M−1
i=1 riri+1−

∑M−1
i=1 r2i

)

+
∑M−1

i=1 ri

(

∑M−1
i =1 ri−

∑M−1
i=1 ri+1

)

[ (M − 1)
∑M−1

i=1 r2i −
(

∑M−1
i=1 ri

)2
]

, (16)

b̂V= − −
∑M−1

i=1 riri+1
∑M−1

i =1 ri+
∑M−1

i=1 ri+1
∑M−1

i=1 r2i
∑M−1

i =1 ri

(

∑M−1
i =1 ri−

∑M−1
i =1 ri+1

)

+ (N − 1 ) (
∑M−1

i=1 ri+1ri−
∑M−1

i=1 r2i )
, (17)

σ̂V=

√

√

√

√

∑M−1
i=1

(

ri+1−ri−âV

(

b̂V−ri

) )2

(M − 1)
, (18)

where M is the number of observations. The constant is the
difference between ti+1 and ti.

CIR Interest Rate Model
The disadvantage of the Vasicek model is that the interest rate
will drop below zero (46), but only positive interest rates will
exist in the CIR model. Therefore, we extend our analysis by
considering the CIR interest rate model. The dynamics of the
interest rates in the CIR stochastic model are described by the
Ornstein-Uhlenbeck stochastic process:

drt=aC (bC−rt) dt+σC
√
rt dW t , (19)
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FIGURE 6 | (A) Sensitivity of the liability difference to the parameter λτ . (B) Sensitivity of the liability difference to the parameter κ.

where parameter aV is the reversion speed. Parameters bV and
σV are the long-termmean and the volatility, respectively. On the
basis of the closed from solution of the CIRmodel fromZhou and
Mamon (2012), the parameter estimation can be obtained via the
method of quasi-maximum likelihood, which can be expressed as
follows (45):

âC=

− (M − 1)2+ (M − 1)
∑M−1

i=1
ri+1

ri

+
∑M−1

i=1
1
ri
(
∑M−1

i =1 ri−
∑M−1

i=1 ri+1)

[− (M − 1)2+
∑M−1

i=1
1
ri

∑M−1
i =1 ri]

, (20)

b̂C=
∑M−1

i=1
ri+1

ri

∑M−1
i =1 ri− (M − 1)

∑M−1
i=1 ri+1

− (M − 1)2+ (M − 1)
∑M−1

i=1
ri+1

ri

+
∑M−1

i=1
1
ri
(
∑M−1

i =1 ri−
∑M−1

i=1 ri+1)

, (21)

σ̂C=

√

√

√

√

√

√

∑M−1
i=1

(

ri+1−ri−âC

(

b̂C−ri

)

√
ri

)2

(M − 1)
. (22)

Numerical Calculations
In this section, we use the annualized monthly yield of the 30-
year U.S. Stripe Index from February 28, 1985 to December 31,
2019 in the Datastream database to calibrate the Vasicek and CIR
models based on equation (16)-(18) and (20)-(22), respectively.
The estimated parameters of these two interest rate models are
reported in Table 2. Our results show that the reversion speed
and long-term mean in these two models are almost the same,
but the instantaneous volatility in the Vasicek model (σV =
0.0025) is much smaller than that in the CIR model (σC =
0.0110), which suggests a smoothing change of interest rates in
the Vasicek model.

TABLE 2 | Quasi-maximum likelihood estimation of Vasicek and CIR models.

Vasicek Estimate CIR Estimate

av 0.0141 aC 0.0138

bv 0.0414 bC 0.0411

σv 0.0025 σC 0.0110

Then we use the U.S. Stripe Index data at the end of 2019 as
the initial interest rate r2019 = 0.0247 and simulate for 1,000
times from 2020 to 2050 by using the estimated parameters based
on the Vasicek and CIR models. Figures 7A,B show the typical
distribution of the r2050 based on the Vasicek model and the CIR
model, respectively. In Figure 7, we can observe that both the
Vasicek and CIR models have a small number of very low and
very high simulated values, although the interest rate process
is mean reverting (47). Specifically, the Vasicek model has the
disadvantage of allowing negative interest rates as shown on the
left side of Figure 7A.

