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Abstract

In this paper, we present and analyze an SEIR Zika epidemic model. Firstly, we investigate

the model with constant controls. The steady states of the model is found to be locally and

globally asymptotically stable. Thereafter, we incorporate time dependent controls into the

model in order to investigate the optimal effects of bednets, treatments of infective and

spray of insecticides on the disease spread. Furthermore, we used Pontryagin’s Maximum

Principle to determine the necessary conditions for effective control of the disease. Also, the

numerical results were presented.

1 Introduction

Zika virus was first discovered in 1947 in Uganda among a certain Rhesus macaque population

[1]. The “Aedes” mosquito is the vector responsible for zika virus transmission. It has also been

established that there is potential transmission to humans during transplacental transmission

or during child delivery from mother to child [1, 2]. There are several characteristics of Zika

virus species which are associated with dengue virus and chikungunya virus [3]. Zika virus

(ZIKV), a Flavivirus closely related to dengue, is primarily transmitted to humans by the bites

of infected female mosquitoes from the Aedes genus [4]. Aedes mosquitos transmit Zika virus.

Mosquitoes become infected by taking a blood meal from an infected person and then they

pass the virus as they bite other people. There is also evidence that Zika virus can be transmit-

ted through sex [5, 6].

The signs and symptoms of Zika virus is similar to dengue fever symptoms and the disease

clinical symptoms manifest in humans within 3 to 12 days. Symptoms is often not severe and

the duration is very short, which is 2-7 days, hence, it is often misdiagnosed as dengue fever.

Nearly one in four persons infected by Zika virus is likely to develop the symptoms of the dis-

ease [2, 3]. Zika virus is currently spreading to many countries in South and Central Americas

and the Caribbean. Precisely, anywhere “Aedes” species of mosquitoes be found, Zika virus

infection is highly possible to can occur [7]. The spread of Zika virus across many geographical

regions has attracted global attention [8].
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There is presently no definite treatment for Zika virus yet, except the control of vectors

using insecticide spray and destruction of the larval breeding grounds. Recent studies have

revealed a devastating effect of Zika virus infection on pregnant women [7]. D. Gao et al. [4]

presented a mathematical model on zika virus with prevention and optimal control.

In recent decades, mathematical modeling has played an important role in the understand-

ing of disease epidemiology and control [9]. Lee and Pietz [10] developed a mathematical

model on zika transmission with vector-host structure focusing on logistic growth in human

population and dynamic growth in vector population. The authors observed that digital dis-

ease surveillance is crucial in minimizing the spread of the disease. Li et al. [11] constructed a

multi-group brucellosis model comprised sheep and cattle and found out that the best way to

contain the brucellosis is to avoid cross infection. They further suggested that the concept of

mix feeding must be avoided. While, Sun and Zhang [12] formulated and developed a sheep

brucellosis model incorporating immigration and proportional birth. The authors also took

into consideration both direct and indirect transmission through animals who have been

infected and the bacteria in the environment. Their study revealed that the best control strate-

gies were the following: elimination, vaccination, reduction of migration and disinfection. In

Xing et al., [13], the authors further proposed a mathematical model on H7N9 avian influenza

among migrant birds, resident birds, domestic poultry and human in China. They found out

that temperature cycling might be the main cause of the disease, however, controlling trading

markets would help to control the spread of the disease. While Sun et al., [14] developed a

cholera transmission model which focused on the disease dynamics in China. They further

observed that in order to reduce the spread of the disease, immunization coverage must be

improved and also the environment must be managed very well. Also, Yu and Lin [15] studied

a complex dynamical behaviour in biological systems as a result of multiple limit cycles bifur-

cation using simple predictor-prey model. The analysis indicated that bistable phenomenon

exist. A modified SIR model was developed by Gui and Zhang [16], which has a nonlinear inci-

dence and recovery rates with the main aim was to comprehend any government intervention

and hospital resources influence on diseases spread. In their studies, it was observed that the

model exhibited a backward bifurcation phenomenon, which implied that reduction in the

reproduction number to less than one is not sufficient enough to stop the spread of the dis-

eases. In Li [17], a dynamical model was constructed to explain the periodic behavour of HFRS

in China. He also found out that the critical issues associated with the spread of this disease is

periodic transmission rates and the rodent periodic birth rate of HFRS in China.

These models are characterized with vivid qualitative accounts of the complex nonlinear

process involved in the transmission process of diseases and provide insight into the dynamics

of the disease. This eventually lead to proper and effective disease control strategies and man-

agement by health authorities. However, to the best of our knowledge there are very few math-

ematical models proposed on Zika virus.

With regard to some vector-borne diseases, such as malaria, dengue fever and Buruli ulcer,

there are many mathematical models that have provided insight into the management and

control of these diseases [9, 18]. For instance, Nishiura et al. [19] developed a Zika mathemati-

cal model which appeared to exhibit the same dynamics as dengue fever. While Khan et al.

[20] proposed a mathematical model with saturation function to investigate the dynamic of

typhoid fever. In Khan et al. [21], the authors developed a mathematical model on Leptospiro-

sis with saturation function to explore the dynamics of the disease. The authors in Bonyah

et al. [18] developed a SIR mathematical model to study the dynamics of Buruli ulcer and sug-

gested that medical resources should be made available for patients in order to control the

disease.

Zika virus transmission
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Jinhong et al. [22] constructed a SEIR epidemic model with saturated incidence rate and

saturated treatment function and their results showed that hospital facilities should be

expanded to accommodate more patients for treatment. Wan and Cui [23] constructed mathe-

matical model to examine the impact of resources for hospitalized people and established that

sufficient number of sickbeds and medical resources are as important as disease control mech-

anism. Shi et al. [24] proposed an HIV model with saturated reverse function to study the

dynamics of infected cells. Javidi, and Nyamorady, [25] however, developed a mathematical

model with a saturated function to explore the dynamics of computer virus.

In this paper, we construct a mathematical model Zika virus. The population of human is

divided into four sub-lcasses, that is, SH, EH, IH and RH while the mosquitos population is

divided into three sub-classes, namely; SV, EV and IV. This paper is two fold; initially, we con-

strict a mathematical model and explore their mathematical results, after that an optimal con-

trol problem is formulated. Different strategies are developed for the numerical results.

The paper is arranged as follow: Section 2 presents the model description and mathematical

assumptions underlying the model. In Section 3, we examine and analyze the model equilibria

and stability analysis. Section 4 is constructed to obtain the mathematical results for endemic

equilibrium and bifurcation analysis. The global stability for both the disease free and endemic

equilibrium is presented in section 5. In section 6 a sensitivity analysis of the model is

presented.

Section 7 is devoted to optimal control analysis of the model, while the numerical results

are presented in Section 8 and the conclusion is presented in Section 9.

