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Abstract: Reducing the deformation of polymer matrix materials can decrease the fluctuation of
coefficient of friction (COF), and friction-induced vibration and its amplitudes. HDPE composites
with T-ZnOw as a fixed strengthening filler were modified with the addition of Si3N4 particles at
different concentrations. The COFs, wear rates, micro-morphologies, and friction-induced vibrations
were obtained by conducting sliding tests against carbon steel balls in an aqueous environment at
a low velocity and high load. The mechanism of the reduction in frictional fluctuation due to the
addition of Si3N4 particles was revealed through the frictional responses. The results demonstrated
that 4 wt% addition of Si3N4 in HDPE can enhance the strain–stress property and improve the
lubrication by forming a lubricating film. Therefore, the surface deformation and the fluctuations
of COFs and its vibrations were reduced. The aggregation phenomenon and reduced strain–stress
response at a high concentration of Si3N4 disrupted the positive fluctuating reduction, and resulted
in a rough surface with severe tearing and cracking deformations. Additionally, it led to fluctuating
wear behaviors with high COF and vibrations. The results obtained in this study can elucidate the
effects of adding Si3N4 particles to enhance lubrication in polymer composites. Additionally, the
results provide a new research method for designing and manufacturing polymer-based composites
with low friction-induced fluctuations.

Keywords: HDPE composite; Si3N4; surface deformation; fluctuation reduction

1. Introduction

Polymer matrix composites are used in various fields, such as automotive, aircraft,
aerospace, and marine machinery, due to their exceptional mechanical and physical proper-
ties [1–4]. Polymeric composites have replaced conventional metal parts in ships because
they are light-weight and wear-resistant. Additionally, polymer-based water-lubricated
stern bearings exhibit excellent performance [5–8]. However, factors, such as unstable loads,
high temperature, and boundary lubrication during the operation of ship stern bearings,
cause the surface deformation of polymer-based materials. Therefore, this results in a
severe friction process, which affects the reliability and stability of ships [9–12].

Moreover, polymer-based water-lubricated bearings are prone to surface deformations
at a low velocity and heavy load conditions, which causes vibrations and fluctuations
during operation [13–16]. Several methods were used to reduce the surface deformation
of polymers. Fillers with lubricating effects can be utilized as lubricating enhancers to
improve the lubricating conditions on frictional interfaces. Molybdenum disulfide (MoS2),
black phosphorus (BP), and graphene have a unique two-dimensional structure, and they
have been widely used to modify polymers by reducing friction-induced deformations to
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enhance lubrication [17–20]. Although fillers with two-dimensional structures can signifi-
cantly increase the lubricating condition of polymer-based composites, chronic friction and
poor working conditions might rupture the positive lubricating environment and cause
severe friction damage.

Therefore, single two-dimensional particles modifying fillers used for the reduction in
surface deformation were replaced with three-dimensional particles with unique structures,
and flower-like particles were adopted to fulfill such demands [21–24]. Tetra-needle-like
ZnO whiskers (T-ZnOw) can reduce the surface deformation of high-density polyethylene
(HDPE) composites due to its unique three-dimensional structure which can restore worn
surfaces [25,26]. In addition, the utilization of flower-like fillers, such as MoS2, can trans-
form an applied external force into internal friction within the polymers by increasing the
contact area, which decreases the surface deformation tendency [27–30]. Furthermore, a
few particles with chemical potential have been studied to improve the lubricating effects
of polymers in particular lubricating conditions. For instance, it was demonstrated that
silicon nitride (Si3N4) can enhance the surface hardness and lubricating effects of polymers
in an aqueous environment [31,32].

Although the lubricating fillers and flower-like fillers have been used to modify
materials to reduce surface deformation individually, the synergistic effect of these two
different fillers on improving the tribological property has rarely been conducted. Therefore,
in this study, the T-ZnOw particles, which proved to perform excellent deforming resistance
on the polymer surface, were adopted as enhancers with static content on the HDPE
composites. Additionally, the Si3N4 particle was selected as a lubricating enhancer due to
its stable physical properties and exceptional chemical reacting potential in the aqueous
environment [33,34]. The results obtained in this study can explore the possibility of Si3N4
as a new lubricating filler in an aqueous environment, and reveal the synergistic effect of
two different fillers on improving the tribological property in the polymeric material.

