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Neuroinflammation is a complex inflammatory process in the central nervous system,

which is sought to play an important defensive role against various pathogens, toxins

or factors that induce neurodegeneration. The onset of neurodegenerative diseases and

various microbial infections are counted as stimuli that can challenge the host immune

system and trigger the development of neuroinflammation. The homeostatic nature

of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is

regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular

unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory

mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive

oxygen species) by brain resident cells or cells migrating from the peripheral blood, results

in the impairment of blood-brain barrier integrity, thereby further affecting the course

of local inflammation. In this review, we analyzed the most recent data on the central

nervous system inflammation and focused on major mechanisms of neurovascular unit

dysfunction caused by neuroinflammation and infections.
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INTRODUCTION

Upon confronting different stimuli such as infectious diseases, toxins, and traumatic shocks, the
host cells present an orchestrated mechanism of actions to maintain the stability of body tissues.
The innate immune cells (i.e., macrophages, dendritic, and mast cells) primarily interact with
antigens in non-specific pathways and stimulate tissue homeostatic (inflammatory) responses
(Medzhitov, 2008). Some infectious agents can trigger intensive tissue inflammatory responses
and activate the complement system. The inflammatory responses in the peripheral tissues
cause dendritic cells to activate the adaptive immune system and induce some robust responses
(i.e., necrosis as a result of phagocytosis). The tuned connection of the central nervous system
(CNS)-immune system supports the host immune defense through various pathways such as
inducing fever, pain sensitivity, and increasing the sleeping time (Maier et al., 1998).

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
https://doi.org/10.3389/fcimb.2017.00276
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2017.00276&domain=pdf&date_stamp=2017-06-20
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:a.tohidpour@gmail.com
https://doi.org/10.3389/fcimb.2017.00276
http://journal.frontiersin.org/article/10.3389/fcimb.2017.00276/abstract
http://loop.frontiersin.org/people/429354/overview
http://loop.frontiersin.org/people/394473/overview
http://loop.frontiersin.org/people/394651/overview
http://loop.frontiersin.org/people/449557/overview
http://loop.frontiersin.org/people/296743/overview
http://loop.frontiersin.org/people/33156/overview


Tohidpour et al. Infectious Diseases and CNS Neuroinflammation

There are substantial differences between inflammatory
responses arising from the CNS and other body tissues. Perhaps
the main distinction is the lack of memory T cells (adaptive
immunity) in the brain parenchyma. Memory T cells present
the specific antigens of invading pathogens and leaving the CNS
they enter lymph nodes and initiate cellular immune responses
in lymphoid tissue. In the healthy brain, parenchymal T-cells
are located in the cerebrospinal fluid (CSF) but in pathological
conditions they enter the CNS through the choroid plexus and
meningeal veins (Charo and Ransohoff, 2006). These cells leave
the CNS through the cribriform plate into the deep cervical
lymph nodes (Andres et al., 1987; Goldmann et al., 2006;
Ransohoff and Engelhardt, 2012; Louveau et al., 2015). On the
other hand, B-cells, another group of adaptive immune cells, can
enter the normal brain. However, their quantity and trafficking
slightly increase after the outbreak of some pathologies such
as AIDS (Anthony et al., 2003). B-cells can differentiate to
plasmoblasts and produce antibodies with different functions
in the CNS or exert antibody-independent activities such as
cytokine production and activation of T-cells (Ransohoff et al.,
2015). The brain parenchymal innate immune cells mainly
consist of resident myeloid cells, astrocytes, and microglia, which
enter the brain and spinal cord parenchyma during the early
embryonic period (Sanes and Lichtman, 1999; Del Rio and
Feller, 2006). Microglia are the key players in the physiological
development of the brain (Schafer et al., 2012). However, other
cell populations within the CNS, such as astrocytes, myeloid cells,
and dendritic cells also contribute to the functional activities and
homeostasis of the brain (Chen and Regehr, 2000; Ransohoff
et al., 2015).

It is clear that the impairment of blood-brain barrier (BBB)
contributes to neuroinflammation. BBB and activated microglia
are components of the neurovascular unit (NVU), and their
structural and functional integrity is a major factor affecting
the course of neuroinflammation. Migration of immune cells,
transport of cytokines and other inflammatory reactions occur
due to the increased permeability of BBB and dysfunction
of NVU. Therefore, coordinated activity of NVU cells (brain
microvessel endothelial cells, pericytes, perivascular astrocytes,
neuronal cells, etc.) is necessary to regulate local inflammation
in brain tissue. For instance, the integrated neuronal activity
and the stimulation of astroglial cells (so-called neuron-astrocyte
metabolic coupling) cause the accumulation of extracellular
lactate and H+ and affect the local inflammatory reactions in
the brain. The increased level of neuronal activity also stimulates
an inflammatory response in the peripheral tissues—so-called
neurogenic inflammation (Figure 1; Roosterman et al., 2006;
Chiu et al., 2012). Neurogenic inflammation often occurs due
to pain, stress, and epileptic seizures and has a typical degree of
similarity to other forms of CNS neuroinflammation (Zochodne
et al., 2001; Beggs et al., 2010; Gruber-Schoffnegger et al., 2013).

Taken together, neuroinflammation is a form of inflammatory
response within the CNS, which is significantly affected by the
status of neuronal activity and BBB permeability. Moderate
inflammatory responses can protect the CNS whereas an
intensive inflammation aggravates the impairment of tissue
homeostasis (Combes et al., 2012; Ransohoff and Brown,

2012; Skaper et al., 2012). In this review, we summarize the
current knowledge on the role of BBB/NVU alterations in
the development of neuroinflammation, with the emphasis on
inflammatory processes caused by infectious diseases. Initially,
an overview of physiologic development of NVU and BBB is
made and we describe the main factors which modulate the
development of neuroinflammation and other neurodegenerative
disorders in the CNS. This is followed by discussing the impact of
infectious diseases on inducing neuroinflammatory responses in
the CNS. Finally, we unfold how neuroinflammation in the CNS
is connected with genetic abnormalities of the host.

NVU/BBB DEVELOPMENT DURING THE
EMBRYONIC, FETAL, AND AFTER-BIRTH
PERIODS

BBB formation starts in the uterus and continues during the
early postnatal period through several stages as 1-vascularization
and angiogenesis (the formation of the choroid plexus and
overgrowth of blood vessels); 2-differentiation of cerebral
endothelial cells; and 3-the maturation of cellular elements of
BBB (Engelhardt and Liebner, 2014).

Vascularization and angiogenesis of BBB happen after the
penetration of neuroblasts in the cranial area, where they
form the perineural vascular plexus. This is followed by the
proliferation of blood vessels from the perineural vascular plexus.
The blood vessels grow radially into the neuroectodermal tissue
and formmultiple small spines that connect with the neighboring
vessels. Throughout the prenatal period, vascularization is
associated with the formation of a mature spatial structure and
a peak of angiogenesis activity that remains stable until the early
postnatal period (Ma et al., 2012).