2 Mathematical model formulation

In this section, we take into account the human to human infection as well as the vector (mos-

quito) to human transmission. The model subdivide the total human population, NH(t), into

susceptible humans SH(t), exposed human EH(t), infected humans IH(t), and recovered

humans RH(t), so that NH(t) = SH + EH + IH + RH. The entire mosquito population, denoted by

NV(t), is partitioned into susceptible vector SV(t), exposed vector EV(t) and infected mosquito

IV(t) and hence NV = SV + EV + IV. Based on the above discursion we present the following sys-

tem:

d
dt

SH ¼ LH � bHSHðIV þ rIHÞ � mHSH ;

d
dt

EH ¼ bHSHðIV þ rIHÞ � ðmH þ wHÞEH;

d
dt

IH ¼ wHEH � ðmH þ gþ ZÞIH;

d
dt

RH ¼ gIH � mHRH;

d
dt

SV ¼ LV � bVSVIH � mVSV ;

d
dt

EV ¼ bVSVIH � ðmV þ dVÞEV ;

d
dt

IV ¼ dVEV � mVIV :

ð1Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Recruitment of susceptible humans is denoted by ΛH, while susceptible mosquito recruitment

Zika virus transmission
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is denoted ΛV. The effective contact rate between susceptible humans and infected mosquitoes

is denoted by βH. Here, βV is the transmission rate from infected humans to susceptible vector.

The effective contact rate between infected humans and susceptible humans that can result

into infection is denoted by ρ. The disease induced mortality rate is denoted by δ. Natural mor-

tality rates due to each subpopulation of human and vector compartment are denoted μH and

μV respectively. γ and η are the natural and treatment rate.

Let the total dynamics of the human population given as

N 0HðtÞ ¼ LH � mHNH � ZIH: ð2Þ

i. e.,

N 0HðtÞ þ mHNH � LH: ð3Þ

Now integrating both sides of the above inequality and using the theory of differential inequal-

ity due to Birkhoff and Rota [26], we get

0 � NH SH;EH; IH ;RHð Þ �
LH

mH
ð1 � e� mHtÞ þ NHðSHð0Þ þ EHð0Þ þ IHð0Þ þ RHð0ÞÞe

� mHt:

Now, taking, t!1, we get 0 < NH �
LH
mH
:

The total dynamics of vector population is given by

N 0VðtÞ ¼ LV � mVNV : ð4Þ

The exact solution of Eq (4) when t!1 is given by

NVðtÞ ¼
LV

mV
:

It is obvious that

P ¼ fSH; EH ; IH;RH ; SV ;EV ; IVÞ 2 R7
þ
j0 � SH þ EH þ IH þ RH �

LH

mH

and 0 � SV þ EV þ IV �
LV

mV
g;

which is positively invariant, dissipative and the global attractor is attained in P.

3 Equilibria and disease free stability

The disease free equilibrium for the model (1) is E0 ¼
LH
mH
; 0; 0; 0;

LV
mV
; 0; 0

� �
. To obtain the

basic reproduction number for the model (1), we follow the method [27], and obtain the fol-

lowing matrices

F ¼

0
rbHLH

mH
0

bHLH
mH

0 0 0 0

0
bVLV

mV
0 0

0 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;V ¼

k1 0 0 0

� wh k2 0 0

0 0 k3 0

0 0 � dV mV

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

where k1 = μH + χH, k2 = (μH + γ + η) and k3 = (μV + δV). The spectral radius of the matrix

Zika virus transmission
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ρ(FV−1) is the basic reproduction number of the Model (1), given by

R0 ¼
rbHLHwH

2mHk1k2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2b
2

HL
2

Hw2
H

4m2
Hk1

2k2
2
þ

bHLHwHbVdVLV

mHm2
Vk1k2k3

s

¼ R1 þR2

where

R1 ¼
rbHLHwH

2mHk1k2

and

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b

2

HL
2

Hw2
H

4m2
Hk1

2k2
2
þ

bHLHwHbVdVLV

mHm2
Vk1k2k3

s

:

3.1 Local stability disease free equilibrium

In this subsection we show the local stability of disease free equilibrium E0. We present the fol-

lowing result:

Theorem 3.1. The disease free equilibrium of model (1) is stable locally asymptotically if
R0 < 1, otherwise unstable.

Proof: The associated Jacobian matrix of the system (1) at E0 ¼
LH
mH
; 0; 0; 0;

LV
mV
; 0; 0

� �
is

given by

J0 ¼

� mH 0 �
rbHLH

mH
0 0 0 �

bHLH
mH

0 � k1

rbHLH
mH

0 0 0
bHLH

mH

0 wH � k2 0 0 0 0

0 0 g � mH 0 0 0

0 0 �
bVLV

mV
0 � mV 0 0

0 0
bVLV

mV
0 0 � k3 0

0 0 0 0 0 dV � mV

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

The three eigenvalues of the above jacobian matrix are clearly negative, that is −μH, −μH and

−μV. The remaining four roots can then be determined through the following equation:

l
4
þ a1l

3
þ a2l

2
þ a3lþ a4 ¼ 0;

where

a1 ¼ k1 þ k2 þ k3 þ mV ;

a2 ¼ ðk1 þ k2 þ k3ÞmV þ ðk1 þ k2Þk3 þ k1k2 �
rbHLHwH

mH

� �

;

a3 ¼ ðk3 þ mVÞ k1k2 �
rbHLHwH

mH

� �

þ k1k3mV þ k2k3mV ;

a4 ¼ k1k2k3mVð1 � R�

0
Þ

The above characteristics equation will give four negative eigenvalues if R0 < 1 and the Routh

Hurtwiz criteria, ai> 0, for i = 1, 2, 3, 4, and a1a2a3 > a2
1
a4 þ a2

3
satisfy. It is obvious that the

coefficients ai for i = 1, . . .4 are clearly positive, if R0 < 1 and k1k2 �
rbHLHwH

mH

� �
> 0. Thus, it

Zika virus transmission
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follows, that the system (1) at the disease free equilibrium E0 is locally asymptotically stable if

R0 < 1.

