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Abstract 

Background:  As individuals live longer, elderly populations can be expected to face issues. This pattern urges 
researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the 
effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach.

Methods:  For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems 
pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontol-
ogy, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin 
disorders), constructing the gene–chemicals network, analyzing gene–disease relationships, and validating significant 
genes through the evidence presented in the literature.

Results:  The post-processing of the microarray dataset identified thirteen essential genes among control and 
Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with 
possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-
related diseases and validated their direct connections with skin disorders the evidence available in the literature. 
Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines 
family on skin aging progress.

Conclusions:  Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functional-
ity), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects 
of Zingerone should be assessed in other models (i.e., human or animal) in future studies.

Keywords:  Zingerone, Skin-aging, Systems biology, Systems pharmacology, Interleukin, Gene–disease association, 
Gene–chemicals network, Similar compounds, Skin disorder
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Background
The skin, consisting of the epidermis, dermis, and sub-
cutaneous layers, is the body’s largest organ and forms a 
physical barrier between the external environment and 

the internal environment that protects and maintains. 
As the population ages, the epidermis and dermis are 
the primary targets for various changes that encourage 
the development of novel anti-aging therapeutic agents 
[1]. Physical and chemical environmental factors such 
as UV radiation and xenobiotics play significant roles in 
the oxidative stress of skin cells by altering the involved 
signaling pathways, immunosuppression, and produc-
ing reactive oxygen species (ROS) and photosensitivity 
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diseases [2]. Various skin anti-aging treatment proce-
dures are available, including topical retinoids, peels (e.g., 
salicylic acid), botulinum neurotoxin, soft tissue fillers, 
collagens, hyaluronic acid, autologous fat, allogenic and 
synthetic products, lasers, surgical procedures, and endo-
crinological therapies, as well as other alternatives such 
as phytohormones [3]. The reports showed that the use 
of natural compounds has promising results in reducing 
UV-induced effects of skin aging, which have made them 
play the primary role in cosmetic-related sciences [4].

Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-bu-
tanone) is an inexpensive and nontoxic phenolic alkanone 
structure derived from Ginger (Zingiber officinale Rosc.), 
which is a widely used herb in pharmaceutical and food 
industries throughout the world (e.g., China, Greece, and 
India) [5–7]. Zingerone is a result of gingerol dehydra-
tion while being cooked or dried [5]. The main pharma-
cological properties of Zingerone include anti-oxidative, 
immune-stimulant, anti-inflammatory, and anti-cancer 
effects [8]. Previous studies reported the anti-ultraviolet 
B (UVB) radiation activity of Zingerone in protecting the 
epidermis [9].

Zingerone likely acts as a neuroprotective agent by 
blocking the apoptotic pathway, thus preventing oxidative 
stress and limiting inflammation [10]. It is thought that 
polyphenolic compounds called Zingerone are present in 
ginger and have potent anti-oxidant properties, exhibit 
free radical scavenging activity, and provide resistance 
to oxidative stress [11]. Various protective effects of Zin-
gerone have been reported in lead-induced toxicity [12], 
streptozotocin/high fat diet-induced type 2 diabetes [13], 
rheumatoid arthritis [14], lipopolysaccharide-induced 
oxidative stress, DNA damage, cytokine storms [15], 
experimental colon carcinogenesis [16], alloxan-induced 
oxidative stress [17], cyclophosphamide‑induced organ 
toxicity [11], and cisplatin (cis-diamminedichloroplati-
num (II))-induced jejunal toxicity [18]. Zingerone sub-
stantially decreased NF-κB, TGF-β, TNF-α, IL-1β, IL-6, 
and Hs-CRP levels while considerably increasing IL-10 
levels and restoring anti-oxidant enzyme levels [14]. 
Thus, when given to animals (e.g., Wistar rats) exposed to 
the above-mentioned toxicities and diseases, Zingerone 
may reduce oxidative stress, inflammation, and multi-
organ damage.

