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Abstract: Tracking maneuvering targets is a challenging problem for sensors because of the
unpredictability of the target’s motion. Unlike classical statistical modeling of target maneuvers,
a simultaneous optimization and feedback learning algorithm for maneuvering target tracking based
on the Elman neural network (ENN) is proposed in this paper. In the feedback strategy, a scale factor
is learnt to adaptively tune the dynamic model’s error covariance matrix, and in the optimization
strategy, a corrected component of the state vector is learnt to refine the final state estimation. These
two strategies are integrated in an ENN-based unscented Kalman filter (UKF) model called ELM-UKF.
This filter can be trained online by the filter residual, innovation and gain matrix of the UKF to
simultaneously achieve maneuver feedback and an optimized estimation. Monte Carlo experiments
on synthesized radar data showed that our algorithm had better performance on filtering precision
compared with most maneuvering target tracking algorithms.

Keywords: Elman neural network; maneuvering target tracking; simultaneous optimization and
feedback learning

1. Introduction

Target tracking is a fundamental and critical task in many sensor-based practical applications
including radar-based tracking [1], sonar-based tracking [2], wireless sensor networks [3], video
surveillance [4], navigation [5], and mobile robotics [6]. Tracking maneuvering targets is a challenging
task because sensor systems are inevitably inaccurate and they are unaware of the uncertain external
forces that may be acting on targets, so the target’s dynamic properties cannot be modeled exactly.

From the viewpoint of statistics, maneuvering targets are often modeled as jump Markov linear
systems (JMLS) where the maneuver of the target is modeled as a finite-state Markov chain, and
its continuously varying state evolves according to an underlying model that switches among a set
of operating models controlled by a Markov chain at each sampling instance [7]. Usually, classical
methods for maneuvering target tracking include two main components: (i) maneuver modeling,
the stochastic process assumption for an unpredictable maneuver behavior; and (ii) maneuver
compensation, the correction of target state estimates to allow for the maneuver.

For maneuvering target tracking, many algorithms have been developed, and these can be
grouped into three types. The first one is based on maneuver dynamics modeling, which is based
on the concept of motion-origin uncertainty, and most methods are based on the stochastic process
assumption of an unknown acceleration component, such as the Singer model [8], Jerk model [8] and
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current statistical (CS) model [8], and so on. In the Singer model, target maneuvers are characterized
by large deviations from a constant-velocity trajectory corresponding to a random acceleration a(t),
which is a zero-mean first-order stationary Markov process with an autocorrelation function. A higher
order Jerk model of maneuvering targets has been developed by discretizing a system that contains
a third-order derivative of the position. In essence, the CS model is regarded as an improved Singer
model with an adaptive mean Markov process. A multitude of practical applications show that the
Singer acceleration model is a popular model for target maneuvers.

Another type of method for maneuvering target tracking is non-linear optimized filtering, which is
based on the idea of measurement-origin uncertainty. Many non-linear filtering algorithms are proposed
to eliminate the errors caused by nonlinearity in the process of maneuvering target tracking, such as
the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF) [9] and
particle filter (PF) [10], and so on. Among these, the UKF filtering method, compared with the traditional
EKF filtering algorithm, does not need to calculate the Jacobian matrix and is more accurate in many
tracking scenarios [8,9]. Also, the UKF is more efficient in many practical applications compared with
PF filters.

The third type of algorithm includes learning-based recursive filtering and multi-model based
methods, such as multi-layer perceptron (MLP) [11–13], the Elman neural network (ENN) [14],
fuzzy neural network [15,16], time-delay neural network [17], support-vector regression (SVR) [18–20],
and interacting multiple model (IMM) filtering [21–24], and so on. In the mathematical theory of
artificial neural networks, the universal approximation theorem states that a feed-forward network with
a single hidden layer containing a finite number of neurons can approximate continuous functions on
compact subsets of Rn, under assumptions on the activation function. Specifically, unpredictable
and time-variable maneuvers of targets can be modeled by a neural network. For example,
a neural-extended Kalman filter (NEKF) proposed by Stubberud [11,12] is a tightly coupled neural
network extended Kalman by learning a function that approximates the error between the actual
location and the estimated ones. Also, the ENN has been introduced into the IMM filtering model
to optimize the IMM algorithm [14]. A standard Kalman filter with a self-constructing neural fuzzy
inference network (SONFIN) algorithm [15] for target tracking was developed, where the trained
SONFIN can detect when the maneuver occurred, the magnitude of maneuver values, and when the
maneuver disappeared.

In this paper, an ENN-based UKF filter for maneuvering target tracking is proposed, where
maneuver parameter feedback and state estimation optimization can be learned simultaneously in the
target tracking and filtering framework.