4 Endemic equilibria and bifurcation analysis

The endemic equilibria of the System (1) at E1 ¼ ðS�H;E
�
H; I

�
H ;R

�
H; S

�
V ; E

�
V ; I

�
VÞ is given by

S�H ¼
k3LHmVðI�HbV þ mVÞ

k3mVðrbHI�H þ mHÞðI�HbV þ mVÞ þ bHI�HbVdVLV

E�H ¼
bHI�HLHðk3rmVðI�HbV þ mVÞ þ bVdVLVÞ

k1ðk3mVðrbHI�H þ mHÞðI�HbV þ mVÞ þ bHI�HbVdVLVÞ

R�H ¼
gI�H
mH

S�V ¼
LV

mV þ I�HbV

E�V ¼
I�HbVLV

k3ðmV þ I�HbVÞ

I�V ¼
I�HbVdVLV

mVk3ðmV þ I�HbVÞ

ð5Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The endemic equilibria Eq (5) satisfies

I�HðaI
�
H2þ bI�H þ cÞ ¼ 0; ð6Þ

where

a ¼ rbHbVmVk1k2k3;

b ¼ bHbVðk1k2dVLV � k3rLHwHmVÞ þ k1k2k3mVðrbHmV þ mHbVÞ;

c ¼ mHm2
Vk1k2k3ð1 � R�

0
Þ

ð7Þ

where R�

0
¼ R2

0
þ 2R1ð1 � R0Þ: The coefficient a in Eq (7) is obviously positive and c is posi-

tive whenever R0 < 1 and negative if R0 > 1. It is the sign of b and c will decide about the pos-

itive solution of Eq (7). Let R0 > 1, then there exists two roots for Eq (7), one is positive and

the other is negative. c = 0 if R0 ¼ 1, then a unique non-zero solution exists i.e., I�H ¼ � b=a,

for b< 0. Equilibria depend continually on R0 changes which shows that there exists an inter-

val to the left of R0 on which there are two positive equilibria

I�H1 ¼
� b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
and I�H2 ¼

� bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
:

There is no positive solution of Eq (7) if c> 0 and either b� 0 or b2 < 4ac and hence no

endemic equilibria. We establish the following:

Theorem 4.1. The system (1) has:

1. if c< 0 if and only if R0 > 1 then a unique endemic equilibrium exists;

2. if b< 0 and c = 0 or b2 − 4ac = 0 then a unique endemic equilibrium exists;

3. if c> 0 and b< 0 and b2 − 4ac> 0 then two equilibria exists;

4. otherwise no endemic equilibrium.

Zika virus transmission
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Case (iii) of (4.1) shows the possibility of a backward bifurcation in system (1) when

R0 < 1. The backward bifurcation can be obtained by setting b2 − 4ac = 0 and solved for the

critical value of R0, shown by Rc is given by

Rc ¼ 1 �
b2

4amHm2
Vk1k2k3

:

Thus, Rc < R0 is equivalent to b2 − 4ac> 0 and therefore, backward bifurcation would occur

for values of R0 such that Rc < R0 < 1. This fact can be seen for choosing the parameters val-

ues of the model (1):χH = 0.0022, βH = 0.0002, βV = 0.0009, μH = 0.01, δV = 0.3, μV = 0.003, ΛV

= 1.3, ΛH = 0.4, η = 0.11, ρ = 0.029, γ = 0.0614799. The bifurcation diagram is presented in

Fig 1, which demonstrate the existence of two locally asymptotically stable equilibria whenever

R0 < 1, which confirm the occupance of a backward bifurcation in system (1).

4.1 Existence of bifurcation

In order to establish the backward bifurcation phenomenon, we use the centre manifold theory

[9, 28]. We take into account the transmission rate, βH as bifurcation parameter so that R�

0
¼

1 if and only if b
�

H ¼ bH ¼
k1k2k3mHm2

V
LHwH ðk3rm2

VþbVdVLV Þ
. The following variations are made in the variables

of the system (1) so that SH = x1, EH = x2, IH = x3, RH = x4, SV = x5, EV = x6, IV = x7. Also, further

adopting vector notation x = (x1, x2, x3, x4, x5, x6, x7)T. Zika model can then be formulated in

Fig 1. The plot shows the bifurcation diagram.

https://doi.org/10.1371/journal.pone.0185540.g001
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the form dx
dt ¼ FðxÞ, with F = (f1, f2, f3, f4, f5, f6, f7)T as indicated below:

dx1

dt
¼ LH � bHx1ðx7 þ rx3Þ � mHx1

dx2

dt
¼ bHx1ðx7 þ rx3Þ � k1x2

dx3

dt
¼ wHx2 � k2x3

dx4

dt
¼ gx3 � mHx4

dx5

dt
¼ LV � bVx3x5 � mVx5

dx6

dt
¼ bVx3x5 � k3x6

dx7

dt
¼ dVx6 � mVx7

: ð8Þ

The system (8) is evaluated at the Jacobian matrix for the disease free endemic state (DFE) E0

denoted by J(E0) gives

JðE0Þ ¼

� mH 0 �
rbHLH

mH
0 0 0 �

bHLH
mH

0 � k1

rbHLH
mH

0 0 0
bHLH

mH

0 wH � k2 0 0 0 0

0 0 g � mH 0 0 0

0 0
mVk3ðrbHLHwH � mHk2k1Þ

bHdVLHwH
0 � mV 0 0

0 0
mVk3ðmHk2k1 � rbHLHwH Þ

bHdVLHwH
0 0 � k3 0

0 0 0 0 0 dV � mV

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

has a simple zero eigenvalue, at the other eigenvalues having negative real parts. Hence, the

Center Manifold theorem [28] can be applied. For this we need to calculate a and b. We first

start by calculating the right and the left eigenvector of J(E0) denoted respectively by W = [w1,

w2, w3, w4, w5, w6, w7]T and V = [v1, v2, v3, v4, v5, v6, v7]. We obtain

w1 ¼ �
w2k1

mH
; w2 > 0; w3 ¼

w2wH

kk2

; w4 ¼
gw2wH

mHk2

; w5 ¼
w2k3ðrbHLHwH � mHk1k2Þ

bHLHdVk2

;

w6 ¼ �

w2mV
rwH

k2

�
mHk1

bHLH

� �

dV
; w7 ¼ � w2

rwH

k2

�
mHk1

bHLH

� �

Zika virus transmission
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and

v1 ¼ v4 ¼ v5 ¼ 0; v6 > 0; v2 ¼
v6mHðdVmV þ m2

VÞ

bHLHdV
;

v3 ¼
v6mHkk1ðkk3 þ m2

VÞ

bHLHwHdV
; v7 ¼

v6k3

dV
:

After some rigorous algebra computations, it can be shown that

a ¼ �

2v2w2
2
�

b
3

Hk1

rwH

k2

�
mHk1

bHLH

� �

mH
þ

rb
3

HwHk1

mHk2

þ
v6m

2
Vk3

2ðrbHLHwH � mHk1k3Þ
2

L
2

Hd
2

VLVk2
2

0

B
B
@

1

C
C
A

b
2

H

and

b ¼
v2w2LH

rmHk1

bHLH
�
ðr2 � 1ÞwH

k2

� �

mH

Here, the coefficient b is positive, it is the sign of b will determine the occurrence of backward

bifurcation in the given model. It follows from Theorem [28] that the system (1) will undergo

backward bifurcation if the coefficient a is positive. This is implying that the disease free is not

globally stable.