To the best of the authors’ knowledge, no investiga-
tion has used systems biology and systems pharmacol-
ogy approaches to determine significantly differentially 
expressed genes between control tissues and those treated 
by Zingerone. In this study, we used the available micro-
array gene expression profiling datasets to meet this aim. 
The functional and cellular mechanisms of identified 
genes were also inspected. Then, various network analy-
ses, including gene–disease and gene–chemicals, were 

performed. Finally, the effects of chemical and herbal 
compounds similar to Zingerone’s structure were studied 
in detail, and the validation of potential significant genes 
was reviewed based on evidence found in the literature.

Methods
A summary of the current research workflow is illus-
trated as a flowchart diagram, as shown in Fig. 1.

Data source
The dataset used in this study is publicly available from 
the gene expression omnibus (GEO) database reposi-
tory of the national center for biotechnology informa-
tion (NCBI) (i.e., https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
with the GPL17692 [HuGene-2_1-st] Affymetrix Human 
Gene 2.1 ST Array [transcript (gene) version] platform. 
The only available GEO dataset, GSE133338, included six 
reconstructed human epidermal (RHE) tissues treated by 
Zingerone (n = 3) and water control (n = 3), as shown in 
Fig. 1.

Differentially expressed genes (DEGs) between two types 
of tissues
Dr. Richard Simon and the BRB-ArrayTools Develop-
ment Team developed a genomics analytical tool, BRB-
ArrayTools (v4.6.1, stable version), to determine potent 
DEGs. Several steps, including GEO dataset import, 
gene filtering (i.e., |fold change|≥ 1), and normalization 
(i.e., quantile normalization), and annotation (i.e., “pd.
hugene.2.1.st” R package [19]), were required to iden-
tify the significant DEGs. The BRB-ArrayTools used the 
gcrma (guanine-cytosine robust multi-array analysis) 
algorithm to map the probe intensities into their cor-
responding gene expression values by discarding exist-
ing noise. The comparison between two treated groups 
resulted in the identification of significant DEGs using 
values of 10,000 and 1 for univariate permutation tests 
and the threshold of fold change. The obtained DEG 
results were significant at p ≤ 0.05.

Gene ontology and functional enrichment analyses
DAVID v. 6.8 (Database for Annotation, Visualization, 
and Integrated Discovery), which is freely available at 
http://​david.​abcc.​ncifc​rf.​gov/​summa​ry.​jsp, provided the 
evaluation of the gene ontology (GO). This evaluation 
included cellular components, molecular functions, and 
biological processes of DEGs [20, 21]. The threshold for 
the EASE score of a modified Fisher exact p value was set 
to its default value of 0.1.

https://www.ncbi.nlm.nih.gov/geo/
http://david.abcc.ncifcrf.gov/summary.jsp
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Effectiveness and similarity structure analyses 
of Zingerone
The canonical SMILES (simplified molecular-input line-
entry system) string for Zingerone structure (shown 

in Fig.  2a) was obtained from the PubChem compound 
database (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​compo​und) 
[22]. Each string of SMILES was used for PubChem simi-
larity structure and ADME prediction using online web 

Fig. 1  The overall workflow of the systems biology and systems pharmacology approaches

https://pubchem.ncbi.nlm.nih.gov/compound
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server tools, i.e., SwissADME [23–25], SwissSimilarity 
[26], and SwissTargetPrediction [27]. The SwissADME 
web server covers the drug design and discovery by com-
puting several parameters, including physicochemical 
descriptors, ADME-related parameters, pharmacokinetic 
properties, drug-likeness effect, and studying medicinal 
chemistry friendliness of SMILES structure.

The similarity criteria for the PubChem similarity 
structure and the SwissSimilarity tools were 0.92 and 
0.50, respectively. Finally, we screened the literature 
for any existing evidence for functionalities of similar 
compounds.

Gene–disease and gene–chemicals network analyses
We extracted the related diseases with evidence accord-
ing to the significant genes obtained through the user-
friendly DisGeNET (i.e., http://​www.​disge​net.​org/) 
platform, derived from the literature on human gene–
disease associations [28]. Additionally, the involvement 
of obtained DEGs affected by Zingerone treatment in 
several specific diseases (and possibly in skin-related dis-
orders) was thoroughly screened through the literature 
studies to confirm and validate whether such genes are 
expressed as potential biomarkers of the disease. Fur-
thermore, we constructed and analyzed the gene–chemi-
cals network from the NetworkAnalyst 3.0 webserver 
to reveal potent associations between genes and com-
pounds available in literature [29].