2. Methods and Experiments
2.1. Experimental Materials

HDPE particles with an average diameter of 2 mm were selected as the matrix material
due to their good thermoplastic properties. These particles are shown in Figure 1B. Tetra-
needle-like ZnO filler (size: 20–25µm) was used as the enforcement filler due to its unique
three-dimensional structure (Figure 1A). Si3N4 particles with a diameter of 5 µm were
selected as the self-lubricating particle to modify the HDPE composite (Figure 1C). The
particle fillers were procured from the Aladdin Co., Ltd. (Shanghai, China). T-ZnOw, Si3N4,
and HDPE particles were mixed using a double screw extrusion granulation machine
(ZC-65D, Nanjing Zhicheng Rubber Machinery Co., Ltd., Nanjing, China) to obtain a
uniform mixture. The mixture was melted and formed into cuboid-shaped modified HDPE
specimens in a lapping tool using a DKM injection machine (DQ-180T, DeQun Machine
Co., Ltd., Guangzhou, China), as shown in Figure 1D. The friction and mechanical tests
were conducted on cylindrical- and dumbbell-shaped samples shown in Figure 1F. The
energy-dispersive spectroscopy (EDS) curve and the element distribution maps are shown
in Figure 1E. It can be observed that silicon (Si) and zinc (Zn) were present in the mixture
and were uniformly distributed in the HDPE composite.

The HDPE composite with 6 wt% mass content of T-ZnOw was used in [26], and it
exhibited a low and stable coefficient of friction (COF) response, which demonstrates a
reduction in the surface deformation. Therefore, the content of T-ZnOw selected in this
study was 6 wt% and it acted as an enhancer. Additionally, the filler mass content of
Si3N4 was variable, and its different contents were set to 0 wt%, 2 wt%, 4 wt%, 6 wt%, and
8 wt%, respectively.
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Figure 1. Experimental materials and fabrication: (A) tetra-needle-like ZnO particles (T-ZnOw); (B) 
high-density polyethylene particle (HDPE); (C) Si3N4 nanoparticle; (D) double screw extrusion gran-
ulation and injection molding machines; (E) the EDS curve and element distribution maps of HDPE 
composite with 6 wt% Si3N4 addition; and (F) the samples fabricated for friction and mechanical 
tests. 
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ing machine, as shown in Figure 2A (R-tec Tribo-meter, Rtec instruments Inc., San Jose, 
CA, USA). A 10 mm diameter carbon steel ball, which is an extensively used engineering 
frictional metal material, was selected as the frictional pair (Figure 2C). The HDPE speci-
men had a cylindrical shape with a diameter of 30 mm and a height of 8 mm (Figure 2B). 
During the tribological experiment, the carbon steel ball was maintained in a stationary 
position at the top, while the lower HDPE specimens were rotated at a velocity of 0.021 
m/s (Figure 2D). The vertical load was 80 N and the radius of rotation was set to 10 mm. 
Additionally, a vibration sensor was fixed on the upper fixture to measure the vibration 
induced in the HDPE-based composites during the wear and friction process (also shown 
in Figure 2D). The aqueous environment was simulated by continuously adding distilled 
water between the frictional interfaces during the experiments to ensure sufficient water 
availability. The experiments were conducted for 1800 s and the test data were recorded 
at an interval of 0.001 s. A new polymer plate and carbon steel ball were used for each 
experiment. In addition, all the tests in this study were repeated thrice to ensure repeata-
bility. 

Figure 1. Experimental materials and fabrication: (A) tetra-needle-like ZnO particles (T-ZnOw);
(B) high-density polyethylene particle (HDPE); (C) Si3N4 nanoparticle; (D) double screw extrusion
granulation and injection molding machines; (E) the EDS curve and element distribution maps
of HDPE composite with 6 wt% Si3N4 addition; and (F) the samples fabricated for friction and
mechanical tests.