Unlike other tissues, CNS vascularization is exclusively driven
by the angiogenesis. Different factors such as vascular endothelial
growth factor (VEGF), angiopoietin-1, and sonic hedgehog
protein (Shh) change the phenotype of endothelial cells of the
perineural vascular plexus to blood vessels that sprout into
the neural tube (Lippmann et al., 2012). Differentiation of
endothelial cells requires a basal membrane formed by various
extracellular matrix proteins (collagen IV, fibronectin, and
laminin-1). The coverage of the microvasculature by pericytes
purposely determines them as the first neurovascular unit cells to
physically interact with endothelial cells (Virgintino et al., 2007).
Pericytes, together with neighboring neural progenitor cells and
radial glia might also influence the BBB development and induce
barrier properties in the brain endothelial cells (Weidenfeller
et al., 2007; Daneman et al., 2010b).

During the fetal period, endothelial cells acquire the
phenotypic properties of specific tissues and inhabit areas
of the developing brain, containing neuroepithelial cells,
radial glia, neurons, and neuroblasts (Lippmann et al., 2012).
Immunophenotyping of endothelial progenitor cells showed that
they express some key antigens markers such as CD31, CD34,
and CD45 (Sukmawati and Tanaka, 2015). Mobilization and
collection of endothelial progenitor cells in the developing and
mature brain are regulated by paracrine and endocrine signals
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FIGURE 1 | The paradigm of the CNS neuroinflammation. Various factors can activate the immune response of the CNS and induce neuroinflammation. These stimuli

are classified into two groups: 1—pathogen-associated molecular patterns (PAMPs), which are produced by the invading microorganisms of the CNS and

2—damage-associated molecular patterns (DAMPs), molecules that are released by host due to onset of traumatic conditions or interaction with some

neurotransmitters (i.e., glutamate, GABA, and acetylcholine). The immune responses to the CNS stimuli vary based on the type of stimulation but generally lead to

similar outcomes such as immune adaptation, dysfunction, degeneration, and resolution. Activation of the resting microglia and converting them to two distinct

phenotypes depends on various cytokines produced by surrounding cells (glia, neurons, migratory immune cells). The release of interleukins 4 and 13 (IL-4, IL-13)

gives rise to M1 phenotype (anti-inflammatory) of microglia, which express inflammatory cytokines (interleukin 4, 10, and 13), cell growth factors (i.e., NGF, BDNF,

TGF-β, GDNF), and exert anti-inflammatory effects. Interferon-γ (IFN-γ) and the lipopolysaccharide (LPS) of bacteria, on the other hand, activate the M2 phenotype

(pro-inflammatory) of microglia. The M2 phenotype is characterized by 1—activation of purinergic receptors P2X7 subtype (activated by ATP, promoting the

inflammation and destruction of cells by forming channels and pores), and 2—expression of enzymes which generate reactive oxygen and nitrogen [NAD(P)H-oxidase,

iNOS], and trigger the expression of proinflammatory cytokines (IL-1β, TNF-α, IL-6, IFN- γ). Activation of microglia, especially the formation of M2 phenotype

exacerbates the damage to BBB (in particular neurons and endothelial cells). Effects of these agents (PAMPs, DAMPs, neuromediators) on astroglia cause their

proliferation, activation (reactive astrogliosis), and dysfunction (in particular, increased procoagulant activity and thrombosis). These CNS stimuli also cause endothelial

injury, damage, and neuronal death. GABA, γ-aminobutyric acid; IL, Interleukin; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; TGF, transforming

growth factor; GDNF, glial-derived neurotrophic factors; iNOS, inducible nitric oxide synthase; TNF, tumor necrosis factor; IFN, interferon; ROS, reactive oxygen

species; NO, nitric oxide.

that are produced by BBB. VEGF, Insulin-like growth factor-1
(IGF-1) and angiopoietin-2 are crucial for the mobilization of
endothelial progenitor cells. During embryogenesis, endothelial
cells retain the important function of regulating neurogenesis
by maintaining a population of the brain stem and progenitor
cells using growth factors such as brain-derived neurotrophic
factor (BDNF), leukemia inhibitory factor (LIF), and Platelet-
derived growth factor (PDGF). These processes also occur in
the mature brain during the postnatal period (Urban and
Guillemot, 2014). In the embryonic brain, radial glial cells,
and neuroepithelial cells interact with astrocytes and assist the
maturation and maintenance of BBB. Several growth factors
and signaling molecules such as angiopoietin-1, cyclic adenosine

monophosphate, and basic fibroblast growth factor affect the
BBB phenotype in vitro. It is clear that the BBB phenotype is
influenced by the local microenvironment and is not intrinsic to
brain endothelial cells themselves (Lippmann et al., 2013).

Experiments on animal models (rodents) showed that
BBB formation begins about 10 days after the embryonic
development, followed by the expression of transporter
molecules and tight junction proteins. BBB shows
transendothelial resistance, which gradually increases during
the early postnatal period and corresponds to the formation of
full-fledged tight junctions (Siegenthaler et al., 2013). In contrast
to animal models, many fundamental features of human BBB
development and maintenance remain unclear. After 5 weeks of
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gestation, the first vessels of the brain start to form as vesicles.
During weeks 6–7, these vesicles develop to form a capillary coat
in the ventricular zone (Budday et al., 2015). After 15 weeks, the
vessels penetrate radially through the nervous tissue and develop
into collateral vessels with increased vascular density. During
weeks 20–22, the growth of horizontal branches in the lower
half of the cortex is detected. This phenomenon is followed by
the growth of telencephalon microvessels and the expression
of claudin 5 in endothelial cells (Norman and O’Kusky, 1986;
Virgintino et al., 2007).

The final step of BBB development is maturation and
formation of the NVU. These events are regulated by factors
such as VEGF, death receptor 6 (DR6), and tumor necrosis factor
receptor superfamily member 19 (TNFRSF19; Obermeier et al.,
2013). The neuroectodermal cells, perivascular astrocytes, and
pericytes induce the expression of BBB-associated proteins in the
brain endothelial cells, which in contact with neurons and glial
cells form the BBB (Moretti et al., 2015). BBB maturation in the
postnatal period is determined by the formation of stable cell-
to-cell interactions within the NVU (Daneman et al., 2010a) and
regulated by various humoral factors (i.e., hormones, cytokines,
and neurotransmitters).

BBB ALTERATIONS IN
NEUROINFLAMMATION: MOLECULAR
TARGETS FOR INFLAMMATION-INDUCING
STIMULI

Microglia are the primary components of the CNS innate
immune system. They produce cytokines and monitor the
integrity of CNS. Microglia comprise about 5–20% of brain glial
cell population (Sousa et al., 2017) and are found both in the
white and gray matter of the brain and spinal cord. Microglia
develop early during the embryogenesis and then migrate to
the CNS (Ginhoux et al., 2010). The relatively small turnover
of microglia makes them sensitive to the effect of inflammatory
stimuli such as trauma, stress, and age (Ajami et al., 2007;
Ginhoux et al., 2010). Microglia are crucial for surveying their
microenvironment (Davalos et al., 2005; Nimmerjahn et al.,
2005) and transporting the inflammatory signals (Dantzer et al.,
2008) to the CNS. Activated microglia respond to inflammatory
signals by modifying their gene expression at the transcription
level and releasing cytokines that assist in recruiting leukocytes
to the CNS (Zhou et al., 2006).