Our contributions can be summarized as follows. First, a maneuvering target tracking architecture
based on ENN and UKF for simultaneous maneuver parameter feedback and state estimation
optimization is proposed. Second, the scale factor of process error covariance matrix Q and state vector
corrected component is trained by the filter residual, innovation and gain matrix. In addition, the
ENN can be supervised and trained online by a sliding-window scheme for different forms of target
maneuvers and different sensor measurement noise.

The remainder of this paper is organized as follows. The description of the basic models and
related methods are presented in Section 2. The proposed algorithm is developed in Section 3.
Simulation results and performance comparisons are presented in Section 4. Finally, conclusions are
provided in Section 5.

2. Basic Models and Related Works

In this paper, radar detection and tracking of air targets is specified as the research scope. As seen
in Figure 1, a phased-array radar is tracking maneuvering targets. Phased-array radars have the ability
to position quickly and perform adaptive sampling of the target trajectory by flexible beam forming and
positioning, however, this relies on a tracking filter that can provide accurate target position prediction,
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even if the target to be detected is moving at extremely fast speed and in a maneuverable form. In this
sense, accurate tracking of maneuvering targets is a core requisite of a high-performance radar.

Given the radar as the origin of the reference system, the state vector of the maneuvering target at
time k is defined as Xk =

[
x, y, z, vx, vy, vz, ax, ay, az

]T , the measurement vector as Zk = [r, a, e]T , where
x, vx, ax, y, vy, ay and z, vz, az is the position, velocity and acceleration components of the target in the
Cartesian coordinate system, and r, a, e is the range, azimuth and elevation of the target in the Polar
coordinate system, respectively.
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Based on the above, a radar system tracking model can be established [1,8,9]:{
Xk = f (Xk−1) + Γ(Xk−1, tk) + ωk

Zk = h(Xk) + vk
(1)

where f (·) is the target dynamic model, Γ(·) is the dynamic model bias caused by the target
maneuver, which is a time-varying nonparametric and unknown component, ωk is the dynamic
model random error with the Gaussian white noise distribution p(ωk) ∼ N(0, Qk), h(·) is a non-linear
measurement function, and vk is the measurement random error with another Gaussian white noise
distribution p(vk) ∼ N(0, Rk). Qk and Rk represent the dynamic model error covariance matrix and
the measurement error covariance matrix, respectively.

From Equation (1), we can conclude in short, as follows

f (true) = f (xk) + Γ(xk) (2)

The dynamic model bias Γ(xk), also called as maneuver item, can be estimated arbitrarily using a
function-approximation scheme that meets the criteria for the Stone-Weierstrauss theorem [11].

The conventional methods of dynamic model modeling for maneuvering target tracking mainly
include random process assumptions, such as the Markov process and semi-Markov jump process,
etc. [8]. One of the most popular models is the Singer model, which defines the Γ(Xk−1, tk) + ωk
component in Equation (1) as a Markov process and assumes that the target acceleration a(t) is
a zero-mean first-order stationary Markov process with an autocorrelation function of Ra(τ) =

E|a(t)a(t + τ)| = σ2e−a|τ|. Based on these, the dynamic equation of the Singer model would be
parameterized by a maneuver factor α [8]. Its variants, called the CS model is essentially a Singer
model with an adaptive mean. Another extension of the Singer model is called the Jerk model, which
is a derivative of acceleration and a zero-mean high-order stationary Markov process. The Singer
model, and its variants, are in essence a kind of a priori model since they do not use online information
about the target maneuver, so, they cannot be expected to be very effective for the diverse acceleration
situations of actual target maneuvers.
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The IMM algorithm has been widely used in maneuvering target tracking, and it uses the Markov
transition probability to switch to multiple models, automatically adjusts the filter bandwidth, and can
track arbitrary maneuvering of targets in theory [18]. The transition probability between different
models is expressed as a Markov chain. Another approach to unknown covariance matrices and
transition models is to rely on multiple standard models and let the filter choose the most adequate
one in each time frame, which is effectively modeling it as Jump Markov system [7,8]. Based on the
multi-model interactive theory, some models like constant acceleration (CA), constant velocity (CV),
constant turning (CT) would be usually used as basic models in an IMM algorithm, and recursive filter
algorithms like the Kalman filter (KF), EKF, UKF, etc. are usually applied to iteratively filter for each
model, and then the transition probability is used to calculate the current optimal estimate and get the
updated covariance matrix. However, the shortcomings of the IMM mean it needs more models and
more calculation, moreover, limited models make it difficult to ensure optimal performance.