2.2. Experimental Apparatus and Sliding Wear Tests

The friction experiments were conducted using a commercial ball-on-pin friction
testing machine, as shown in Figure 2A (R-tec Tribo-meter, Rtec instruments Inc., San Jose,
CA, USA). A 10 mm diameter carbon steel ball, which is an extensively used engineering
frictional metal material, was selected as the frictional pair (Figure 2C). The HDPE specimen
had a cylindrical shape with a diameter of 30 mm and a height of 8 mm (Figure 2B). During
the tribological experiment, the carbon steel ball was maintained in a stationary position at
the top, while the lower HDPE specimens were rotated at a velocity of 0.021 m/s (Figure 2D).
The vertical load was 80 N and the radius of rotation was set to 10 mm. Additionally, a
vibration sensor was fixed on the upper fixture to measure the vibration induced in the
HDPE-based composites during the wear and friction process (also shown in Figure 2D).
The aqueous environment was simulated by continuously adding distilled water between
the frictional interfaces during the experiments to ensure sufficient water availability. The
experiments were conducted for 1800 s and the test data were recorded at an interval of
0.001 s. A new polymer plate and carbon steel ball were used for each experiment. In
addition, all the tests in this study were repeated thrice to ensure repeatability.

2.3. Measurement Techniques and Procedures

The surface topography was examined using confocal laser scanning microscopy
(CLSM) (VX-X1000, KEYENCE, Osaka, Japan), and the surface element analysis of the
cuboid specimens was performed using energy-dispersive spectroscopy (EDS) (X-act one,
Oxford, UK). Additionally, the micro-morphology of the wear scratch was observed using a
scanning electron microscope (SEM) (VEGA3, TESCAN, Brno, Czech Republic). The vibra-
tion experimental result was tested and analyzed using the Bruel & Kjaer testing machine
(Sensor 4535-B, B & K Ltd., Nærum, Denmark). Furthermore, the surface hydrophilicity of
the polymer with distilled water was characterized by contact angle measurement (DSA 100,
KRUSS GmbH, Hamburg, Germany) at 23 ◦C. The surface roughness value was obtained
using a white light interferometer (Micro Xam, ADEP Hase Shift, Inc., Tucson, AZ, USA).
The mechanical properties, such as the shore hardness and strain–stress response, were
tested using a universal testing machine (Instron 1341, Instron Ltd., Boston, MA, USA).
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Figure 2. Testing apparatus and method: (A) R–tec tribo-meter and rotation friction model; (B) the
modified HDPE composite; (C) the 10 mm carbon steel frictional pair ball; and (D) schematic diagram
of wear and vibration experiments in aqueous environment.

3. Experimental Results
3.1. Properties of the Modified Composites

The contact angle, shore hardness, and strain–stress responses of the modified HDPE
composites are shown in Figure 3. It can be observed from Figure 3A that the addition
of Si3N4 did not enhance the water-absorbing property of the HDPE composites, because
the contact angles were approximately 90◦, which meant hydrophilicity and hydropho-
bicity [35,36]. The shore hardness of the HDPE composite increased with the addition of
Si3N4. The shore hardness without the addition of Si3N4 was 79 A, whereas the shore
hardness increased to 86 A with 8 wt% Si3N4 addition, which resulted in a hardened
surface (Figure 3B). In addition, the yield stress and strain hardening properties (Figure 3D)
can be obtained from the complete strain–stress curves of the modified HDPE composites
(Figure 3C). Initially, the yield stress of the pure composite increased from 50 MPa to a
maximum value of 53 MPa, with the addition of 4 wt% Si3N4. The yield stress decreased to
48 MPa and 46 MPa with the addition of 6 wt% and 8 wt% Si3N4, respectively. Similarly,
the strain hardening initially presented an increasing trend to a peak of 3.9 MPa with the
addition of 4 wt% Si3N4, and then decreased with the addition of the filler. These results
demonstrate that the addition of Si3N4 above a particular concentration severely affects the
strain–stress properties, which might be attributed to the agglomeration of fillers.