The regulation of neuroinflammatory responses is often
a result of cooperation between different chemokines [such
as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-
C motif) ligand 5 (CCL5), and chemokine (C-X-C motif)
ligand 1 (CXCL1)], cytokines (such as IL-6, and TNFα),
reactive species of oxygen and secondary messengers (such as
prostaglandins). Most of these factors are secreted by activated
microglia, which support the synaptic connections and enhance
the immunological responses of CNS (Norden and Godbout,
2013; Schafer and Stevens, 2013). Other resident cells of the CNS
endothelium and macrophages are also crucial for modulating
the inflammatory signals (Dunn et al., 2006). Cytoskeletal

rearrangement of activated microglia results in the modification
of receptor patterns on their surface, which assist their migration
to the source of inflammation (Russo and McGavern, 2015) to
represent their macrophage-like activity on the site of injury
or infection (Davalos et al., 2005). Therefore, the activated
functions of microglia help to defend the CNS against the adverse
effects of hostile threats while their over-activation might lead to
some neuropsychiatric disorders such as depression (Norden and
Godbout, 2013).

Alzheimer’s disease (AD) is an example of chronic
neuroinflammatory disorder. AD is associated with the
activation of microglia, infiltration of the brain tissue with
peripheral immune cells, and misfolding and accumulation of
several essential proteins (Walter et al., 2007; Sokolova et al.,
2009). These phenomena can eventually cause neuronal damage
and lead to death (Bucciantini et al., 2002; Sokolova et al., 2009).
Unlike in other autoimmune inflammatory diseases, the brain
is the initial site of accumulation of soluble β-amyloid and
phosphorylated Tau proteins which lead to AD (Van Eldik et al.,
2016). Accumulation of β-amyloid causes cell toxicity, which
might be counteracted by the expression of transporter molecules
in the BBB to transfer the β-amyloid from the brain tissue to the
blood. However, this mechanism appears to be affected in AD.
Further, progression of neuroinflammation results in deposition
of insoluble proteins aggregates, release of alarmins from the
affected cells [i.e., HMGB1 (high mobility group box-1)] and
elevated permeability of BBB leading to the migration of immune
cells to the brain tissue. Alzheimer’s type neurodegeneration
and inflammatory responses greatly depend on metabolic
alterations of neuronal and glial cells (i.e., impairment of
neuron-astrocyte metabolic coupling, hypometabolism of
glucose, glycolysis, and mitochondria-controlled metabolic
changes in microglia) and disruption of calcium homeostasis
in neuronal and astroglial cells. Such changes are linked to
β-amyloid-induced hypervascularity (extensive angiogenesis)
and hyperpermeability of newly-formed cerebral microvessels
(Biron et al., 2011). Accumulation of β-amyloid is also related to
endothelial dysfunction, vasoconstriction and regional cerebral
hypoperfusion of damaged cerebral vessels in AD (Thomas
et al., 1996; Niwa et al., 2000; Suter et al., 2002; Townsend et al.,
2002; Smith and Greenberg, 2009). The local neuroinflammation
in AD stimulates the impairment of BBB/NVU, while the loss
of functional and structural integrity in the BBB promotes
inflammatory alterations (Salmina et al., 2010).

In addition to the chronic inflammation, CNS can be also
affected by the so-called acute neurodegeneration, which is
caused by various stimuli such as stroke, head injury, and
cerebral or subarachnoid hemorrhage. Some of the markers of
acute neurodegeneration are the release of certain chemokines
and cytokines (i.e., TNFα, IL-1β, and IL-6), and the activity
of microglia. The occurrence of acute neurodegeneration has
positive impacts on the coordination of the CNS function to
deal with the peripheral injuries or infections and improve
the behavioral and physiological responses (Imeri and Opp,
2009). During acute neurodegeneration, migration of the
peripheral immune cells to the CNS is not significant, and
no adverse effects such as cell atrophy or impairment of the
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BBB occur. It is therefore suggested that development of acute
neurodegeneration assists the optimal local immune responses
and provides the microenvironment that is necessary for brain
recovery (Tarr et al., 2014). However, acute neuroinflammation
can also associate with excessive neuronal injury, BBB leakage,
and neurological deficits that hamper neuronal regeneration and
recovery.

CONTRADICTORY ASPECTS OF
NEUROINFLAMMATION

The close relationship between brain and spine injuries
and development of neuroinflammation unveils a cascade of
modulating events in affected hosts. CNS injuries activate
microglia and astrocytes, release certain chemokines and
cytokines and accelerate the migration of peripheral immune
cells to the CNS (Werner and Engelhard, 2007). They
also cause edema, which is associated with elevated BBB
permeability. Moreover, injuries to the CNS trigger post-
traumatic symptoms with short-term inflammatory responses
that can lead to long-term damages (David and Kroner, 2011;
Woodcock and Morganti-Kossmann, 2013). The development of
neuroinflammatory responses by the host immune system plays
a dual role, which can be harmful or beneficial, depending on the
type and extent of the stimulation. Damages to the CNS stimulate
the inflammatory and repair responses of microglia and reveal
their pro-inflammatory and neuroprotective roles, respectively.

The cytokine-mediated sickness behavior is an example of the
positive effect of neuroinflammation. The sickness behavior is
induced upon the activation of the immune system by various
stimuli carried to the CNS. The corresponding inflammatory
signal is processed in theNVU, brain stem, and circumventricular
areas of the CNS (Laflamme et al., 1999; Hansen et al., 2001;
Ching et al., 2007) which produce cytokines such as IL-1β,
TNF-α, and IL-6 (Henry et al., 2009; Chen et al., 2012). These
chemical messengers connect the CNS to the immune system
and stimulate the development of sickness behavior, which is
defined by fever, hypophagia, lethargy, listlessness, and reduced
social communications (Dantzer et al., 2008). It is thought that
the development of sickness behavior is evolutionarily necessary
to counteract against life-threatening antigens and infections
(Bluthe et al., 2000; Berg et al., 2004) without further losing the
BBB integrity or transfer of peripheral immune cells to the CNS
(Dantzer et al., 2008).

Other positive effects of neuroinflammation are immune
conditioning (dose-dependent stimulation of the peripheral
immune system using bacterial cells; DiSabato et al., 2016),
developing the brain plasticity (stimulation of neurogenesis
in the neurogenic niches), and assisting the repair process
in the brain. On the other hand, some of the major
negative impacts of neuroinflammation are injury-related
hyperinflammatory responses, which trigger noradrenergic
signaling (DiSabato et al., 2016) and activate inflammasomes
in the effector cells. These events accelerate the aging process
of the brain by activating the immunologically challenged
microglia.

Altogether, it can be concluded that the acute
neuroinflammation is the positive and beneficial aspect of
the CNS immune response whereas the chronic state of
neuroinflammation is associated with brain damage and
prolonged neurological deficits.