Learning-based methods to approximate the target’s unknown maneuver are currently popular.
In mathematical theory, the universal approximation theorem states that artificial neural network or
support vector regression can approximate any continuous functions. For example, the MLP is tightly
coupled with an EKF to form a NEKF filter [11], which learns a function estimate of the biases within
the error covariance of the sensor error, and the NEKF can be used to calibrate sensors for the problems
of registration and target tracking. Support vector regression (SVR), as another technique for linear and
nonlinear function approximation, and is often used for time series prediction [18]. So, an SVR-based
Kalman filter for maneuvering target tracking [19,20] also works well. A standard Kalman filter with a
self-constructing neural fuzzy inference network (SONFIN) algorithm [15] can be trained to detect
when the maneuver occurred, the magnitude of maneuver values, etc. The Elman neural network is
also introduced into IMM filtering to form the optimized IMM-ELM algorithm [14]. The Elman neural
network is a kind of recurrent neural network with some local memory nodes, which can approximate
any time-varying nonlinear function, such as Γ(Xk−1, tk) in Equation (1). Also, the ENN does not need
large training data sets for supervised learning, and the online supervised learning mode enables the
neural network to meet the basic requirements of learning.

The Elman neural network is a typical type of dynamic recurrent neural network (RNN) proposed
by Elman in 1990 [25,26]. As shown in Figure 2, the ENN consists of the undertake layer, input layer,
hidden layer, and output layer. The undertake layer is used to feedback the output of the hidden layer,
along with the signal provided by the input unit at the next time, as the input of the hidden layer unit at
the next moment. It can also be considered as a delay operator, so that the network has the function of
dynamic memory. Its memory and feedback characteristics make it applicable to adaptive short-term
forecasting systems [27–29]. In the ENN, w1 represents the weight from the context layer to the hidden
layer, w2 represents the weight from the input layer to the hidden layer, and w3 represents the weight
from the hidden layer to the output layer, u(k− 1) represents the network input vector at the (t− 1)th
iteration, and y(k) refers to the network output vector at the (t)th iteration. The undertake layer has
retained the hidden layer output vector at the previous iteration; that is to say, xc(t) represents the
context layer output vector at the (t)th iteration, and its value equals the hidden layer output vector at
the (t− 1)th iteration. The thresholds of the hidden layer unit and output layer are θj and θk.
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According to the above configuration, the mathematical model for ENN [25,26] is defined as:

x(k) = λ
(

w1xC(k) + w2u(k− 1)
)

(3)

xC(k) = αxC(k− 1) + x(k− 1) (4)

y(k) = g
(

w3x(k)
)

(5)

where 0 ≤ α < 1 is the self-connected feedback gain factor. λ(x) usually uses the Sigmoid activation
function:

λ(x) =
1

1 + e−x (6)

while g(x) is a linear function. In this way, the ENN can approximate any time-varying function
with limited discontinuous points at any precision, as long as the neurons in the hidden layer are
enough [30].

Like most feed-forward neural networks, the ENN also uses the back-propagation (BP)
algorithm [31] to train the weights and thresholds. Let the actual output of the system be yd(k)
in step k, and its cost function is defined as:

E(k) =
1
2
(yd(k)− y(k))T(yd(k)− y(k)) (7)

3. Elman Neural Network-Based UKF Filter

3.1. Simultaneous Optimization and Feedback Online Learning Scheme

In the classical UKF filter [32–34], the dynamic model error covariance matrix Qk and the
measurement error covariance matrix Rk are always assumed to be time-invariant, but this is not
practical in many cases. It is assumed that Ψ(·) is an unscented transform (UT) in matrix form [9],
then, according to Equation (1), UKF’s prediction process can be defined as:(

X̂k, P̂k
)
= Ψ(Xk−1, Pk−1; f , Qk−1, Θ) (8)

and its update process can be defined as:(∼
Xk,

∼
Pk

)
= Ψ

(
X̂k, P̂k, Zk; h, Rk, Θ

)
(9)
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where Pk−1 is a covariance matrix of state Xk−1, X̂k and P̂k area predicted state and its corresponding

covariance matrix,
∼
Xk and

∼
Pk are the updated state and its corresponding covariance matrix after

getting a new measurement Zk, and Θ is the parameter set for unscented transform.
In many references, the recursive filter’s residual [10], innovation [35] and gain matrix [36] can

be used to model target maneuvers, and optimized estimation [23,37,38] is also used to track the
maneuvering targets. According to the statistical model [8] of maneuvering target tracking, the scale
parameter of Qk is a practical parameter to model the maneuver. In our tracking practice analysis,
we find that if the scale of the covariance matrix Qk is smaller, then the filtering is more accurate,
but when target maneuvering, the scale of Qk should be large enough to ensure that the filter is not
be divergent. So, in our update process in Equation (9), some information on the filter’s residual
X̂k|k−1 − Xk|k, innovation Zk − h(X̂k|k−1) and gain matrix Kk are integrated in one neural network to
approximate the dynamic model bias to enhance the filter’s performance to adjust the scalar parameter

of covariance matrix Qk, and to correct the estimated state
∼
Xk.