To describe the main drawback of the Vasicek model, we also
compute the likelihood of negative rates in the Vasicek model by
using the formula:

Pr (rt< 0) = ϕ(− r0e
−aV t+bV (1−e−aV t)

σV

√

1−e−2aV t

2aV

) (23)

where ϕ(·) represents the cumulative distribution function of the
standard normal. According to the estimated parameters aV =
0.0141, bV = 0.0414 and σV = 0.0025, the probabilities of
negative interest rates from t = 2020 to t = 2050 are shown
in Table 3. Our results suggest that the probabilities of negative
rates are almost negligible at time t with the estimated parameters
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above. For example, the maximum probability of negative rates is
only 0.0036, and thus only about 4 interest rates will be less than
zero when we take 1000 simulation paths.

Finally, we use the simulated results based on the Vasicek
and CIR models to calculate the liability difference in 2020 and
2021. According to the monthly weighted average table from the
DB plan sponsors, the maximum rate that they may be used
is 120% of the weighted average of 30-year Treasury securities.
Accordingly, the discount rates are assumed to be 1.2 times
the interest rates in our study rL,t = r∗t 1.2. Our results based
on the CIR and Vasicek models are shown in Figure 8. The
red curves in Figure 8 represent the liability difference in 2020,
for example. The solid curve, dotted curve and dashed curve

TABLE 3 | Probabilities of negative interest rates under the Vasicek model.

T Pr < 0 t Pr < 0

2020 0.0000 2036 0.0011

2021 0.0000 2037 0.0013

2022 0.0000 2038 0.0015

2023 0.0000 2039 0.0016

2024 0.0000 2040 0.0018

2025 0.0000 2041 0.0020

2026 0.0000 2042 0.0022

2027 0.0000 2043 0.0024

2028 0.0001 2044 0.0026

2029 0.0001 2045 0.0028

2030 0.0002 2046 0.0030

2031 0.0003 2047 0.0031

2032 0.0004 2048 0.0033

2033 0.0006 2049 0.0035

2034 0.0007 2050 0.0036

2035 0.0009

show the increasing trend of the liability difference Ld based
on the fixed discount rates rL,t = 0.05, the CIR model and
the Vasicek model, respectively. While illustrative results based
on stochastic interest rate models are similar due to the nearly
identical reversion speed and long-term mean, the value of the
liability difference Ld after considering the interest rate risk will
increase because the 1.2 times the long term mean is lower
than 0.05 (0.04111 × 0.20 = 0.0493, 0.04141 × 0.20 = .0497).
Specifically, in Figure 8, the maximum value of the liability
difference Ld based on the fixed discount rate rL,t = 0.05 is 3.00
million dollars, which is smaller than that based on the Vasicek
model (3.49 million dollars) and the CIR model (3.42 million
dollars). Therefore, the accuracy of the liability difference Ld

FIGURE 8 | To describe the main drawback of the Vasicek model, we also

compute the likelihood of negative rates in the Vasicek model by using

the formula: Value of the liability difference at time t, including both mortality

risk and interest rate risk.

FIGURE 7 | (A) Simulation with the interest rate at t = 2050 based on the Vasicek model. (B) Simulation with the interest rate at t = 2050 based on the CIR model.

Frontiers in Public Health | www.frontiersin.org 9 September 2021 | Volume 9 | Article 756977

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zhang et al. COVID-19 Negatively Impacts Life Insurers

increases as we incorporate interest rate risk, which should help
life insurers better analyze their financial sustainability. Overall,
life insurers’ financial sustainability deteriorates with declining
discount rates.

CONCLUSIONS

In this article, we define a stochastic mortality model with
a temporary mortality jump process to capture the effect of
COVID-19 on the mortality rates among people at different ages.
To show the effect of mortality risk on the life insurer’s financial
sustainability, we then define the liability of the life insurer to
analyze the difference during versus before COVID-19. Finally,
we also consider the interest rate risk by adopting the Vasicek and
CIR stochastic interest rate models to calculate the liability of the
life insurer. Our results show that the liability of the life insurer in
the wake of COVID-19 is higher than that in the pre-COVID-19
period because of the lower survival probability caused by this
pandemic. Consequently, COVID-19 imposes a negative effect
on life insurers’ financial sustainability. In addition to liability,
COVID-19 has also greatly decreased investment income based

on asset, which suggests that we should consider the overall firm
risk caused by COVID-19. Consequently, it is fruitful to extend
our research to the total surplus setting. We leave this question
for future research.
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