ASSOCIATION OF INFECTIOUS DISEASES
WITH NEUROINFLAMMATION

Activation of local inflammation often starts from the BBB
endothelial cells equipped with the molecular machinery to
sense bacterial and viral antigens. The first line of defense
against microbial invasion comprises the antigenic recognition
of a large group of conserved molecular determinants, called
pathogen-associated molecular patterns (PAMPs; Hanke and
Kielian, 2011) by pattern recognition receptors (PRRs). The
PRRs are located on the surface or within the cytoplasm of
antigen presenting dendritic cells, macrophages, or other none-
immune cells. PRRs activate the innate immune responses,
trigger the phagocytic pathways and directly bind to the invading
microorganisms. Toll-like receptors (TLRs) are essential PRRs,
containing repeats of leucine residues on the N-terminus and a
highly conserved C-terminal domain so-called Toll/interleukin
(IL)-1 receptor (TIR). Expressed by glial cells and neurons,
TLRs are necessary for priming the adaptive immune responses
and inducing the release of co-stimulatory molecules and
inflammatory cytokines (Hanke and Kielian, 2011). TLRs also
recognize a distinct group of host-derived molecules called
danger associated molecular patterns (DAMPs), which are
released upon the onset of diseases and infections that cause
necrosis, apoptosis or tissue damage (Kirschning and Schumann,
2002; Kaisho and Akira, 2004; Kariko et al., 2004; Piccinini and
Midwood, 2010; Hanke and Kielian, 2011). The TLR-mediated
DAMPs and PAMPs recognition is followed by forming an
intracellular molecular machinery (inflammasome) for caspase-
dependent processing of the cytokines (IL-1, IL-18). Expression
of inflammasomes by the activated glial cells stimulate the brain-
leukocyte infiltration (Alfonso-Loeches et al., 2016). In particular,
chronically elevated levels of IL-1 in brain tissue was shown to
provoke BBB breakdown and neutrophil recruitment (Ferrari
et al., 2004). Therefore, measurement of IL-1 and IL-18 levels in
the CSF seems like a useful tool to evaluate the severity of the
neuroinflammation, i.e., in AD (Wang et al., 2015).

The state of neurological and neurodegenerative diseases can
be influenced by peripheral factors such as the gut microbiome
(Dinan and Cryan, 2015). Our gastrointestinal tract is perpetually
coveredwith a population ofmicrobial flora (Ley et al., 2006) with
the ability to cause significant impacts on the brain by releasing
neurotransmitters, hormones, and neuropeptides (Selkrig et al.,
2014; Wall et al., 2014). Some examples of these effects are
neurodegenerative diseases, depression and autism spectrum
disorder (ASD; Putignani, 2012;Mayer et al., 2014; Schroeder and
Backhed, 2016; Sharon et al., 2016). Recent findings suggested
that human microbiome can significantly affect brain function
(Stilling et al., 2014), development (O’Mahony et al., 2017;
Tognini, 2017), and neuroinflammation (Rea et al., 2016).
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The gut microbiota-BBB communication is evident since the
gestation period: normal gut flora is required for BBBmaturation,
establishment of tight junctions, and BBB permeability (in
mice; Braniste et al., 2014). Alterations in the composition of
normal flora is associated with severe neurological disorders
which affect brain development, plasticity, and cause behavioral
abnormalities (El Aidy et al., 2014). Parkinson’s disease (PD) is
a multifactorial neurodegenerative disorder, which is associated
with the accumulation of specific amyloid protein, called α-
synuclein (α-Syn), a phenomenon that also occurs in other PD-
related diseases such as multiple system atrophy (Brettschneider
et al., 2015; Sampson et al., 2016). Patients with PD show
significant gastric (intestinal) inflammation and majorly suffer
from motor deficiencies. Study of a mouse model of Parkinson’s
disease suggested that the motor circuits dysfunctions are
linked to the gastric tract abnormalities and highlighted the
crucial role of gut microbial population in triggering the
augmentation of α-Syn in PD (Sampson et al., 2016). Host
immune responses against infectious diseases are also involved
in the pathogenesis of depression and ASD (Miller and Raison,
2016). Several studies have pinpointed the association of aberrant
neuroimmune responses with autism and development of
depressive behavior (Buehler, 2011; McCusker and Kelley, 2013).
In autism, neuroinflammation might occur in the intrauterine
period of ontogenesis, and might further progress in the
postnatal life in association with impaired angiogenesis and BBB
hyperpermeability (Azmitia et al., 2016). In autistic patients, the
loss of BBB integrity is linked to the low expression of tight
junction proteins and elevated permeability of their intestinal
barrier (Fiorentino et al., 2016). These findings suggest that
intestinal microflora has a causative role in progression of autistic
behavioral abnormalities (Diaz Heijtz, 2016).

One of the most notorious infections of CNS is caused by
Mycobacterium tuberculosis. Tuberculosis (TB) creates a typical
pro-inflammatory response of host immune system (Lee et al.,
2009). The TB of CNS is probably the most severe type of
tuberculosis and in most cases leads to death. Invasion of
the CNS by M. tuberculosis is associated with formation of
myddosome (see below), disruption of BBB due to cytoskeletal
rearrangement in cerebral microvessel endothelial cells (Jain
et al., 2006; Cervantes, 2017) and matrix metalloproteinase-
mediated degradation of BBB (Green and Friedland, 2007).
Tumor necrosis factor (TNF) is a proinflammatory cytokine,
which is involved in priming the host immune system against
M. tuberculosis infection by activating the innate immunity and
maintaining the granulomas structure. Investigation of the role of
TNF in the immune response against TB of the CNS has shown
its protective role. Those findings also proved that neurons are
essential sources of TNF production to regulate the immune
response against pathogens (Francisco et al., 2015).

Some bacterial infections can develop neuroinflammation by
altering the expression of endothelin-1 (ET-1; Freeman et al.,
2014). ET-1 is an isoform of endothelin, a short peptide with 21
amino acid residues, which is mainly expressed by endothelial
cells. ET-1 is important for maintaining the vascular homeostasis
(Agapitov and Haynes, 2002; Schinelli, 2006), vascular tone
and inflammation (Speciale et al., 1998; Bouallegue et al., 2007;

Kohan et al., 2011). Different types of cells such as neurons,
cardiomyocytes, and macrophages produce ET-1 (Freeman et al.,
2014). Although ET-1 is mainly a vasoconstrictor, it also acts
as a pro-inflammatory cytokine, stimulates the aggregation of
platelets and induces the expression of leukocyte adhesion
molecules. ET-1 also stimulates the synthesis of inflammatory
mediators that cause vascular dysfunction and lead to the
progression of diseases and inflammation (Teder and Noble,
2000). Several infectious diseases such as malaria (Dai et al.,
2012), infection of Rickettsia conorii (Davi et al., 1995), and
Chagas disease (Petkova et al., 2001) are associated with ET-
1 hyper-expression. These findings indicate the potential role
of infectious diseases in developing neuroinflammation by
activating ET-1 as a pro-inflammatory cytokine (Freeman et al.,
2014). Moreover, expression of ET-1 has been shown to increase
in PD (Jain, 2014) and AD (due to the activity of β-amyloid;
Palmer et al., 2012). Since overexpression of ET-1 in brain tissue
mediates the breakdown of BBB (Zhang et al., 2013), degenerative
disorders seen in AD and PD could be, at least partially, caused
by the ET-1 hyperexpression.