Based on the above analysis, a simultaneous optimization and feedback online learning scheme on a
UKF filter is proposed to learn the dynamic model bias. Specifically, two main factors are tightly coupled
in this filter and function simultaneously. One is the feedback strategy, where we use a scale factor qk to
adaptively tune the dynamic model error covariance matrix Q and another is the optimization strategy,
where we use a corrected component ∆Xk to refine the final state estimation adaptively.{

Qk = qk·Q
X′k =

∼
Xk + ∆Xk

(10)

where qk is the scalar parameter of covariance matrix Q and ∆Xk is the corrected vector of the estimated

state
∼
Xk.
Specifically, an ENN-based learning scheme for the UKF filter [39] was designed in this paper,

as seen in Figure 3. In the framework, we define the feedback strategy for the dynamic process error
covariance matrix as Qk: Qk+1 = qk ∗Qk, and we define the optimization strategy for the estimation as
∼
Xk|k: X′k|k = ∆Xk|k +

∼
Xk|k, where qk is the scale factor of Qk, and ∆Xk|k is the correction component of

∼
Xk|k. Ideally, ∆Xk|k = Xtrue

k −
∼
Xk|k, and Xtrue

k is the real position of the target at time k.
However, in the practical application, the real location of uncooperative targets is unknown, and

the actual dynamic process error covariance Qk is unknown also. We have designed an approximate
method; the feedback parameters and corrected state can be learnt online by using a sliding-window
scheme. The training of the network is an online supervised training process and the training samples
are collected by a sliding window with length N (for example, sample size N = 20). In the initial phase,
the ENN is trained by the ground truth, which is available approximately through generating samples

like these: ∆Xk|k = Zk −
∼
Xk|k and qk = k/N. In the subsequent process of recursive learning and

filtering, ∆Xk|k and qk can be continuously updated by the network as follows,

(∆Xk, qk) = ENN(X̂k|k−1 −
∼
Xk|k, Zk − h

(
X̂k|k−1

)
, Kk

∣∣∣∣Π) (11)

The learning scheme of recursive filter based on ENN is shown in Figure 3.
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3.2. An Elman Neural Network Embedded UKF Filter

Specifically, for a radar tracking a maneuverable target, the 9-dimensional state vector Xk|k =[
x, vx, ax, y, vy, ay, z, vz, az

]T is defined, and the 3-dimensional measurement vector is Zk = [r, a, e]T .
In the UKF filter, the CA motion model is used to define the dynamic equation of the target, so the
dynamic equation f (·) is defined as

f (·) =

 ca 0 0
0 ca 0
0 0 ca

where ca =

 1 T T2

2
0 1 T
0 0 1

 (12)

while the observation function is coordinate transformation. Initialization of the state covariance
matrix P and process noise covariance matrix Q are:

P0 =

 P_sta 0 0
0 P_sta/100 0
0 0 P_sta/1000

where P_sta =

 1.0 ∗ e1 0 0
0 1.0 ∗ e1 0
0 0 1.0 ∗ e1

 (13)

Q0 =

 Q_sta 0 0
0 Q_sta/10 0
0 0 Q_sta/1000

where Q_sta =

 1.0 ∗ e2 0 0
0 1.0 ∗ e2 0
0 0 1.0 ∗ e2

 (14)

The data flow of the detailed filtering algorithm of the proposed Elman Neural Network
based UKF Filter (ELM-UKF) is shown in Figure 4. Besides the prediction and update process of
classical UKF, there is an ENN-based augmented process for feedback parameter and optimization
estimation learning.



Sensors 2019, 19, 1596 8 of 19

Sensors 2019, 19, x FOR PEER REVIEW 7 of 17 

 

The data flow of the detailed filtering algorithm of the proposed Elman Neural Network based 
UKF Filter (ELM-UKF) is shown in Figure 4. Besides the prediction and update process of classical 
UKF, there is an ENN-based augmented process for feedback parameter and optimization estimation 
learning.  

 

Figure 4. ELM-UKF filtering algorithm flow. 

According to Figure 4, the ELM-UKF filtering algorithm can be described in detail as Algorithm 
1:  

Algorithm 1: ELM-UKF Filtering Algorithm 
1. The UT transform is applied to the filtering value at the last moment, and a set of Sigma 

point sets and corresponding weights are obtained. 