4.2 Local stability endemic equilibrium

Theorem 4.2. The endemic equilibrium of the model (1) is locally asymptotically stable, if
R0 > 1.

Proof: At E1 without RH the jacobian matrix evaluated as

JðE1Þ ¼

� k4 � mH 0 � k5 0 0 � k8

k4 � k1 k5 0 0 k8

0 wH � k2 0 0 0

0 0 � k6 � k7 � mV 0 0

0 0 k6 k7 � k3 0

0 0 0 0 dV � mV

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

where k4 ¼ bHðrI�H þ I�VÞ; k5 ¼ rbHS�H ; k6 ¼ S�VbV ; k7 ¼ I�HbV ; k8 ¼ bHS�H:
The associate characteristics equation of J(E1) is

l
6
þ c1l

5
þ c2l

4
þ c3l

3
þ c4l

2
þ c5lþ c6 ¼ 0; ð9Þ
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where

c1 ¼ mH þ k1 þ k2 þ k3 þ k4 þ k7 þ 2mV ;

c2 ¼ k3k4 þ ðk3 þ k4Þk7 þ k2ðk3 þ k4 þ k7Þ þ k1ðk2 þ k3 þ k4 þ k7Þþ

ðk1 þ k2 þ k3 þ k7ÞmH þ mVð2mH þ 2k1 þ 2k2 þ 2k3 þ 2k4 þ k7Þ � k5wH þ m2
V ;

c3 ¼ k3k7mH � k5wHk9 þ 2k3mHmV þ k7mHmV þ k2ðk7ðmH þ k4Þ þ mVk10 þ k3k11Þ

þk2m
2
V þ k1ðk7ðmH þ k4Þ þ mVk10 þ k3k11 þ k2ðk3 þ k11Þ þ m2

VÞ

þm2
Vk12 þ k3mVð2k4 þ k7Þ þ k4k7ðmV þ k3Þ;

c4 ¼ � wHðk5ðk7ðmH þ mVÞ þ k3ðmH þ k7 þ 2mVÞ þ mVð2mH þ mVÞÞ þ k6k8dVÞ

þk1ðk2ðmVð2mH þ 2k4 þ k7Þ þ k3k11 þ k7k13 þ m2
VÞ þ k13k14mVÞ þ k3k13k14mV

þk1k3ðk10mV þ k7k13 þ m2
VÞ þ k2ðk13k14mV þ k3ðk10mV þ k7k13 þ m2

VÞÞ;

c5 ¼ � wH ½k6k8dVðmH þ mVÞ þ k5k14mHmV þ k3k5ðk7ðmH þ mVÞ þ mVð2mH þ mVÞÞ�

þk1ðk2ðk3ðmVð2mH þ 2k4 þ k7Þ þ k7k13 þ m2
VÞ þ k13k14mVÞ þ k3k13k14mVÞ

þk2k3k13k14mV ;

c6 ¼ mVðk1k2k3k13k14 � mHwHðk6k8dV þ k3k5ðk7 þ mVÞÞÞ;

where k9 = (μH + k3 + k7 + 2μV), k10 = (2μH + 2k4 + k7), k11 = (μH + k4 + k7 + 2μV), k12 = (μH +

k3 + k4), k13 = (μH + k4), k14 = (k7 + μV).

The Routh-Hurtwiz criteria for Polynomial Eq (9) will give six negative eigenvalues if the con-
ditions given below are satisfied: Ci> 0, for i = 1, 2, 3, . . ., 6. The relevant Routh Hurtwiz criteria
in [29] could be used to show that the model (1) is stable locally asymptotically when R0 > 1

5 Global stability

This section investigates the global results for the model (1) at E0 and E1. First, we give the

proof of the disease free global stability.

5.1 Global stability disease free equilibrium

Theorem 5.1. For R0 < 1, the disease free equilibrium E0 of the system (1) is globally asymptoti-
cally stable.

Proof: To show this result, we define the following lyapunov function

LðtÞ ¼ w1 SH � S0
H � S0

Hlog
SH
S0
H

� �

þ w2EH þ w3IH þ w4 SV � S0
V � S0

Vlog
SV
S0
V

� �

þw5EV þ w6IV :

Taking the time derivative of L(t), we have

LðtÞ ¼ w1 1 �
S0
H

SH

� �

S0H þ w2E0H þ w3I 0H þ w4 1 �
S0
V

SV

� �

S0V þ w5E0V þ w6I 0V :
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Using system (1), we have

LðtÞ ¼ w1 1 �
S0
H

SH

� �

½LH � bHSHðIV þ rIHÞ � mHSH �

þw2½bHSHðIV þ rIHÞ � ðmH þ wHÞEH�

þw3½wHEH � ðmH þ gþ ZÞIH � þ w4 1 �
S0
V

SV

� �

½LV � bVSVIH � mVSV �

þw5½bVSVIH � ðmV þ dVÞEV � þ w6½dVEV � mVIV �:

Using S0
H ¼

LH
mH

, S0
V ¼

LV
mV

, and after simplifications, we obtain

LðtÞ ¼ � mHw1

ðSH � S0
HÞ

2

SH
þ ½w2 � w1�bHSHðIV þ rIHÞ

þ½w3wH � w2ðwH þ mHÞ�EH þ w1bH
LH

mH
rþ w4bV

LV

mV
� w3ðmH þ gþ ZÞ

� �

IH

þ½w5 � w4�bVSVIH � mVw4

ðSV � S0
VÞ

2

SV

þ½w6dV � w5ðmV þ dVÞ�EV þ w1bH
LH

mH
� w6mv

� �

IV :

Let’s choose the constants: w1 = w2 = χH, w4 ¼ w5 ¼
dVbHwHLH

mHmV ðdVþmV Þ
, w3 = (μH+χH), w6 ¼

bHwHLH
mVmH

, we

get

L0ðtÞ ¼ � wHmH
ðSH � S0

HÞ
2

SH
�

dVbHwHLH

mHðdV þ mVÞ

ðSV � S0
VÞ

2

SV
� ðmH þ wHÞðmH þ gþ ZÞð1 � R�

0
ÞIH:

Thus, L0(t) is negative for R0 � 1 and zero if and only if SH ¼ S0
H , SV ¼ S0

V , EH = IH = RH = 0

and EV = IV = 0. Therefore the largest compact invariant set in P is the singleton set E0. So, the

model (1) is globally asymptotically stable.
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5.2 Global stability endemic equilibrium

Before, we proceed to obtain the global stability of the model (1) at endemic equilibrium E1,

first, at endemic steady state we, obtain:

LH ¼ bHS�HðI
�
V þ rI�HÞ þ mHS�H

ðmH þ wHÞE�H ¼ bHS�HðI
�
V þ rI�HÞ

wHE�H ¼ ðmH þ gþ ZÞI�H

ðwH þ mHÞðmH þ gþ ZÞ

wH
I�H ¼ bHS

�

HðI
�

V þ rI�HÞ

LV ¼ bVS�VI
�
H þ mVS�V

bVS�VI
�
H ¼ ðmV þ dVÞE�V

dVE�V ¼ mVI�V

bVS�VI
�
H ¼
ðmV þ dVÞmVI�V

dV

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

Now, we prove the global stability of the model (1) at endemic equilibrium E1 by following

[30–32].