3.2. The Frictional Coefficient Results of the Modified Composites

Figure 4 depicts the COF responses and its amplitudes between the HDPE plates
and the carbon steel ball at 0.021 m/s and 80 N in a water-lubricated environment. The
COF curves of the pure HDPE/T-ZnOw composite (Figure 4A) had an average value of
approximately 0.086 during the testing period, and the COF amplitudes (∆A) were in
the range of 0.08–0.09. The addition of 2 wt% Si3N4 reduced and maintained a COF of
approximately 0.079 with reduced fluctuations in the range of 0.077–0.081 (Figure 4B).
Moreover, after a short down-trend in the initial wear, a 4 wt% addition of Si3N4 in the
HDPE composite decreased the COF to a stable value of 0.065, and significantly narrowed
the COF amplitudes with fluctuations of 0.002 (Figure 4C). However, when the content of
Si3N4 was increased to 6 wt%, the COF curve of the HDPE composite exhibited unstable
and increasing trends (Figure 4D), in which a maximum value of 0.11 was observed in
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combination with a sharp increase in COF amplitudes (∆A) in the range of 0.082–0.103.
Furthermore, COF amplitudes in the range of 0.12–0.09 were observed for the HDPE
composite with the addition of 8 wt% Si3N4, and the maximum value of COF reached 0.122
(Figure 4E). The average COFs and COF amplitudes of the modified HDPE composites are
depicted in Figure 4F. The average COF initially decreased from 0.085 for the pure HDPE
composite, to a minimum value 0.062 with the addition of 4 wt% Si3N4, and then it sharply
increased when the Si3N4 content was equal to or exceeded the T-ZnOw content. The
maximum value was 0.11, with the addition of 8 wt% Si3N4. Similarly, the COF amplitudes
(∆A) initially declined to the lowest value (fluctuating from 0.002 to 0.003) with the addition
of 4 wt% Si3N4, before it rose to the highest value (fluctuating from 0.1 to 0.12) with the
addition of 8 wt% Si3N4. The COF responses obtained indicated that the addition of Si3N4
can decrease the COF and COF amplitude, which performed excellently with a 4 wt% Si3N4
addition. However, a sustained growth of Si3N4 contents broke this positive phenomenon
and resulted in the increase in COF with fluctuating amplitudes.
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its amplitudes.

3.3. The Friction-Induced Vibration of the Modified Composites

The friction-induced vibration response of the modified HDPE composites at 0.021 m/s
and 80 N in an aqueous environment is shown in Figure 5. HDPE with only T-ZnOw exhib-
ited regular small vibration amplitudes in the range of −0.25–0.31 m/s2, during the 10-s
testing period (Figure 5A). Furthermore, the vibration amplitudes dropped to a smaller
scope in the range of −0.26–0.23 m/s2 with the addition of 2 wt% Si3N4 to the HDPE
composite (Figure 5B). The addition of 4 wt% Si3N4 to the HDPE resulted in the smoothest
vibration response with small amplitudes in the range of −0.16–0.13 m/s2, and it exhib-
ited an excellent vibrational behavior (Figure 5C). However, when the Si3N4 content was
equal to or greater than that of the T-ZnOw content (6 wt%), the vibrational behavior was
severe and exacerbated. Two fluctuating points were observed at 1502 s (in the range of
−0.75–0.51 m/s2) and at 1508 s (in the range of −0.78–0.77 m/s2) for the HDPE composite
when the Si3N4 content was 6 wt% (Figure 5D). Moreover, the addition of 8 wt% Si3N4 led
to significant amplitudes on the vibration response in the range of −0.52–0.76 m/s2 and
−1.3–1.2 m/s2 between 1503–1504 s and 1506–1508 s, respectively (Figure 5E). Additionally,
the frequent and large vibrational amplitudes were caused due to the poor vibration be-
havior of the HDPE composite. The results demonstrate that the addition of Si3N4 reduces
and stabilizes the vibrational behavior of the HDPE composites, particularly with a 4 wt%
addition of Si3N4. However, the excessive addition of Si3N4 resulted in severe vibrations,
and this phenomenon might be attributed to the agglomeration of Si3N4 particles.
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3.4. The Wear Rate Behavior of the Modified Composites