Taken together, it is crucial to maintain the normal status
of body microflora (microbiome), which is necessary for the
development of cerebral microvessel endothelial cells. Alterations
in the microbiome might provoke inflammation-mediated
BBB breakdown or aberrant maturation of newly established
cerebral endothelial layer. If so, the association of chronic
infections with NVU impairment seen in neurodegenerative or
neurodevelopmental diseases is not surprising.

LPS: A KEY PLAYER IN THE
DEVELOPMENT OF THE CNS
NEUROINFLAMMATION

Repeated and minimized contact with infectious agents such as
bacterial cells or their constituents can activate the peripheral
immune system, thus providing immune protection, in a unique
way, which might not involve stimulation of neuroinflammatory
responses in the CNS. This phenomenon is called euflammation
(Tarr et al., 2014; Liu et al., 2016). Euflammation alters
the innate immune system, through regulating the peripheral
inflammatory kinetics and controls the receptors that bind to
microbial antigens. It also down-regulates the production of
pro-inflammatory cytokines, inhibits the activation of brain
microglia, and minimizes the development of sickness behavior
in animals that received bacterial cells or lipopolysaccharide
(LPS; Tarr et al., 2014). Therefore, euflammation can provide
some immune protection against bacterial infections and severe
toxicity by their endotoxins (Liu et al., 2016).

LPS is a major component of the cell wall structure of gram-
negative bacteria and a well-described endotoxin consisting
of a polysaccharide chain (varies amongst different gram-
negative bacteria) and lipid A (Alexander and Rietschel, 2001).
LPS endotoxins are used in modeling bacterial infections and
stimulating the infection-associated inflammation via triggering
TLR-4, a well-known receptor of LPS (Sandor and Buc, 2005;
Rosadini and Kagan, 2017). The interaction of TLR4 with
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LPS triggers the formation of a macromolecular complex, so
called myddosome (Rosadini and Kagan, 2017), including several
proteins such as myeloid differentiation primary response gene
88 (MyD88), TIR domain-containing adaptor protein (TIRAP),
and interleukin-1 receptor-associated kinase-1 (IRAK). The
myddosome complex stimulates the signaling pathways that
activate NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells), activation protein 1 (AP-1), and hyper-
expression of several inflammatory genes (Rosadini and Kagan,
2017). TLR4 also regulates other inflammatory responses, such
as the release of mediatory microRNAs which sequester LPS-
induced pro-inflammatory responses in order to minimize the
tissue damage caused by LPS (Molteni et al., 2016).

Nuclear binding domain NOD-like receptors (NLRs) are
a main group of PRRs, which detect the bacterial cell
wall components and trigger the inflammation. Nucleotide-
binding oligomerization domain-containing proteins 1 and
2 (NOD-1 and NOD-2) are two major NLRs that detect
bacterial peptidoglycan, induce the release of NF-κB and
activate the mitogen-activated protein (MAP) kinase-dependant
inflammatory responses (Elinav et al., 2011). Studying the effects
of NOD-1 and NOD-2 on brain activity of mice models showed
that co-activation of NOD and TLR4 stimulated the peripheral
immunity and intensified LPS-activated TLR4 impact on sickness
behavior and brain function (Farzi et al., 2015).

Furthermore, recent studies suggested that tolerance to
LPS might trigger a late pro-inflammatory response and
increase the expression of some anti-inflammatory cytokines that
cause inimical injuries to the CNS (Pardon, 2015). Frequent
administration of LPS triggers the hyper-expression of IL-1β,
TNF-α, and IL-12 in brain but reduces the systematic expression
of cytokines. The occurrence of systemic infections increases
the potential of brain innate immune cells to develop tolerance
and may induce or aggravate the neurodegenerative process due
to the damaging effect of cytokine hyper-production (Puntener
et al., 2012).

Epilepsy might be an example of an infection-mediated
neuroinflammatory response, which contributes to the
progression of chronic CNS disorders. Epilepsy is defined
by the occurrence of unprovoked brain seizures and affected
by a multitude of factors such as genetic background, CNS
trauma, and infections (Vezzani and Granata, 2005). Different
infections from bacteria, viruses, fungi, parasites, and prions
can stimulate the CNS inflammation and induce epileptic
seizures (Vezzani et al., 2016). Bacterial LPS can trigger epilepsy
in mice and rat models through stimulating the secretion of
cytokines, in particular, IL-1β, which is crucial in epileptogenesis
(Auvin et al., 2010). Administration of LPS into the peritoneal
cavity of rats induces a cyclooxygenase-2 (COX-2) dependent
inflammation. COX-2 is a prostanoid-forming enzyme, which
is activated during seizures (Rojas et al., 2014). The inducing
effect of LPS on COX-2 indicates a higher seizure susceptibility
and a more intense oxidative response during the LPS-mediated
neuroinflammation (Ho et al., 2015).

Lipoteichoic acid (LTA) is a main constituent of the cell wall
structure which is found in gram-positive bacteria, consisting
of polyhydroxy alkane repeats. LTA assists with bonding the

bacteria to the microvascular endothelial cells of brain (Sheen
et al., 2010). Testing the LTA extracts on mice brain revealed
that it simulated the release of interferon-γ (IFNγ), IL-6, and
other cytokines. LTA was also associated with hyperexpression
of circulating corticosterone and diminished expression of
tight junction proteins, claudin 5 and occludin, in the brain
(Mayerhofer et al., 2017). Upon the onset of bacteriolysis in
blood, i.e., as a result of antibiotic therapy, LTA is released
and detected by TLR2. LTA-TLR-2 triggers the secretion of
inflammatory cytokines such as TNF-α and IL-1b, which
ultimately damage BBB (Boveri et al., 2006).