= | = 0
| − ( + ) ∙ | = 1,2, …
| + ( + ) ∙ | = + 1, + 2, … 2            (15) 

-1 -1k |kX -1| -1k kP

( )

( )

-1| -1

-1| -1

-1| -1

-1| -1

-1| -1

                             0

  1, ,

  1, ,2

k k

k k

i k

k k

k
i

k k
i

X i

X n P i n

X n P i n n

χ κ

κ


=

  = − + =  
  + + = + 

 

 

( ) ( )

0
( )

1 0
2 ( )

m c
i i

i
n

W W
i

n

κ
κ

κ

 = += = 
 ≠
 + 

* ( ) 0,1, , 2i if i nχ χ= = 

2
( ) *

| -1
0

2
( ) * *

| -1 | -1 | -1
0

ˆ

ˆ ˆ( )( ) +

n
m

k k i i
i
n

c T
k k i i k k i k k k

i

X W

P W X X Q

χ

χ χ

=

=

 =

 = − −






( )

( )

( )
| -

| -1

1

| -

1

1

| -

| -1

ˆ                              0
ˆ   1, ,

ˆ   1, , 2

z
i k k

k k

k k

k k
i

k k
i

X i

X n P i n

X n P i n nκ

χ κ


=

  = − + =  
  + + = + 

 

 

* ( )( ) 0,1, , 2z
i iz h i nχ= = 

2
( ) *

|
0

2
( ) * *

| -1 |
0

2
( ) * *

| |
0

ˆ

ˆ ˆ( ) ( )

ˆ ˆ( )( )

n
m

k k i i
i
n

c T
xz i i k k i k k

i
n

c T
zz i i k k i k k k

i

Z W z

P W X z Z

P W z Z z Z R

χ

=

=

=

 =

 = − −



= − − +










1
k xz zzK P P−=

| -1
T

k k k k zz kP P K P K= −
| | -1 | |

ˆ ˆ( )k k k k k k k k kX X K Z Z= + −

+1 +1k |kX

+1| +1k kP

|k kZ

Q R

| | 1
ˆ

k k k kX X −− | |
ˆ

k k k kZ Z− kK

kq |k kXΔ

k kQ q Q=  '
| | |=k k k k k kX X X+ Δ

| | 1 | |
ˆ ˆ( ) [ , , ]k k k k k k k k ku k X X Z Z K−= − −

1 2( ) ( ( ) ( ))cx k f w x k w u k= + ( ) ( 1)cx k x k= −

3
|( ) ( ( )) [ , ]k k ky k g w x k q X= = Δ

1w
2w

3w

Figure 4. ELM-UKF filtering algorithm flow.

According to Figure 4, the ELM-UKF filtering algorithm can be described in detail as Algorithm 1:
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Algorithm 1: ELM-UKF Filtering Algorithm

1. The UT transform is applied to the filtering value at the last moment, and a set of Sigma point sets and
corresponding weights are obtained.

χi =


Xk|k−1 i = 0

Xk−1|k−1 −
[√

(n + k)·Pk−1|k−1

]
i

i = 1, 2, . . . n

Xk−1|k−1 +
[√

(n + k)·Pk−1|k−1

]
i

i = n + 1, n + 2, . . . 2n

(15)

W(m)
i = W(c)

i =


κ

(n+κ)
i = 0

1
2(n+κ)

i 6= 0
(16)

2. State prediction for Sigma point sets.
χ∗i = f (χi) (17)

3. The state prediction mean and covariance matrix is calculated by the weighted Sigma point.

X̂∗k|k−1 =
2n

∑
i=0

W(m)
i χ∗i (18)

Pk|k−1 =
2n

∑
i=0

W(c)
i

(
χ∗i − X̂k|k−1

)(
χ∗i − X̂k|k−1

)T
+ Qk (19)

4. A new Sigma point set is obtained by performing UT transformation on the state prediction.

χ
(z)
i =


X̂k|k−1 i = 0

X̂k|k−1 −
[√

(n + k)·Pk|k−1

]
i

i = 1, 2, . . . n

X̂k|k−1 +
[√

(n + k)·Pk|k−1

]
i

i = n + 1, n + 2, . . . 2n

(20)

5. Observation prediction for the new Sigma point sets.

z∗i = h
(

χ
(z)
i

)
, i = 1, . . . , 2n (21)

6. The observation prediction, observation covariance and the innovation covariance matrix are calculated
by the weighted predictive value.