Results
Since missing any possible genes could affect the final 
results, all of the genes included in the microarray dataset 
are considered. The data preprocessing and class compar-
ison approach using a two-sample t test revealed a total 
of sixty probe IDs, from which only thirteen DEGs were 
available as annotated genes. Four genes were downregu-
lated, and nine were upregulated (as shown in Fig.  2b), 
along with their gene expression levels between control 
and Zingerone-treated samples.

The DAVID functional annotation tool revealed that 
two cellular components (i.e., (i) GO:0005615, and extra-
cellular space with four involved genes TNFRSF11B, 
CTSL, ENDOU, and SPACA5 and (ii) GO:0005576, 
an extracellular region with three involved genes 
TNFRSF11B, CTSL, and ENDOU) were found signifi-
cant. The kappa values of 1.00 and 0.80 indicated a very 
high level of similarity between the two GO terms. More-
over, the statistical measurement values for GO:0005615 
and GO:0005576 were fold enrichments of 7.73 and 4.85, 
Bonferroni values of 0.09 and 0.72, Benjamini values of 
0.088 and 0.60, and false discovery rate (FDR) values of 
0.088 and 0.6, respectively. The detailed inspection of 
GO terms shows that their corresponding child terms 
have various relationships and cross-references with 
GO:0005576 and GO:0005615.

The relationships involving the extracellular space suggest 
that interleukin-35 complex, interleukin-27, interleukin-23, 

Fig. 2  a Chemical structure of zingerone [4-(4-hydroxy-3-methoxyphenyl) butan-2-one] as a zingiber constituent. b DEGs obtained from 
BRB-ArrayTools analysis

http://www.disgenet.org/
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and interleukin-12 were part of GO:0005615. Moreover, 
the relationships involving the extracellular region were 
mainly part of the extracellular isoamylase complex, extra-
cellular ferritin complex, extracellular space, extracellular 
vesicle, and extracellular matrix, to mention a few.

Four types of interleukins (i.e., interleukin-1, inter-
leukin-6, interleukin-34, and interleukin-34 alpha) had 
direct relationships with cross-references of GO:0005615 
(for more information, refer to https://​www.​ebi.​ac.​uk/​
Quick​GO/​GTerm?​id=​GO:​00056​15). Several interleu-
kin types, including interleukin-12 alpha, interleukin-23 
alpha, interleukin-17, interleukin-1 alpha, interleukin-1 
beta, and interleukin-6, were related to cross-references 
of GO:0005576 (derived from https://​www.​ebi.​ac.​uk/​
Quick​GO/​GTerm?​id=​GO:​00055​76).

The assessment of the absorption, distribution, metab-
olism, and excretion (ADME) of the Zingerone struc-
ture using the bioavailability radar (Fig. 3a) indicates the 
high bioactive drug-likeness property and represents 
the lipophilicity, molecular weight, solubility, and flex-
ibility properties positioned in the pink area. Moreover, 
physicochemical and lipophilicity properties (Lipinski’s 
rule of five) (i.e., molecular weight: 194.23  g/mol, num-
ber of rotatable bonds: 4, number of H-bond acceptors: 
3, number of H-bond donors: 1, and consensus Log Po/w: 
1.79) show no violations. The water solubility parameters, 
including Log S (ESOL), Log S (Ali), and Log S (SILI-
COS-IT), demonstrate very soluble, very soluble, and 
soluble features, respectively. Also, the pharmacokinetics 
properties reveal a high level of gastrointestinal absorp-
tion and only CYP1A2 inhibitory function among other 
cytochrome enzymes inhibitors.

The SwissTargetPrediction analysis results in a total 
of 100 target proteins for Zingerone, among which 
enzymes, secreted proteins, nuclear receptors, and 
oxidoreductases make up the highest percentages 
(Fig.  3b). A further inspection of similar structures 
through the SwissSimilarity and PubChem uncovered 
two FDA-approved drugs (i.e., Nabumetone and Maso-
procol), two experimental drugs (i.e., Matairesinol and 
3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propane-
1-one), and three Zingiber constituents (i.e., 6-Shogaol, 
6-Paradol, and 6-Gingerol) (listed in Table 1). The inspec-
tion also revealed their validated anti-inflammatory and 
anti-oxidant properties, as well as the confirmed skin 
disorders, such as skin anti-aging, through the evidence 
provided in the literature.