THE IMPACT OF INFECTIOUS DISEASES
ON THE INCIDENCE OF
NEURODEGENERATIVE DISORDERS

Asmentioned above, several infectious agents could contribute to
neuroinflammation and neurodegeneration. Recently, a group of
pathogenic agents including Borrelia burgdorferi, Porphyromonas
gingivalis, Chlamydophila pneumoniae, Helicobacter pylori,
Cytomegalovirus, Herpes simplex virus type 1, Epstein-Bar virus,
Human herpes virus 6, Candida glabrata, and Toxoplasma gondii
have been addressed to have a significant effect on the late
onset of AD in adults (LOAD; Bu et al., 2015; Lim et al.,
2015; Figure 2). The late-age development of AD is purposely
due to the activity of infections that initially occurred during
the childhood (Khachaturian, 1985). In AD, the association
of chronic infections with progressive neurodegeneration was
clearly demonstrated by recent studies (Maheshwari and Eslick,
2015). Chronic spirochetal infections can induce β-amyloid
accumulation in the brain, cause dementia and reproduce the
clinical, pathological, and biological hallmarks of AD (Miklossy,
2011). Thus, infections by spirochete bacteria have significant
potentials in developing AD (De Chiara et al., 2012; Hill
et al., 2014; Maheshwari and Eslick, 2015). Different species of
spirochetes, such as T. socranskii, T. pectinovorum, T. denticola,
T. maltophilum, T. medium, T. amylovorum, and Borrelia
burgdorferi (causing Lyme disease) are found in the brain of AD
patients (Burgdorfer et al., 1982; Riviere et al., 2002). T. pallidum
(the causative agent of syphilis) can reside in the brain and
cause chronic infection which is associated with inflammation
and dementia (Miklossy, 2015). Moreover, infection by some
spirochetes such as B. burgdorferi could trigger the formation
of specific granulovacuolar lesions in neurons and glial cells,
which are comparable to those found in AD (Miklossy et al.,
2006). AD patients are more vulnerable to infection-mediated
cognitive impairment (McManus andHeneka, 2017), particularly
in the case of chronic respiratory tract infections (McManus et al.,
2014). Since β-amyloid shows antimicrobial properties in vitro
(Welling et al., 2015; Spitzer et al., 2016), it is postulated that the
excessive accumulation of β-amyloid in AD brain could reflect
the response of brain neuronal cells to microbial agents. The co-
morbidity of neurodegenerative and infectious diseases affects
the progression of neurological disorders. For instance, the main
cause of death in AD is the onset of infectious diseases such as
pneumonia or urinary tract infections (Miklossy, 2015).
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FIGURE 2 | Association of infectious agents with Alzheimer’s disease. Chronic infections caused by major infectious agents, i.e., Helicobacter pylori, various types of

spirochetes, including periodontal pathogen spirochetes and Borrelia burgdorferi, Porphyromonas gingivalis, Chlamydophila pneumoniae, Cytomegalovirus, Herpes

simplex virus type 1, Epstein-Bar virus, Human herpes virus 6, Candida glabrata and Toxoplasma gondii are associated with development of AD. Early life exposure to

these pathogenic agents can activate the resting microglia and astroglia, trigger the migration of immune cells to the neuro-endothelial tissue, degrade cell-cell tight

junctions, and cause the breakdown of BBB. These activities result in development of various side effects such as neuronal damage, neuroinflammation and ultimately

predispose the adult patient to develop AD.

C. pneumoniae is an intracellular pathogenic bacterium which
infects mucosal surfaces and causes respiratory infections such
as community-acquired pneumonia (Grayston et al., 1990).
C. pneumoniae is suggestively associated with other non-
respiratory malignancies such as inflammatory arthritis, multiple
sclerosis, and AD (Balin et al., 2008). The association of
C. pneumoniae with pathogenesis of AD has been pinpointed in
several studies (Balin et al., 2008; Shima et al., 2010). However,
it is not still clear whether C. pneumoniae infection actually
develops AD as there are some other studies which failed to show
this relationship. Perhaps by utilizing a suitable C. pneumoniae
infection model and applying standard methods which analyse
homogenous sample analysis one would be able to elucidate this
obscurity (Shima et al., 2010).

H. pylori is a gram-negative and spiral shaped bacterium that
causes progressive and multistep inflammation of gastric lumen
which, can lead to gastric cancer (adenocarcinoma; Tohidpour,
2016). H. pylori infection has been linked to high risk of AD in
infected patients. Analysis of rat models of H. pylori infection

showed evidence of memory and spatial learning defects as well
as damage to thematuration of hippocampus dendritic spine cells
(Wang et al., 2014). Such harmful effects are possibly exerted by
soluble components of H. pylori surface fractions, which induce
formation of Aβ42, a member of β-amyloid (Aβ) family, as main
constituents of extracellular senile plaques (SP). Infection by H.
pylori enhances the activity of γ-secretase, one of two enzymes,
which process the amyloid precursor protein to produce mature
Aβ, thus increasing levels of Aβ in brain of infected host and
contributing to the development of AD (Wang et al., 2014).

THE RELATIONSHIP BETWEEN VIRAL
INFECTIONS AND NEUROINFLAMMATION
IN THE CNS

The impact of viral infections on neuroinflammation
develops through the interaction of CNS-associated immune
responses with virulence factors of viruses, which trigger
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neurodegeneration and apoptosis in the brain (Amor et al.,
2010; Czirr and Wyss-Coray, 2012). Viral encephalitis afflicts
the CNS with various atrophies, such as loss of memory, acute
CNS damage and death. The direct invasion of viruses to CNS
can occur through at least five different pathways: (i) by tight
junctions of brain microvascular endothelium; (ii) invading
the brain microvascular endothelium and penetrating through
the basolateral membranes; (iii) transfecting the migrating
leukocytes to penetrate and infect the CNS; (iv) migrating
through peripheral neuron to the CNS; and (v) infecting the
olfactory bulb epithelium and migrating to the CNS (Miner
and Diamond, 2016). Microglia and astrocytes are two main
types of cells, which are affected during viral infection of the
CNS. They produce pro-inflammatory cytokines and various
immune-mediator molecules that activate the immune system
against viruses (Ransohoff and Perry, 2009; Ransohoff and
Brown, 2012; Perry and Teeling, 2013; Phares et al., 2013).

Recognition of viral pathogenic molecular patterns by host
PRRs stimulates different signaling pathways and activates
transcription factors such as NF-κB and interferon regulatory
factor 3 (IRF3). Activated IRF3 induces the expression of
interferon β (INF-β), which exerts antiviral activity by inhibiting
protein synthesis of viruses. Activated NF-κB triggers the release
of some anti-apoptotic proteins and pro-inflammatory cytokines
with significant antiviral effects (Santoro et al., 2003; Vercammen
et al., 2008). Microglia and astrocytes have been shown to
actively respond to both DNA and RNA viruses [i.e., vesicular
stomatitis virus (VSV), cytomegaloviruses and Sendai virus]
by releasing various types of proinflammatory cytokines and
chemokines such as IL-1β, TNF-α, and IL-6 (Furr and Marriott,
2012).

Viral infections also contribute to the development of AD.
Viruses such as cytomegalovirus, herpesviridae, and herpes
simplex type 1 (HSV-1) can escape the immune system and
activate innate and adaptive immune responses via stimulating
hyper-expression of pro-inflammatory cytokines with their DNA
or RNA (Harris and Harris, 2015). Viral infections either directly
or indirectly contribute to AD pathogenesis through various
pathways such as increasing the concentration of amyloids,
phosphorylating certain neuronal proteins and afflicting neurons
with injury. For instance, infections with cytomegaloviruses
generate a systematic population of pro-inflammatory cytokines
which can pass BBB, trigger the CNS neurodegeneration and lead
to AD (Lim et al., 2015). HSV-1 is usually found in the brain of
infected adult hosts (Wozniak et al., 2005) and is thought to be
involved in development of AD in this group of patients (Agostini
et al., 2014). Primary infection with HSV-1 leads to persistent
infection of sensory ganglion cells that belong to the peripheral
nervous system. Various factors lead to activation of HSV-1
from the latency phase, such as stress and ultraviolet radiation
(Itzhaki, 2014). Re-activated HSV-1 affects the hippocampus as
well as the frontal and temporal cortices of brain, which are also
being affected in AD patients’ brains. The immune system is
also able to reactivate HSV-1 from latency. However, results of
recent experiments have suggested a protective role of humoral
immunity against the damaging effect of HSV-1 in the brain of
infected patients (Mancuso et al., 2014).