Ẑk|k = ∑2n
i=0 W(m)

i z∗i
Pxz = ∑2n

i=0 W(c)
i

(
χ∗i − X̂k|k−1

)
·
(

z∗i − Ẑk|k
)T

Pzz = ∑2n
i=0 W(c)

i

(
z∗i − Ẑk|k−1

)
·
(

z∗i − Ẑk|k
)T

+ Rk

(22)

7. Filter gain matrix.
Kk = PxzP−1

zz (23)

8. Update the current state and state covariance matrix.

∼
Xk|k = X̂k|k−1 + Kk

(
Zk|k − ẑk|k

)
(24)

Pk|k = Pk|k−1 − KkPzzKT
k (25)
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9. Calculate the residual, innovation and gain matrix, and they are used as the input vector. When training,
the neural function ENN (·) is trained and supervised b Algorithm 2 and the network parameter Π can be
learnt when Algorithm 2 is converged. When filtering, the corrected estimate item and the scale factor of Q
matrix can be obtained by the forward steps of ENN.(

∆Xk|k, qk

)
= ENN(X̂k|k−1 −

∼
Xk|k, Zk − h

(
X̂k|k−1

)
, Kk

∣∣∣∣Π) (26)

10. Update the process noise covariance matrix and get the corrected estimate.

Qk = qk·Q (27)

X′k|k =
∼
Xk|k + ∆Xk|k (28)

Before training, historical tested data based on a standard UKF filter are constructed as training

samples, the input vector u(k) = (X̂k|k−1 −
∼
Xk|k, Zk − h

(
X̂k|k−1

)
, Kk) and the output vector ŷ(k) =(

∆Xk|k, qk

)
are collected. Then, the main part of the Elman neural network training algorithm is

described as Algorithm 2:

Algorithm 2: ENN Training Algorithm

1. Network parameter initialization: create a case of an Elman neural network with 9 input units, 18 hidden
units and 4 output units. Initialize the weights and learning rate, w1, w2, w3, l.

2. Get the input vector u(k) = (X̂k|k−1 −
∼
Xk|k, Zk − h

(
X̂k|k−1

)
, Kk) and the output vector

ŷ(k) =
(

∆Xk|k, qk

)
for training.

3. The input layer data and the undertake layer data are weighted, and added as the input of the hidden
layer.

x̂(k) = w1xc(k) + w2u(k) (29)

4. Use the hidden layer’s Sigmoid activation function to obtain the output of the hidden layer as the input of
the output and undertake layer.

xc(k) = x(k) = λ(x̂(k)) (30)

5. The output layer is the weighted linear combination of the input, and obtains the output value.

y(k) = g
(

w3x(k)
)

(31)

6. Calculate the error based on following loss function. If the loss is less than a threshold ε (ε > 0), then end
the training.

E(k) =
1
2
(y(k)− ŷ(k))T(y(k)− ŷ(k)) (32)

7. Calculate the weight update according to the BP algorithm.

w1 = w1 + l·(y(k)− ŷ(k))·w3·x(k) (33)

w2 = w2 + l·(y(k)− ŷ(k))·w3·u(k) (34)

w3 = w3 + l·(y(k)− ŷ(k))·x(k) (35)
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4. Experiments and Discussion

Simulation experiments were designed for a variety of different maneuvering forms, such as
double S-shaped, single S-shaped and helical trajectories; different random errors were also
superimposed on each maneuvering form. In our experiments, the simulated target flight trajectories
are based on the combination of five basic motion equations, such as line, parabola, serpentine and
hyperbola and a joint between two consequent segments, at each different trajectory segment or joint,
where the acceleration is variable or with a different configuration. We used a trajectory edit toolkit
to generate different flights trajectories with or without maneuver. According to the design of an
uncooperative target tracking, there is inevitable, unknown and time-varying dynamic model bias
between the real trajectory and the filter’s motion equations, which is the maneuver item.

After generating the trajectories, then the position of the target was transformed to a
radar-centered reference system and was superimposed with specific random distribution error to
get the measurement series. In most physical radar systems, the random component of measurement
error after systematic calibration can be approximated to be a Gaussian distribution.

The 1000 Monte Carlo experiments were carried out to compare the performance of classical
and the state-of-the-art models like the Singer [8], a CA model and CV model combined, simplified
IMM-KF [9], IMM-ELM [14], SVR-UKF [19,20], etc., and our proposed ELM-UKF. In each group of
comparison experiments, the motion equations and initial parameters of these covariance matrixes
P, Q and R were set with the same parameters and the CA model was selected in these methods.
By qualitative and quantitative analyses of the convergence and filtering precision of the above five
models, it was found that the online learning model based on the Elman neural network is superior to
the state-of-the-art methods.