The gene–disease relationship outcomes from the Dis-
GeNET (accompanied by the relevant evidence from the 
literature) are summarized in Table  2. The results indi-
cate that the DEGs influence various diseases, including 
skin-related disorders. Furthermore, the construction of 
the gene–chemicals network shows the involvement of 
seven DEGs that are directly associated with different 
chemicals. Only four of them (i.e., TNFRSF11B, DNLZ, 
OR9I1, and MIR614) are related to twenty-three skin-
related compounds (shown in Fig. 4).

Discussion
Sunlight is a source of ultraviolet (UV) radiation, which 
can harm the skin. Skin aging, which results from expo-
sure to UV radiation, is often classified into three major 
categories (i.e., UV-A, UV-B, and UV-C). UV-A makes 
up 95% of the UV rays that reach the Earth’s surface, and 

Fig. 3  a The bioavailability radar chart of zingerone structure obtained from SwissADME prediction, b the small molecule protein targets for 
zingerone structure obtained from SwissTargetPrediction web server

https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005615
https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005615
https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005576
https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005576
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UV-B makes up the remaining 5% [30]. UV-C is absorbed 
by the ozone layer. Because of the small amount of UV-B 
that reaches the Earth, there is no substantial evidence, 
confirming that UV-B causes more damage than UV-A. 
UV-A and UV-B may both harm the DNA and proteins 
of cells [31, 32]. UV light causes reactive oxygen species 
(ROS) through oxidized lipids and proteins to be pro-
duced on the skin’s surface. These ROS initiate oxidative 
stress and mutations, thus accelerating skin aging and 
wrinkling. UV-A primarily promotes the production of 
1O2, whereas both UV-A and UV-B cause the production 
of ·O2

− via the activation of NADPH oxidase [33–35]. 
Exposure to UV-B radiation induces erythema by upreg-
ulating the expression of cyclooxygenase-2 (COX-2), 
which stimulates the inflammation process [36].

As we age, we naturally produce less collagen and other 
skin components, resulting in reduced collagen synthe-
sis and enhanced collagen breakdown. This causes the 
appearance of skin aging associated explicitly with dermal 
matrix alterations that may include wrinkling, stiffness, 
and weakness of skin aging, as well as loss of skin elasticity 
[37]. Through the release of interleukins (e.g., (IL)-1a and 
IL-6), the 1O2 produced by UV-A promotes matrix met-
alloproteinase (MMP-1) generation in human skin fibro-
blasts [38, 39] and decreases collagen synthesis [40].

The effects of several anti-oxidants on the skin and skin 
cells, including ascorbic acid, tocopherols, carotenoids, 
natural compounds, and polyphenols, are of great impor-
tance [41]. These chemicals are mainly responsible for 
ROS and DNA damage reduction generated on the skin’s 
surface. Among these, polyphenols are a kind of molec-
ular structure generally extracted from plants with the 
structural feature of phenol units with anti-inflammatory 
and anti-oxidant properties. They are reported to have 

COX inhibition activity, promote resistance to oxidative 
stress, and stop skin aging [42]. Moreover, the anti-oxi-
dant or anti-inflammatory activities of phenolic acids can 
be enhanced through the presence of methoxy (-OCH3), 
phenolic hydroxyl (-OH) groups, and carboxylic acid (–
CH2COOH, –CH = CHCOOH, –COOH) [43].

To investigate the anti-oxidant activity of the com-
pounds, IC50 values are quantitatively measured to 
indicate how much of a particular inhibitory chemical 
is used to inhibit a biological component, such as an 
enzyme or receptor, by fifty percent. The higher anti-
oxidant activities are in direct relationship with smaller 
IC50 values [43]. As listed in Table 3, the structures of 
Zingerone and similar compounds obtained from the 
results represent FDA-approved/experimental drugs 
and natural compounds. These chemicals with phenolic 
hydroxyl or methoxy groups automatically inherit the 
anti-oxidant and anti-inflammatory activities that pre-
vent skin aging. On the other hand, their IC50 values 
were extracted from bindingdb.org, a public database 
of measured binding affinities [44, 45]. The extracted 
pIC50 =  − LOG10(IC50) values for eight structurally 
similar compounds and Zingerone range from 3.8 to 
4.5 in different target/enzyme environments, repre-
senting their high anti-oxidant and anti-inflammatory 
activities. The primary mechanism of action of these 
compounds in terms of their anti-oxidant features is 
the direct scavenging of free radicals. The radical oxida-
tion of anti-oxidants results in a more stable, less radi-
cal reaction. By interacting with the reactive radicals, 
anti-oxidants stabilize the ROS.