The ability of human immunodeficiency virus (HIV) type
1 to invade and infect the CNS is noteworthy. HIV can
penetrate the CNS some weeks after the infection and induce
a neuroinflammation pathway, which leads to the CNS injury
(Schacker et al., 1996; Pilcher et al., 2001). It is thought that
the CNS and the cerebrospinal fluid are potential niches for
replication of HIV. The occurrence of genetic mutations in
HIV genome leads to the evolution of HIV strains that evolve
during early stages of infection and cause CNS inflammation
and neurogenic damages (Dahiya et al., 2013). Although
the current strategies of anti-viral therapy have drastically
reduced neurocognitive impairments caused by HIV, the overall
occurrence of such injuries has increased. This increase is
linked to the difficulties of accessing the anti-HIV treatments in
developing countries. Previous experiments revealed that brain
microvascular endothelial cells are crucial for the immunity
of the CNS against HIV-mediated neuroinflammation. These
cells recognize HIV molecular determinants using TLR3,
release antiviral compounds such as INF-β and trigger the
phosphorylation of IRF3 and IRF7, activities of which control
the interferon signaling pathways and confer immune defense
against HIV infection (Li et al., 2013).

The neuroinflammatory disorders induced by West Nile
virus (WNV) is another example of a viral infection-mediated
CNS neurodegeneration. WNV is a mosquito-borne RNA virus
belonging to flaviviruses (Lindenbach and Rice, 2003). WNV is a
major pathogen of the CNS neurons and causes viral encephalitis.
Microglia and astrocytes of CNS are both infected withWNV and
develop apoptosis (Yang et al., 2002; Chambers and Diamond,
2003). A large number of viral proteins, such as envelope
and capsid proteins are involved in the neuropathogenesis
of WNV (Beasley et al., 2002, 2005; Lee and Lobigs, 2002).
Amongst these, capsid proteins are the main viral factors
causing neuroinflammation, neurotoxic effects, and apoptosis
(Yang et al., 2002). Upon infection with WNV, several PRRs
including MDA5 (melanoma differentiation-associated protein
5), TLR3, TLR7, and RIG-I (retinoic acid-inducible gene 1)
determine the molecular patterns of WNV. This recognition
leads to hyperexpression of inflammatory cytokines such as
IL-1 and TNF-α, which inhibit viral replication, enhance the
presentation of viral antigens and increase the migration of
leukocytes (to eradicate the WNVs from the CNS; Daniels et al.,
2014). Activation of PRRs by WNV also triggers the expression
of IFN-α and IFN-β (type I INFs), which inhibit viral replication
(Samuel and Diamond, 2005) and enhance the capability of the
adaptive immune system. In vitro studies on BBBmodels showed
that the antiviral activities of type I IFNs regulate the permeability
of brain endothelial cells and thus reduce viral movements across
the BBB (Daniels et al., 2014).

Two other members of flavivirus family, Zika virus (ZIKV)
and Dengue virus are also linked to neuroinflammation of
the CNS (Tsai et al., 2016; Roach and Alcendor, 2017). ZIKV,
normally causes limited infections with symptoms such as fever,
headaches, and conjunctivitis (Lum et al., 2017). However,
ZIKV is also associated with brain microcephaly and ocular
defects in infants, which occur during the course of pregnancy
(Roach and Alcendor, 2017). Following recognition by TLR-3,
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infection of fetal brain cells with ZIKV impairs the neurosphere
and brain organoid growth. ZIKV infection has been also
found in Microglia and was shown to increase the level of
cytokines such as IL-6, TNF-α, and IL-1β (Lum et al., 2017).
Same as WNV and ZIKV, Dengue is also a mosquito-borne
RNA flavivirus. Globally, ∼2.5 billion people are at risk of
infection by Dengue virus (DENV; Guabiraba and Ryffel, 2014).
DENV infects around 400 million people each year causing
symptoms such as fever, headache and rashes, which are
referred as dengue fever stage. A minor proportion of patients
who show the symptoms of the dengue fever further develop
an acute form of disease called severe dengue haemorrhagic
fever (DHF)/and shock syndrome (DSS). Some symptoms of
DHF/DSS include gastrointestinal bleeding, renal/hepatic failure
and hemorrhage which are determined by the interaction of
viral virulence factors with components of host immune system.
Strikingly, patients with DHF/DSS are very prone to neurological
defects and CNS abnormalities. DENV can invade the CNS by
transmitting though BBB and induce encephalitis (Tsai et al.,
2016).

Another example of a virus, which also causes encephalitis,
is Chikungunya virus (CHIKV). CHIKV is a member
of encephalitogenic RNA viruses and is transmitted by
mosquito bites (Long et al., 2013; Gerardin et al., 2016).
The infection of CHIKV causes debilitating rheumatic
diseases and inflammatory disorders which are generally
non-fatal. However, in rare cases CHIKV infection can cause
neurodegenerative disorders such as meningoencephalitis,
myelitis, and Guillain-Barre syndrome (Gerardin et al., 2016;
Brizzi, 2017).

Taken together, the onset of viral infections in the CNS can
induce neuroinflammation in the glial cells of NVU (Allen et al.,
2009; Kuang et al., 2009) and activate host immune responses
against the invading viral pathogens. Such immune responses
might eventually result in elevated local cytokines/chemokines
concentrations and loss of BBB integrity.

ROLE OF HOST FACTORS AND GENETIC
ALTERATIONS IN NEUROINFLAMMATION

In addition to infectious agents and injuries, genetic mutations
can also induce neuroinflammation. Genetic studies have
elucidated the molecular mechanisms underlying the etiology
and pathogenesis of various neurodegenerative disorders.
Table 1 shows a list of some major immune genes whose
mutations significantly induce different neurodegenerative
diseases (Table 1).

Acute hemorrhagic leukoencephalitis (AHLE) is a type of
acute disseminated encephalitis that often leads to death. The
etiology of AHLE is thought to be associated with upper
respiratory infections, mumps, and infection by Mycoplasma
pneumoniae. The deficit of complement factor I (CFI) is
frequently associated with recurrent pyogenic infections such as
meningitis and meningoencephalitis (Floret et al., 1991; Leitao
et al., 1997). CFI is a regulator of the complement alternative
pathway and a major complement inhibitor. Complete deficiency
of CFI results in secondary complement deficiency due to
uncontrolled and spontaneous alternative pathway activation,
and leads to hyper-susceptibility to infections (Nilsson et al.,

TABLE 1 | Immune genes associated with development of neurodegenerative diseases such as AD, encephalitis, and meningitis.