Theorem 5.2. If R0 > 1, then the endemic equilibrium E1 is globally asymptotically stable.
Proof: Consider the lyapunove function:

L ¼

Z SH

S�H

1 �
S�H
x

� �

dxþ
Z EH

E�H

1 �
E�H
x

� �

dxþ
ðmH þ wHÞ

wH

Z IH

I�H

1 �
I�H
x

� �

dx

þ

Z SV

S�V

1 �
S�V
x

� �

dxþ
Z EV

E�V

1 �
E�V
x

� �

dxþ
ðmV þ dVÞ

dV

Z IV

I�V

1 �
I�V
x

� �

dx:

The derivative of L along the solutions of system (1) is

_L ¼ 1 �
S�H
SH

� �

S0H þ 1 �
E�H
EH

� �

E0H þ
ðmH þ wHÞ

wH
1 �

I�H
IH

� �

I 0H þ 1 �
S�V
SV

� �

S0V

þ 1 �
E�V
EV

� �

E0V þ
ðmV þ dVÞ

dV
1 �

I�V
IV

� �

I 0V :

By direct calculations, we have that:

1 �
S�H
SH

� �

S0H ¼ 1 �
S�H
SH

� �

½LH � bHSHðIV þ rIHÞ � mHSH �

¼ 1 �
S�H
SH

� �

½bHS�HðI
�
V þ rI�HÞ � bHSHðIV þ rIHÞ þ mHS�H � mHSH�

¼ mHS�H 2 �
SH
S�H
�

S�H
SH

� �

þ 1 �
S�H
SH

� �

bHS�HðI
�
V þ rI�HÞ

� bHSHðIV þ rIHÞ þ bHS�HðIV þ rIHÞ;

ð10Þ
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1 �
E�H
EH

� �

E0H ¼ 1 �
E�H
EH

� �

½bHSHðIV þ rIHÞ � ðmH þ wHÞEH �

¼ bHSHðIV þ rIHÞ � bHSHðIV þ rIHÞ
E�H
EH

� ðmH þ wHÞEH þ ðmH þ wHÞE�H

¼ bHSHðIV þ rIHÞ � bHSHðIV þ rIHÞ
E�H
EH
� ðmH þ wHÞEH

þbHS�HðI
�
V þ rI�HÞ;

ð11Þ

1 �
I�H
IH

� �
ðmH þ wHÞ

wH
I 0H ¼ 1 �

I�H
IH

� �
ðmH þ wHÞ

wH
½wHEH � ðmH þ gþ ZÞIH �

¼ ðmH þ wHÞEH � ðmH þ wHÞEH
I�H
IH

�
ðmH þ wHÞðmH þ gþ ZÞ

wH
IH

þ
ðmH þ wHÞðmH þ gþ ZÞ

wH
I�H

¼ ðmH þ wHÞEH � bHS�HðI
�
V þ rI�HÞ

EH

E�H

I�H
IH
�

bHS�HðI
�
V þ rI�HÞ

IH
I�H

þbHS�HðI
�
V þ rI�HÞ;

ð12Þ

1 �
S�V
SV

� �

S0V ¼ 1 �
S�V
SV

� �

½LV � bVSVIH � mVSV �

¼ 1 �
S�V
SV

� �

½bVS�VI
�
H þ mVS�V � bVSVIH � mVSV �

¼ mVS�V 2 �
SV
S�V
�

S�V
SV

� �

þ 1 �
S�V
SV

� �

bVS�VI
�
H � bVSVIH

þbVS�VIH ;

ð13Þ

1 �
E�V
EV

� �

E0V ¼ 1 �
E�V
EV

� �

½bVSVIH � ðmV þ dVÞEV �

¼ bVSVIH � bVSVIH
E�V
EV
� ðmV þ dVÞEV þ ðmV þ dVÞE

�

V

¼ bVSVIH � bVSVIH
E�V
EV
� ðmV þ dVÞEV þ bVS

�

VI
�

H;

ð14Þ
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1 �
I�V
IV

� �
ðmV þ dVÞ

dV
I 0V ¼ 1 �

I�V
IV

� �
ðmV þ dVÞ

dV
½dVEV � mVIV �

¼ ðmV þ dVÞEV � ðmV þ dVÞEV
I�V
IV
�
ðmV þ dVÞmV

dV
IV

þ
ðmV þ dVÞmV

dV
I�V

¼ ðmV þ dVÞEV �
bVS�VI

�
H

E�V
EV

I�V
IV
�

bVS�VI
�
H

I�V
IV

þbVS�VI
�
H :

ð15Þ

It follows from Eqs (10)–(15)

L ¼ mHS�H 2 �
SH
S�H
�

S�H
SH

� �

þ mVS�V 2 �
SV
S�V
�

S�V
SV

� �

þbHS�HðI
�
V þ rI�HÞ 3 �

S�H
SH
�

IH
I�H
�

I�HEH

E�HIH
þ
ðIV þ rIHÞ
ðI�V þ rI�HÞ

1 �
SHE�H
S�HEH

� �� �

þbVS�VI
�
H 3 �

S�V
SV
�

IV
I�V
�

EVI�V
E�VIV

þ
IH
I�H

1 �
SVE�V
EVS�V

� �� �

ð16Þ

In Eq (16),

2 �
SH
S�H
�

S�H
SH

� �

� 0;

2 �
SV
S�V
�

S�V
SV

� �

� 0;

3 �
S�H
SH
�

IH
I�H
�

I�HEH

E�HIH
þ
ðIV þ rIHÞ
ðI�V þ rI�HÞ

1 �
SHE�H
S�HEH

� �� �

� 0;

3 �
S�V
SV
�

IV
I�V
�

EVI�V
E�VIV

þ
IH
I�H

1 �
SVE�V
EVS�V

� �� �

� 0:

One can see that the largest invariant subset, _L ¼ 0 is E1. So, by LaSalle’s invariance Princi-

ple [33], E1 is globally asymptotically stable whenever R0 > 1.