The methoxy and hydroxyl groups of the anti-oxidants 
with the highest reactivity can make free radicals inactive 
(i.e., Eq. (1)):

Table 1  The list of identified compounds from SwissSimilarity and PubChem structure similarity accompanied by their anti-oxidant, 
anti-inflammatory, and related skin disorders

1 The obtained results are from SwissSimilarity through performing ligand-based virtual screening of combined FDA approved drugs (n = 1516) of small molecules 
(> 50%)
2 The obtained results are from SwissSimilarity through performing ligand-based virtual screening of combined experimental drugs (n = 4788) of small molecules 
(> 50%)
3 The obtained results are from PubChem structure similarity through Tanimoto threshold of 95% and 92%

Item Compound Similarity Status Antioxidant Anti-inflammatory Skin disorders

1 Nabumetone 0.81 FDA approved  [62]  [63] Skin injury [64]

2 Masoprocol 0.6721 FDA approved  [65]  [65] Sun damage (actinic keratosis) [66]

3 Matairesinol 0.8152 Experimental  [67]  [68] Skin aging [69]

4 3-(4-hydroxyphenyl)-1-(2,4,6-
trihydroxyphenyl)propan-1-one 
(Phloretin)

0.7262 Experimental  [70]  [70] Skin damage [71, 72]

5 6-Shogaol  > 0.953 Zingiber constituents  [73, 74]  [73, 74] Skin aging [75]

6 6-Paradol  > 0.953 Zingiber constituents  [76, 77]  [77] Skin cancer [76]

7 6-Gingerol  > 0.923 Zingiber constituents  [74]  [74] Skin aging and damage [75, 78]
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Table 2  Validation of significant DEGs using DisGeNET and literature evidence for their related diseases. log2|FC| values are derived 
from ExAtlas meta-analysis web server

1 Upregulated DEGs
2 Downregulated DEGs

Gene Symbols log2|FC| DisGeNET Literature

CTSL 1.471 Disease: Meningioma
Disease Class: Neoplasms; Nervous System Diseases [79]

Skin Proteome and Degradome [80]

Disease: Liver carcinoma
Disease Class: Digestive System Diseases; Neoplasms [81]

Keratinocytes and perturbation of hair Follicle cycling [82]

Disease: Hereditary Diffuse Gastric Cancer
Disease Class: Digestive System Diseases; Neoplasms [83]

Mouse skin carcinogenesis [84]

RFPL4AL1
*Paralog of FPL4A gene

1.561 Disease: Malignant neoplasms
Class: Neoplasms
Disease: Colorectal carcinoma
Class: Digestive System Diseases; Neoplasms
Disease: Primary malignant neoplasm
Class: Neoplasms [85]

Malignant melanoma [86]
COVID-19 disease [87]
Hepatocellular carcinoma [88]

TNFRSF11B 1.621 Disease: Hyperphosphatasemia with bone disease
Disease Class: Musculoskeletal Diseases [89]

Skin inflammation [90]

Disease: Osteoporosis
Disease Class: Nutritional and Metabolic Diseases; Musculo-
skeletal Diseases [91]

Skeletal dysplasias [92]

Disease: Rheumatoid Arthritis
Disease Class: Skin and Connective Tissue Diseases; Muscu-
loskeletal Diseases; Immune System Diseases [93]

SPACA5 1.641 No matches found Bladder cancer [94]

TMEM158 1.881 Disease: Neoplasms [95] Pediatric localized scleroderma skin [96]

Disease: Carcinogenesis
Disease Class: Pathological Conditions, Signs, and Symp-
toms; Neoplasms [97]

Anaplastic large cell lymphoma
[97]