4.1. Experiments on Algorithm Convergence

In the experimental scenario, the target is flying at the initial speed of v = 200 m/s and the
constant acceleration of a =2 m/s2 in a single S-shaped trajectory, and the maximum maneuvering
acceleration is amax =64 m/s2, which is a general maneuvering scenario. The Gaussian white noise of
measurement error with range component ∆R = 300 m, azimuth component ∆A =0.5◦ and elevation
component ∆E = 0.5◦ is added to the trajectory in the scenario, as in Figure 5a. Figure 5a also shows
the superimposed trajectories and their error distribution for the different filtering models, which
are the Singer, IMM-KF, IMM-ELM, and SVR-UKF models and our proposed ELM-UKF model in a
maneuver scenario. The filtering estimation error distributions for the different methods are shown in
Figure 5b–d according to range, azimuth and elevation, respectively.

Additionally, the statistical results of classical and the state-of-the-art models are listed in Table 1.

In Table 1, the metric is calculated as Mean_X =
N
∑

i=1

(
X̂i − Xi

)
/N, where X̂ is the filter estimation, X is

the ground truth, and X can be range (R), azimuth (A) or elevation (E) separately, and N is the total

number of measurements of this scenario. RMSE_X =

(
N
∑

i=1

(
X̂i −Mean_X

)2/(n− 1)
)1/2

, which is

the root mean of square error (RMSE) of the range and azimuth and elevation.
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Table 1. Statistical mean and RMSE of filtering estimation error with different methods.

Mean_R
(m)

Mean_A
(deg)

Mean_E
(deg)

RMSE_R
(m)

RMSE_A
(deg)

RMSE_E
(deg)

Measurement −4.1979 −0.0117 −0.0219 303.0576 0.4780 0.4887
Singer −1.0779 −0.0122 −0.0216 270.1333 0.4601 0.4747

IMM-KF −3.4715 −0.0110 −0.0222 253.9812 0.4027 0.4283
IMM-ELM +18.3676 −0.0074 −0.0032 232.0766 0.3674 0.4058
SVR-UKF −1.6511 −0.0129 −0.0245 240.2092 0.4670 0.4690
ELM-UKF +32.4549 +0.0187 +0.0041 180.8674 0.3968 0.3896

Based on qualitative and quantitative analysis of the experiment results of maneuvering target
tracking, it was found that these four filtering models can achieve good convergence. Generally,
they converge within 20~50 measurements from initial filtering using classical methods. Moreover,
the online learning method based on the Elman neural network has the fastest convergence
performance among the five models from the range error distribution, and it is convergent within
10 measurements.

4.2. Experiments on Different Maneuvering Forms

In scenario 1, the target is flying at a constant speed of v = 200 m/s in a double S-shaped trajectory,
and the maximum maneuvering acceleration is amax =16 m/s2, which is a weak maneuvering
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form. In scenario 2, the target is flying at the initial speed of v = 200 m/s and the constant
acceleration of a =2 m/s2 in a single S-shaped trajectory, and the maximum maneuvering acceleration
is amax =64 m/s2, which is a general maneuvering form. In scenario 3, the target is flying at a
constant speed of v = 300 m/s in a helical trajectory, and the maximum maneuvering acceleration
is amax =90 m/s2, which is a strong maneuvering form. The Gaussian white noise of measurement
error with ∆R = 300 m, ∆A = 0.5◦, ∆E = 0.5◦ is added to the trajectories in the above three scenarios.
Figure 6a–c are three kinds of maneuver scenarios which are superimposed by different filtered
trajectories, for example, the Singer, IMM-KF, IMM-ELM, and SVR-UKF models and our proposed
model. The distribution of mean and RMSE of 1000 Monte Carlo simulations for the three maneuver
scenarios are shown in Figure 7a–c. The statistical results of filtering precision are shown in Table 2.

Figure 6. Different maneuver scenarios. (a) Superimposed trajectory of weak maneuvering form as
scenario 1; (b) Superimposed trajectory of general maneuvering form as scenario 2; (c) Superimposed
trajectory of strong maneuvering form as scenario 3.

In Figure 7 and Table 2, the position estimation p̂ means the target’s state estimation weighted
distance in a Cartesian coordinate system, which is defined as follows: p̂ =

√
x̂2 + ŷ2 + ẑ2, and the

position error is the difference between the position estimation p̂ and the position of ground truth,
and the error mean and RMSE are the corresponding statistical mean and root mean square error.
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Table 2. Monte Carlo simulation error statistics for three scenarios.