6 Sensitivity analysis of R0

We performed sensitivity analysis to explore the model robustness to parameter values used.

This is to provide information on the parameters that have significant impact of theoretical

model for Zika virus transmission in relation to the reproduction number R0. In order to

undertake this activity we made use of normalised forward sensitivity index of a variable to a

parameter approach vividly described in [34, 35] this technique is expressed as the ratio of the

relative variation in the variable to the relative variation in the parameter. It can also be viewed

as a differentiable function of the parameter.
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Definition 6.1. The normalized forward sensitivity index of a variable h, that depends differ-
entially on a parameter l, is defined as:

�h
l �

@h
@l
�

l
h
¼ 1 ð17Þ

The detailed sensitivity indices of R0 based on the evaluation to the other parameters of the

model are presented in Table 1. The parameters are organized in such way that it begins from

the most sensitive to the least sensitive one. The most sensitive ones from the Table 1 are the

human infected treatment rate, natural death in humans, recruitment rate of humans, the rate

of exposed humans moving into infectious class, probability of mosquitoes getting infected,

mosquitoes recruitment rate, the rate flow from Ev to Iv, human recovery rate due to treatment

(η, μH, ΛH, χH, βH, βV, ΛV, δV and γ, respectively) and the least parameter is the human modifi-

cation parameter ρ.

For instance, increasing (or decreasing) the human infected treatment rate η by 10%

decreases (or increases) R0 by 9.004%; similarly, increasing (or decreasing) the natural death

in humans, μH, by 10% increases (or decreases) R0 by 5.710%. In the same way, increasing (or

decreasing) the proportion of recruitment rate of humans, ΛH, by 10% increases (or decreases)

R0 by 5.5009%. Further, increasing (or decreasing) the rate of exposed humans moving into

infectious class χH, by 10% increases (or decreases) R0 by 5.508%. In addition, increasing (or

decreasing) the probability of mosquitoes getting infected, βH, by 10% increases (or

decreases)R0 by 4.630%. Wile increasing (or decreasing) the mosquitoes recruitment rate, ΛV

by 10% increases (or decreases) R0 by 4.490%. Furthermore, increasing (or decreasing) the rate

flow from Ev to Iv, δV, by 10% increases (or decreases) R0 by 2.641%. On the other hand,

increasing (or decreasing) the human recovery rate due to treatment, γ by 10% increases (or

decreases) R0 by 1.809%

7 Analysis of optimal control

In this section, we make uses of Pontryagin’s Maximum Principle in order to come out with

the necessary conditions that establishes the presence of optimal control of the Zika virus SEIR
model. We include time dependent controls in the Zika SEIR model and endeavour to explore

the appropriate optimal strategy for putting the Zika vius under control. We use three control

variables, the control u1(t) represents the efforts on preventing zika infections through bed-

nets, the control on treatment of zika infected individuals u2(t) and the third control u3(t)

Table 1. Sensitivity indices of R0 expressed in terms of R0.

Parameter Description Sensitivity

1 η Human infected treatment rate −0.9004

2 μH Natural death rate in human −0.5710

3 ΛH Recruitment rate of humans −0.5509

4 χH The rate of exposed humans moving into infectious class 0.5508

5 βH Probability of humans getting infected 0.4630

6 βV Probability of mosquitoes getting infected 0.4490

7 ΛV Mosquito recruitment rate 0.4490

8 δV The rate flow from EV to IV 0.2641

9 γ Human recovery rate due to treatment −0.1809

10 ρ Human modification parameter 0.0146

https://doi.org/10.1371/journal.pone.0185540.t001
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represents the efforts through insecticides spray against mosquito. In this regard, the following

objective functional are taking into consideration our objective functional is similar to what is

in the literature [9, 36, 37],

Jðu1; u2; u3Þ ¼

Z tf

0

BEH þ CIH þ DEV þ EIV þ
a1

2
u2

1
þ

a2

2
u2

2
þ

a3

2
u2

3

� �
dt; : ð18Þ

where B, C, D, E are the balancing cost factors due to scales and a1, a2 and a3 denote the

weighting constants for making uses of bednets which has the potential of reducing the spread

of the disease(prevention), effective treatment activities which include the efficacy of the drugs

and encouraging patients to take their drugs timely and effective and availability of insecticide

spraying against all stages of mosquitoes. The costs associated with prevention, treatment and

insecticide are taken be of the form of nonlinear. Thus, we endeavour to anticipate an optimal

control u�
1
; u�

2
and u�

3
such that,

Jðu�
1
; u�

2
; u�

3
Þ ¼ min Jðu1; u2; u3Þ;G ¼ fðu1; u2; u3Þj0 � ui � 1; i ¼ 1; 2; 3g:

d
dt SH ¼ LH � ð1 � u1ÞbHSHðIV þ rIHÞ � mHSH ;

d
dt EH ¼ ð1 � u1ÞbHSHðIV þ rIHÞ � ðmH þ wHÞEH;

d
dt IH ¼ wHEH � ðmH þ u2gþ ZÞIH;

d
dt RH ¼ u2gIH � mHRH ;

d
dt SV ¼ LV � ð1 � u1ÞbVSVIH � u3mVSV ;

d
dt EV ¼ ð1 � u1ÞbVSVIH � ðdV þ u3mVÞEV ;

d
dt IV ¼ dVEV � u3mVIV :

ð19Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

The necessary conditions that an optimal solution must conform is emanated from the

Pontryagin Maximum Principle [38]. This concept translates Eqs (18) and (19) into a kind of

problem characterised with minimizing pointwise a Hamiltonian H, with respect to u1, u2

and u3

H ¼ BEH þ CIH þ DEV þ EIV þ a1m
2
1
þ a2m

2
2
þ a3m

2
3

þlSH
fLH � ð1 � m1ÞbHSHðIV þ rIHÞ � mHSHg

þlEH
fð1 � m1ÞbHSHðIV þ rIHÞ � ðmH þ wHÞEHg

þlIH
fwHEH � ðmH þ u2gþ ZÞIHg

þlRH
fu2gIH � mHRH; g

þlSV
fLV � ð1 � m1ÞbVSVIH � mVu3SVg

þlEH
fð1 � m1ÞbVSVIH � ðdV þ u3mVÞEVg

þlIV
fdVEV � mVu3IVg

ð20Þ

where λSH, λEH
, λIH, λRH

, λSV, λEV
and λIV constitute the adjoint variables or co-state variables.