Disease: Ovarian neoplasm
Disease Class: Neoplasms; Female Urogenital Diseases and 
Pregnancy Complications; Endocrine System Diseases [98]

Skin [99]

DNLZ 1.931 Disease: Neoplasms [100] Immune evasion[101]

Disease: Liver carcinoma
Disease Class: Digestive System Diseases; Neoplasms [102]

Fibrogenic responses [103]

Disease: Tumor cell invasion [104] Psoriasis [105]

MIR614 2.001 Disease: ovarian neoplasm; malignant neoplasm of ovary; 
carcinoma, ovarian epithelial
Disease Class: Neoplasms; Female Urogenital Diseases and 
Pregnancy Complications; Endocrine System Diseases [106]

Psoriasis [107]
Suppression of stromal interferon signaling [108]

MIR1282 2.001 No matches found Breast cancers [109]
Hepatocellular carcinoma [110]
Associated with immune organs and immunocytes [111]

MIR4469 2.581 Disease: Malignant neoplasm of breast; breast carcinoma
Disease Class: Neoplasms; Skin and Connective Tissue 
Diseases [112]

Atherosclerosis [113]
Laryngeal carcinoma cells [114]

LOC100287497
(SEPTIN7P13)

0.502 No matches found Hepatocellular carcinoma [114]
Urinary bladder cancer [115]

OR9I1 0.592 No matches found Human keratinocytes [116]

CNNM3-DT 0.602 Disease: Rheumatoid arthritis
Disease Class: Skin and Connective Tissue Diseases; Muscu-
loskeletal Diseases; Immune System Diseases [117]

Lipid metabolism [118]

ENDOU 0.612 Disease: Mental depression
Disease Class: Behavior Mechanisms [119]

Skin diseases [120]

Disease: Depressive disorder
Disease Class: Mental Disorders [121]

Disease: Depressed mood
Disease Class: Behavior and Behavior Mechanisms [122]
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where R· is a type of free radical such as hydroxyl, per-
oxyl, alkoxyl, or alkyl radicals and O· or OCH2

· are the 
remained free radicals [46, 47]. Similarly, the mechanism 
of action of these chemicals, given their anti-inflamma-
tory properties, applies through radical scavenging activ-
ities [48].

Additionally, it has been established that the immune 
system can function in the human body as a double-
edged sword in which immunity and immunopathology 
simultaneously provide benefits and do damage by bal-
ancing innate and adaptive immunity [49]. In a recent 
review, Zouboulis et  al. stated that “In clinical practice, 
‘to look better’ does not mean to ‘look younger.’” [50].

(1)Phenolic anti - oxidant (OH or OCH3 or . . .)+R
·
→ Phenolic anti - oxidant

(

O
·
or OCH2· or . . .

)

+RH

Skin, the largest organ of the human body, inherits all 
immune system functions for better studying inflam-
mation, autoimmunity, and cancer [51]. Skin aging is 
a multistep process that can be promoted through sun 
exposure, which may result in epidermal changes and 
photo-aging [52]. Various studies have proposed the ben-
efits of natural compounds such as curcumin and its ana-
logs in treating skin disorders such as skin aging [53, 54].

In the current investigation, the effects of Zingerone 
on epidermal tissues have been studied while considering 
the differentially expressed genes and the cellular compo-
nents involved. As an outcome, without any exceptions, 
the assessed genes play roles in involving interleukins, 

Fig. 4  The gene–chemicals association network illustrating compounds directly connected with chemicals for skin-related disorders in green color. 
The involved genes are shown in purple
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Table 3  Structure activity relationships of similar compounds and their targets/enzymes

Compound Structure IC50 (nM) (BindingDB.org) Target/enzyme from DrugBank and literature

Target Enzyme

Nabumetone O
CH3

CH3

O

 > 5.00E + 4
Estrogen receptor

Prostaglandin G/H synthase 
2 [123] [124]
Prostaglandin G/H synthase 
1 [125, 126]

Myeloperoxidase 
[127]

Masoprocol OH
OH

CH3
CH3

OH

OH

 > 5.00E + 4
Androgen receptor

Arachidonate 5-lipoxyge-
nase [128] [129]
Sex hormone-binding 
globulin [130]