Models
Scenario 1 Scenario 2 Scenario 3

Position
Error Mean

(m)

Position
Error RMSE

(m)

Position
Error Mean

(m)

Position
Error RMSE

(m)

Position
Error Mean

(m)

Position
Error RMSE

(m)

Measurement 312.0497 167.7742 307.2045 166.2080 302.6656 165.0034
Singer 286.0601 147.8417 284.0687 148.0820 276.9512 145.0397

IMM-KF 265.2177 137.9686 263.0705 137.9041 256.3642 136.8777
IMM-ELM 210.6755 130.6300 244.6634 128.1961 257.3732 130.0383
SVR-UKF 264.8515 131.5167 263.7172 131.2646 238.4987 127.3800
ELM-UKF 209.9392 103.2325 209.9474 102.0898 207.3112 101.7506

From Figure 7, it can be seen that all five methods, including our proposed algorithm can
effectively adapt to the above three maneuvering scenarios and it can be concluded that when the
target is moving in maneuvers, the filter precision of the traditional Singer model decreases. Compared
with the Singer model, the IMM-KF model, SVR-UKF model and IMM-ELM model have stronger
immunity to the target’s maneuverability, and the filtering precision was improved a little. Either from
the statistical mean or RMSE of Monte Carlo experiments, it can be seen that our proposed ELM-UKF
filter has the best filtering precision among the five models. We used the ratio of the statistical mean
of the filtered error to measurement error to quantitatively evaluate the performance. From Table 2,
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it can be concluded that our proposed model further reduced the ratio by 16.35% on average and up to
24.39%, and the ratio of RMSE of our proposed filter is further reduced 20.26% on average and up to
27.67% compared with other four models.

4.3. Experiments on Different Levels of Measurement Error

In order to assess the influence of different levels of sensor measurement error on filtering when
the target is moving in a maneuvering form, three levels of Gaussian white noise measurement error
were superimposed on the real trajectory. For instance, the largest measurement error was set as
∆R = 500 m, ∆A = 1.0◦, ∆E = 1.0◦, and the middle level was set as ∆R = 300 m, ∆A = 0.5◦, ∆E = 0.5◦

and the smallest level was set as ∆R = 50 m, ∆A = 0.2◦, ∆E = 0.2◦. After adding different-level
measurement errors, the filtered trajectories of the Singer, IMM-KF, IMM-ELM, and SVR-UKF models
and our proposed ELM-UKF model were superimposed as shown in Figure 8a–c. The statistical mean
and RMSE of 1000 Monte Carlo simulations of the scenarios added by three levels of Gaussian random
measurement error are shown in Figure 9a–c. The statistical results of the filtering precision are shown
in Table 3.
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Table 3. Statistical mean and RMSE of Monte Carlo simulation under different random errors.

Models
Large Random Error Middle Random Error Small Random Error

Position
Error Mean

(m)

Position
Error RMSE

(m)

Position
Error Mean

(m)

Position
Error RMSE

(m)

Position
Error Mean

(m)

Position
Error RMSE

(m)

Measurement 556.2067 285.7184 312.0497 167.7742 80.7968 40.7545
Singer 513.3084 252.3426 286.3558 150.5387 75.5647 33.1444

IMM-KF 475.2431 232.6749 265.4042 138.6168 74.4837 32.8079
IMM-ELM 476.9646 223.7813 250.6126 131.2331 70.6471 31.2148
SVR-UKF 442.5600 216.4022 264.9855 132.0531 72.0840 31.5407
ELM-UKF 375.1780 174.7110 210.4447 103.7043 63.4614 27.0275

From the Monte Carlo experiments, it was found that our proposed model can effectively adapt
to different levels of measurement error. Also, it could be concluded that the filtering precision of
our proposed method is superior to the other four methods, including the Singer model, IMM-KF
model, SVR-UKF model and IMM-ELM model under different levels of measurement error, and that
the precision improvement ratio was more than 20%.

Moreover, compared with the other four models, the ratio of the statistical mean of the filtered error
of our algorithm was further reduced by 18.19% on average and up to 24.83%, and the corresponding
statistical RMSE of the filtered error was further reduced by 20.16% on average and up to 27.91% above
the noise levels of the middle random error. Even on the lower noise level, the ratio of the statistical
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mean and statistical RMSE of our proposed filter was further reduced by an average of 12.05% and
12.64%, respectively.

5. Conclusions

In this paper, a novel method for maneuvering target tracking learnt by the Elman neural network
is proposed. It is based on a simultaneous optimization and feedback learning scheme to optimize
the filtering performance. The ENN algorithm is embedded into a classical UKF to learn to track
maneuvering targets. The ENN is trained online by the UKF filter’s residual, innovation and gain
matrix as input and it can learn to tune a scale factor of the dynamic model error covariance matrix
and to correct the final state estimation simultaneously, even if the sensor is tracking an uncooperative
maneuvering target. It can be concluded after numerous of Monte Carlo experiments, that our proposed
method is superior to the state-of-the-art methods, like the Singer model, IMM-KF model, SVR-UKF
model and IMM-ELM model on different maneuvering forms and different measurement errors.
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