The system solution is attained by appropriately taking partial derivatives of the Hamiltonian

Eq (20) with respect to the associated state variable.
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Theorem 7.1. Given optimal controls u�
1
; u�

2
; u�

3
and solutions SH, EH, IH, RH, SV, EV, IV of the

corresponding state System (18) and (19) that minimize J(u1, u2, u3) over Γ. Then there exists
adjoint variables λSH, λEH

, λIH, λRH
, λSV, λEV

, λIV satisfying

� dli

dt
¼
@H
@i

ð21Þ

where i = SH, EH, RH, IV, SV, EV, IV and with transversality conditions

lSH
ðtf Þ ¼ lEH

ðtf Þ ¼ lIH
ðtf Þ ¼ lRH

ðtf Þ ¼ lSV
ðtf Þ ¼ lEV

ðtf Þ ¼ lIV
ðtf Þ ¼ 0 ð22Þ

and

u�
1
¼ min 1; max 0;

SHbHIVðlEH
� lSH

Þ þ SVbVIHðlEV
� lSV

Þ

a1

� �� �

; ð23Þ

u�
2
¼ min 1; max 0;

gIHðlIH
� lRH

Þ

a2

� �� �

; ð24Þ

u�
3
¼ min 1; max 0;

mVSVlSV
þ mVEVlEV

þ mVIVlIV

a3

� �� �

: ð25Þ

Proof: Corollary 4.1 of Fleming and Rishel [39] provides the condition of possible existence

of an optimal control based on the convexity of the integrand of J with respect to u1, u2 and u3,

a priori boundedness of the state solutions, and the Lipschitz characteristics of the state system

in line with the state variables. The Hamiltonian function determines at the optimal control

level leads to the governing adjoint variables. Thus, the adjoint equations can be rearranged as

�
dlSH

dt
¼ mHlSH

þ ð1 � u1ÞbHðlSH
� lEH

ÞðIV þ rIHÞ

�
dlEH

dt
¼ � Bþ ðmH þ wHÞlEH

� wHlIH

�
dlIH

dt
¼ � C þ ðmH þ u2gþ ZÞlIH

� ðu2gÞlRH
þ rð1 � u1ÞbHSHðlSH

� lEH
Þ

þð1 � u1ÞbVSVðlSV
� lEV

Þ

�
dlRH

dt
¼ mHlRH

�
dlSV

dt
¼ ð1 � u1ÞbVIHðlSV

� lEV
Þ þ ðmVu3ÞlSV

�
dlEV

dt
¼ � Dþ � ðdV þ u3mVÞlEV

� dVlIV

�
dlIV

dt
¼ � E þ ð1 � u1ÞbHSHðlSH

� lEH
Þ þ mVu3lIV

ð26Þ
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8 Numerical simulations

In this section, we present numerical simulation solutions as illustration which is obtained

using MATLAB program. The Table 2 presents the parameter values used for the simulations.

8.1 Prevention (u1) and treatment (u2) control only

In this strategy, prevention measure of providing bednets u1 and the treatment efforts u2 are

employed to optimize the objective function J, and at same time the insecticide spray control

(u3) is set to zero. It is obvious in Fig 2(a) that there is a substantial difference between the

number of exposed individuals EH under control, compare to cases without control. Without

the presence of the two controls the number of exposed humans appear to be increasing. The

result depicted in Fig 2(b) clearly shows that the control strategy activated is effective to reduce

the infected humans IH under control, as not the case without control. The number of infected

humans increases without the control strategies. Fig 2(c) showed that there is no significant

different between the presence of control and without control in the exposed Mosquitoes. The

obvious pattern is observed in Fig 2(d) that without control the infected mosquitoes are reduc-

ing than the presence of control. Fig 2(e) shows that the Zika prevention control u1 should be

maintained at a maximum effort in the entire duration of the intervention at the same time

control u2 which deals with prevention should be kept about 6% during the 120 days.

8.2 Prevention (u1) and insecticide control (u3) only

In this strategy, prevention effort targeting at making effective uses of bednets u1 and the insec-

ticide spray control (u3) are explored while control u2 is set to zero is employed to optimized

the objective function J. We can infer from Fig 3(a) that there is no difference between the

presence of the two controls activated and without the controls in the number of exposed

humans EH bednet u1. In Fig 3(b) the number of infected humans is increased despite the acti-

vation of controls u1 and u2 and this indicated that just provision of bednet and treatment of

humans would not reduce the spread of Zika virus. The control strategy in Fig 3(c) is effective

as there is a substantial difference between the presence of control and without control. in the

number of exposed mosquitoes EV. It can be infer that if effective mechanisms of praying mos-

quitoes are put in place little attention can be put in the provision of bednets in humans. signif-

icant difference is also shown in Fig 3(b) which suggest that this control strategy. There is a

Table 2. Description of variables and parameters of the model.

Parameter Description value Ref

βH Probability of humans getting infected 0.2 day−1 [40]

βV Probability of mosquitoes getting infected 0.09 [3]

μH Natural death rate in humans 1/(365x60) day−1 [3]

μV Natural death rate in mosquitoes 1/14 [9]

χH The rate of exposed humans moving into infectious class 0.01 [40]

ΛH Recruitment rate of humans 100 day−1 assumed

ΛV Mosquito recruitment rate 1000 day−1 assumed

γ Human recovery rate due to treatment 1000 day−1 assumed

ρ Human factor transmission rate 0.05 day−1 assumed

η Human infected treatment rate 0.2 day−1 [9]

δV The rate flow from EV to IV 0.05 day−1 assumed

https://doi.org/10.1371/journal.pone.0185540.t002
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Fig 2. Simulations of the model showing the effect of Zika prevention and treatment only on transmission. Fig 2(a)-

(e) respectively represent the behavior of exposed human, infected human, exposed mosquitos, infected mosquitos and

control profile. u1 = u2 = u3 = 0 represents system without control while u1 = u2 6¼ 0, u3 = 0, shows control system. Fig 2(a) u1 =

u2 = u3 = 0-without control system and u1 = u2 6¼ 0, u3 = 0 control system, Fig 2(b) u1 = u2 = u3 = 0-without control system and

u1 = u2 6¼ 0, u3 = 0 control system, Fig 2(c) u1 = u2 = u3 = 0-without control system and u1 = u2 6¼ 0, u3 = 0 control system, Fig

2(d) u1 = u2 = u3 = 0-without control system and u1 = u2 6¼ 0, u3 = 0 control system, Fig 2(e) u1 = u2 = u3 = 0-without control

system and u1 = u2 6¼ 0, u3 = 0 control system.

https://doi.org/10.1371/journal.pone.0185540.g002
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Fig 3. Simulations of the model showing the effect of Zika prevention and treatment only on transmission. Fig 3(a)-

(e) respectively represent the behavior of exposed human, infected human, exposed mosquitos, infected mosquitos and

control profile. u1 = u2 = u3 = 0 represents system without control while u1 = u3 6¼ 0, u2 = 0, shows control system. Fig 3(a) u1