Arachidonate 
5-lipoxygenase 
[131]

Matairesinol OO

OH

O
O

OH

OH

OH

5.20E + 4
Testis-specific androgen-
binding protein

Dehydrogenase/reductase 
SDR family member 4-like 
2 [132]

N/A

3-(4-hydroxyphenyl)-
1-(2,4,6-trihydroxyphenyl)
propan-1-one (Phloretin)

OH

OH OH

O

OH 1.67E + 5
Topoisomerase I/II

HTH-type transcriptional 
regulator TtgR [132]

N/A
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Table 3  (continued)

Compound Structure IC50 (nM) (BindingDB.org) Target/enzyme from DrugBank and literature

Target Enzyme

6-Paradol
O

OH

OH

CH3

O

 > 3.00E + 4
Cytochrome P450 3A

Pain receptor [133] COX1 [133]
Capsaicin [133]

6-Shogaol
O

OH

OH

CH3

O

H
H

9.96E + 4
Cytochrome P450 2E1

Prostaglandin E [134]
NF-κB [135]

Phase II genes 
expression enzymes 
[136]

6-Gingerol
O

OH

O

CH3

OH

OH

1.29E + 5
Cyclooxygenase-1 (COX-1)

Cell growth regulatory 
proteins [135]
NF-κB [135]

COX-2 [137]
Extracellular signal-
regulated kinases 
(ERK) [135]

Zingerone

OH

O

OH

CH3

O 1.53E + 5
Androgen Receptor

Peroxisome proliferator-acti-
vated receptor alpha [138]

Xanthine oxidase 
[8]
Acetyl-CoA car-
boxylase [138]
Acetyl-CoA syn-
thetase [138]
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which are a well-known group of cytokines expressed 
mainly by leukocytes. Cytokines, which are produced by 
the Langerhans cells of the skin’s immune system, were 
reported to play a significant role in skin aging [55]. 
Based on the identified differentially expressed genes 
and their effective cellular components in terms of GO, 
including GO:0005615 and GO:0005576, eighteen and 
four types of interleukins were determined to play roles 
in extracellular space and region, respectively.

In line with our results, Shirato et al. found that ETAS 
50 could prevent skin aging by decreasing both UV-B-
induced IL-6 and IL-1 beta expressions (56, 57). Also, 
Guo et al. reported that adipose-derived stem cells could 
secrete several interleukins (e.g., interleukin-lβ, inter-
leukin-8, interleukin-9, interleukin-12, interleukin-15, 
and interleukin-17) to inhibit skin aging [58]. Exercising 
could also affect interleukin-15 levels, thus preventing 
skin aging [59]. Interleukin 17 (or IL-17A) has a direct 
relationship with the stimulation of IL-23, making them 
a golden IL-23/IL-17 axis in age-associated inflammation 
and attenuates skin aging via acetyl Zingerone treatment 
through IL-17A stimulation [60, 61].

In summary, the current study proposed a hybrid sys-
tems biology and systems pharmacology procedure to 
identify the functional mechanisms and successful effects 
of Zingerone treatment. The proposed procedure consid-
ers the impact of similar compounds for stimulating the 
involved interleukins family on skin aging and their anti-
oxidant and anti-inflammatory properties. More experi-
mental studies on human and animal models are required 
to confirm the present results, as Zingerone’s effects on 
cellular and molecular mechanisms on skin aging are still 
unclear.

Conclusions
The prominent role of herbal remedies is clear to the 
research and scientific communities. Skin aging and 
other types of skin disorders have attracted the attention 
of people throughout the world. In this regard, several 
drugs and chemicals have been proposed for anti-aging 
purposes. In this study, a computational and statistical 
procedure was considered to investigate the effect of Zin-
gerone on skin aging at the cellular and genomic levels. 
Additionally, compounds that are structurally similar 
to Zingerone and their impacts on skin-related diseases 
were studied.

Furthermore, the gene–disease association and gene–
chemicals network analyses revealed undeniable direct 
connections between genetics and skin disorders, includ-
ing skin aging. Finally, various types of interleukins were 
found to have vital roles in attenuating skin aging. How-
ever, further research using human or animal models is 

required to confirm the effects of Zingerone determined 
in the present study.
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