Gene/protein Localization Function/activity site Disease (references)

TREM2 (TREM-2; Trem2a; Trem2b;

Trem2c) (rs75932628-T)

Chr 6: 41.16–41.16 Mb Stimulation of the expression of inflammatory

cytokines

Alzheimer’s disease

(Guerreiro et al., 2013; Jiang et al., 2013;

Jonsson et al., 2013; Pottier et al., 2013)

APOE (AD2; LPG; APO-E; ApoE4;

LDLCQ5)

Chr 19 Regulation of β-amyloid aggregation in the

brain

Alzheimer’s disease

(Liu et al., 2013)

Genetic factor I (FI) I322T and D506V Complement factor I, A serine protease,

regulating the immune response alternative

pathway activation

Recurrent aseptic meningo-encephalitis

(Haerynck et al., 2013)

CARD8 (NDPP; DACAR; DAKAR; NDPP1;

TUCAN; CARDINAL) (rs2043211)

Chr 19: 48.18–48.26 Mb An adaptor molecule, regulating apoptosis,

NF-κB, and CASP1-dependent IL-1β

Pneumococcal meningitis

(Geldhoff et al., 2013)

NLRP1 (NAC; CARD7; CIDED; NALP1;

SLEV1; DEFCAP; PP1044; VAMAS1;

CLR17.1; DEFCAP-L/S) (rs11621270)

Chr 19: 48.18–48.26 Mb Inducing apoptosis Pneumococcal meningitis (Geldhoff et al.,

2013)

NFKBIE (IKBE) (rs3138053) Chr 6: 44.26–44.27 Mb Inhibition of NF-κB-mediated cellular

hyper-expression

Pneumococcal meningitis

(Lundbo et al., 2016)

MBL2 (MBL; MBP; MBP1; MBPD;

MBL2D; MBP-C; COLEC1; HSMBPC)

10q21.1 Member of the innate immune system.

Activation of the classical complement pathway

Meningococcal disease

(Lundbo et al., 2015)

LMP7 (JMP; ALDD; LMP7; NKJO;

D6S216; PSMB5i; RING10; D6S216E)

Chr 6: 32.84–32.84 Mb Low molecular weight proteasome, included in

the class II major histocompatibility complex.

LCMV-induced meningitis

(Mundt et al., 2016)
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2009). Broderick and co-workers described two pediatric AHLE
patients of Filipino descent with partial CFI deficiency. They
showed that the primary site of inflammation was in the
CNS and reported symptoms such as headache, hallucinations,
and reduced pupillary reaction to light. Physical examination
of other patients showed that they had difficulties with
speaking and suffered from fatigue. The authors identified
two novel missense mutations in CFI by sequencing 13
exons of CFI and suggested that infections may trigger an
uncontrolled activation of complement in brain parenchyma of
predisposed individuals, leading to severe neuroinflammation
and demyelination (Broderick et al., 2013). Moreover, Haerynck
and co-workers studied a rare deficiency of CFI in a patient with
relapsing inflammatory-mediated meningoencephalitis. They
described the case of a 16-year-old patient having headaches,
nausea, vomiting, neck stiffness, diplopia, and lethargy as
recurrent episodes of acute aseptic meningoencephalitis. MRI
of brain further approved the evidence of meningoencephalitis.
Mutation analysis of the complement factor I gene showed two
heterozygous mutations (I322T and D506V) that resulted in a
complete CFI deficiency due to a functional CFI defect (Haerynck
et al., 2013).

Clinical studies on the role of genetic abnormalities in
pneumococcal meningitis showed the association of meningitis
with polymorphisms in the inflammasome genes encoding
caspase recruitment domain family member 8 (CARD8; SNP
ID: rs2043211) and NLR family pyrin domain containing 1
(NLRP1; SNP ID: rs11621270). Genetic variations possibly
influence inflammasome genes and alter the activation threshold
of inflammatory responses (Geldhoff et al., 2013). Furthermore,
sequencing the coding regions of 46 innate immune genes
from 435 patients, Ferwerda and co-workers showed that
immune susceptibility to pneumococcal meningitis is related to
variations in several genes encoding the CARD8, CXCL1,
NOD-2, and interleukin-1 receptor-associated kinase 4
(IRAK4; Ferwerda et al., 2016). Lundbo and co-workers
also found the association of pneumococcal meningitis with
the polymorphism of nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor (NFKBIE) and that the
increased risk of invasive pneumococcal disease (IPD) was
in the heterozygosity meningitis group for NFKBIE (Lundbo
et al., 2016). Taken together, it is noteworthy to consider the
impact of genetic variations and genetic abnormalities on
function of certain genes, which are responsible for activity,
protection, and homeostasis of NVU and the CNS. The onset
of malignant mutations that disrupt the physiological functions
of such genes can predispose the host to develop severe
neurodegenerative disorders and/or manipulate the ability of
immune system to defend against infectious agents invading
the CNS.

CONCLUDING REMARKS

Neuroinflammation in the CNS has two facets: one beneficial
and the other destructive. It is not yet clear whether the onset of
neuroinflammation is entirely useful or causes further damages.
Moreover, the genetic background of host plays a critical role in
predisposing the CNS to various neuroinflammatory responses

and affecting the ability of the CNS to prevent neuropsychiatric
and neurodegenerative disorders.

Microbial infections can trigger the CNS-associated immune
responses and cause neurodegenerative and neurodevelopmental
disorders. It is well-known that there is a complicated
relationship between the host normal flora and the CNS.
Majority of our understanding of the microbiome effects
on the CNS homeostasis or disorders are derived from the
microbiome-gut-brain axis. However, microbiome from other
body niches might also be able to de-regulate the CNS
and induce neuroinflammatory disorders. For instance, recent
studies have found the presence of RNA of α-proteobacteria
in human brain (Branton et al., 2013). Some α-proteobacteria
are known as pathogen of human, such as Rickettsia conorii,
Rickettsia rickettsii, and Delftia acidovorans (in compromised
patients) and/or have been isolated from cerebrospinal fluid
(D. acidovorans; Pedersen et al., 1970). It is therefore quite
possible that such niche-specificmicrobiomes can directly engage
components of host immune system (such as TLRs or NODs to
activate brain immune signaling) and trigger neuroinflammation.
Therefore, it seems crucial to further determine the effect of non-
gut microbiome on homeostasis of the CNS and trafficking of
immune constituents. It is practical to neutralize the severity
of the CNS inflammation by antibiotic therapy of infections or
eradication of inflammation-stimulating effector cells. However,
these strategies are unable to guarantee lessening the excessive
disadvantages of neuroinflammation or prevent psychological
disorders such as mood or other degenerative diseases (Xanthos
and Sandkuhler, 2014). Alterations in normal composition of
gut microflora can trigger some adverse brain disorders such
as activation of hypothalamic pituitary adrenal (HPA) axis
(Rea et al., 2016), acute brain ischemia (Singh et al., 2016),
and neurodegeneration (Minter et al., 2016). BBB serves as
an essential mediator of the CNS-microbiome interactions.
In this context, deciphering the mechanisms by which BBB
is involved in pathogenesis of the CNS neuroinflammation
sounds very important. It is therefore pivotal to further study
the close relationship of host normal microbiome(s) and the
CNS. This would provide a better understanding of the CNS-
immune system interactions to improve the treatment of the
CNS injuries and reduce the CNS susceptibility to infectious
agents.
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