= u2 = u3 = 0-without control system and u1 = u3 6¼ 0, u2 = 0 control system, Fig 3(b) u1 = u2 = u3 = 0-without control system

and u1 = u3 6¼ 0, u2 = 0 control system, Fig 3(c) u1 = u2 = u3 = 0-without control system and u1 = u3 6¼ 0, u2 = 0 control system,

Fig 3(d) u1 = u2 = u3 = 0-without control system and u1 = u3 6¼ 0, u2 = 0 control system, Fig 3(e) u1 = u2 = u3 = 0-without

control system and u1 = u3 6¼ 0, u2 = 0 control system.

https://doi.org/10.1371/journal.pone.0185540.g003
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significant difference between the presence of the two controls and without the control as seen

in Fig 3(d). The use of bednets and insecticide pray reduces the number of infected mosquitoes

IV and would eventually reduce the spread of the disease. The control profile in Fig 3(e) stipu-

lates that this strategy would require that control u1 must be maintained for a maximum effort

of 120 days throughout the process while control u3 must be kept constant for maximum effort

100% for 40 days and gradually reduce to 22% within the rest of the 120 days. The coreol u2 is

kept zero throughout the process.

8.3 Treatment (u2) and insecticide (u3) only

In this strategy, treatment efforts u2 and the insecticide spray control (u3) are employed to

optimize the objective function J, at the same time the prevention control u1 is set to zero. We

can infer from Fig 4(a) that there no significant difference between the number of exposed

humans EH in the presence of control strategy and without control strategy. This indicates that

the strategy is not the best way to reduce the number of humans getting exposed to the zika

virus disease. The result in Fig 4(b) shows that the control strategy is not the best way to reduce

the number of infected humans. The control strategy is more effective in Fig 4(c) as the num-

ber of exposed mosquitoes EV are substantially minimized. In fact, without the presence of

control in Fig 4(c) the number of exposed mosquitoes EV is increasing. It is clear that in

Fig 4(d) there is a vast different between the number of infected mosquitoes IV the presence of

control and without control strategy. There presence of control strategy is capable of minimiz-

ing the number of infected mosquitoes IV in the communities. The control profile in Fig 4(c)

indicates that the Zika prevention control u3 should be maintained at maximum effort 100%

for 16 days and finally decreasing till the end of 120 days while control u2 must be kept at a

maximum effort 5% for 5 days and immediately decreasing zero in the entire 120 days.

intervention.

8.4 Prevention, treatment and insecticide (u1, u2, u3)

In this strategy, all the three controls are explored in order to optimize (u1, u2, u3). It obvious

in Fig 5(a) that a vast significant difference between number of exposed humans EH in the

presence of control and without control. The activation of all the controls has the a greater

effect of minimizing the number of exposed humans in the communities. The in Fig 5(b) fur-

ther indicates that there substantial difference between the presence of control and without

control. This shows that the control mechanisms are able to reduce the number of infected

humans IH within the communities. In the absence control the the infection will be spreading

at a faster rate. There is relatively significant difference between the presence of control and

without control as in Fig 5(c). In fact communities where zika virus are presence should be to

take precaution measures to avoid exposure to the infected virus.Fig 5(d) suggest that the there

is substantial different between the the presence of control and without control. This further

suggests that the application of all the three control is the best strategy to minimize the number

of infected mosquitoes VI which will eventually can lead to the reduction of the spread of zika

virus. The control profile in Fig 5(c) suggests that control u1 ought to be kept at a maximum

100% for about 40 days and gradually reduce to 25% and kept same within the entire 120 days

period. The control u2 is just maintain at 8% and then gradually decrease and maintain in the

entire 120 days. The control u3 is kept at a maximum 100% for 20 days then decrease to 25%

which is maintain throughout the entire 120 days.
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Fig 4. Simulations of the model showing the effect of Zika prevention and treatment only on transmission. Fig 4(a)-

(e) respectively represent the behavior of exposed human, infected human, exposed mosquitos, infected mosquitos and

control profile. u1 = u2 = u3 = 0 represents system without control while u2 = u3 6¼ 0, u1 = 0, shows control system. Fig 4(a) u1

= u2 = u3 = 0-without control system and u2 = u3 6¼ 0, u1 = 0 control system, Fig 4(b) u1 = u2 = u3 = 0-without control system

and u2 = u3 6¼ 0, u1 = 0 control system, Fig 4(c) u1 = u2 = u3 = 0-without control system and u2 = u3 6¼ 0, u1 = 0 control system,

Fig 4(d) u1 = u2 = u3 = 0-without control system and u2 = u3 6¼ 0, u1 = 0 control system, Fig 4(e) u1 = u2 = u3 = 0-without control

system and u2 = u3 6¼ 0, u1 = 0 control system.

https://doi.org/10.1371/journal.pone.0185540.g004
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Fig 5. Simulations of the model showing the effect of Zika prevention and treatment only on transmission. Fig 5(a)-

(e) respectively represent the behavior of exposed human, infected human, exposed mosquitos, infected mosquitos and

control profile. u1 = u2 = u3 = 0 represents system without control while u1 = u2 = u3 6¼ 0, shows control system. Fig 5(a) u1 =

u2 = u3 = 0-without control system and u1 = u2 = u3 6¼ 0, control system, Fig 5(b) u1 = u2 = u3 = 0-without control system and

u1 = u2 = u3 6¼ 0 control system, Fig 5(c) u1 = u2 = u3 = 0-without control system and u1 = u2 = u3 6¼ 0 control system, Fig 5(d)

u1 = u2 = u3 = 0-without control system and u1 = u2 = u3 6¼ 0 control system, Fig 5(e) u1 = u2 = u3 = 0-without control system

and u1 = u2 = u3 6¼ 0 control system.

https://doi.org/10.1371/journal.pone.0185540.g005
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9 Conclusion

In this work, we studied a deterministic Zika virus model. The basic properties of the proposed

model is investigated in addition to the basic reproduction R0 without control. The steady

states of the model is studied and both disease free and endemic equilibrium is locally asymp-

totically stable. The disease free equilibrium is found to be globally asymptotically is stable.

The central manifold theory is employed to study the stability of endemic equilibrium and also

found to be asymptotically stable. Optimal time control is incorporated into the proposed

model namely bednets, treatment and spraying of insecticide. The Pontryagin’s Maximum

Principle is explored and used to determine the essential conditions usually necessary for effec-

tive control of zika virus. The numerical simulation results obtained suggest that the best strat-

egy to minimize the the spread of zika virus is to optimize all the three controls. The reduction

of the disease can only be attained when needed attention of all the thee controls are taken into

account. The results presented are clear and the public health implications are provided.
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