CLSM was used to observe the worn morphologies of the HDPE composite with
different concentrations of Si3N4, and the results are presented in Figure 6. The wear
scratch and its 3D profile results shown in Figure 6A, demonstrate that noticeable wear
scratch occurred in the HDPE composites with 4 wt% Si3N4 after the friction test, and the
worn scratch cross-section had a depth of 18 µm (Figure 6B). Figure 6C shows the different
wear depths of the HDPE composites with different Si3N4 concentrations. The HDPE
with only T-ZnOw presented a wear depth of 20.6 µm, while it marginally increased to
21.8 µm with the addition of 2 wt% Si3N4. However, the addition of 4 wt% Si3N4 decreased
the wear depth to 18 µm, and the decreasing trend was observed with the additions of
6 wt% and 8 wt% Si3N4, which had wear depths of 17.1 µm and 15.6 µm, respectively.
In addition, the wear volumes of the modified HDPE composites (Figure 6D) exhibited
a slight increase from 0.0152 mm3 (0 wt% Si3N4 addition) to 0.0159 mm3 (2 wt% Si3N4
addition), and then significantly decreased with the increase in the Si3N4 concentration,
which finally declined to the lowest value at 0.0128 mm3 with the addition of 8 wt% Si3N4.
A similar trend was observed for the wear rate responses in Figure 6E. The wear rate
of HDPE with only T-ZnOw was 3.3 × 10−5 mm2 *s/N, while it significantly declined
to 3.0 × 10−5 mm2 *s/N with the addition of 6 wt% Si3N4 and 2.8 × 10−5 mm2 *s/N with
the addition of 8 wt% Si3N4, after a slight increase with the addition of 2 wt% Si3N4.
The wear rate results indicated that an increase in the Si3N4 content can enhance the
wear-resistance of HDPE/T-ZnOw composites.
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3.5. The Micro-Morphologies of the Modified Composites

It is known that the deformation on the polymer surface had a direct connection
with the frictional status, such as the stick-slip deformations [37,38]. The micro-worn
morphologies of the modified HDPE composites were observed using SEM, and the results
are shown in Figure 7. It can be observed from Figure 7A that the deforming fringes were
uniformly distributed on the worn surface and were perpendicular to the wear direction
of the HDPE with only T-ZnOw. This exhibited stick-slip behavior and COF fluctuation
during the friction process. However, this stick-slip behavior was weakened with the
addition of 2 wt% Si3N4 to the HDPE, as observed in Figure 7B. Moreover, the worn surface
was flat with a small waving deformation and grooves on the HDPE composite with
4 wt% Si3N4 (Figure 7C). The smooth and flat surface might lead to a stable COF process.
However, significant grooves replaced the deforming fringes and became the dominant
worn deformations on the worn surface with the addition of 6 wt% Si3N4 to the HDPE
composite in Figure 7D. Additionally, when the Si3N4 content was increased to 8 wt%,
noticeable cracks and grooves occurred on the HDPE worn surface, which increased the
roughness and decreased the flatness (Figure 7E). The rough surface can result in a severe
and unstable COF process. The micro-morphologies observed, demonstrated that the
addition of 4 wt% Si3N4 can effectively reduce the deforming fringes on the worn surface
of the HDPE composites. This can reduce the COF fluctuations and the frictional-induced
vibration. However, an increase in the concentration of Si3N4 can change deforming fringes
to severe grooves and cracks, which can result in fluctuations in the COF process.
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4. Discussion

The results of COFs (Figure 4), vibrations (Figure 5), and micro-morphologies (Figure 8)
demonstrate that the addition of 4 wt% of Si3N4 can significantly reduce the fluctuations
of COF and the vibration of HDPE composites by reducing the surface deformation. The
mechanism was analyzed and shown in Figure 8. A new peak of 1080 cm−1 on the infrared
spectrometry (Figure 8A) and a new energy excitation peak in the XRD result (Figure 8B) ver-
ified the presence of a bond between Si and O on the worn surface of the HDPE composite,
with 4 wt% Si3N4 during the friction and wear process in an aqueous environment [39,40].
The new chemical bonds meant that the origin of the Si–N chemical bond on the Si3N4
particle would be broken, and a new Si–O chemical bond would be created in an aqueous
environment; the new Si–O bond would continue to react in an aqueous environment to
form a complex compound that had lubricating effects (Figure 8C,D) [41–43]. Therefore,
with the lubricating complex compound on the contacting surfaces for improving the lubri-
cating condition, the surface deforming behaviors on the HDPE composite worn surface
could be weakened (showed in Figure 7), and consequently reduced the vibration, COFs
and its amplitudes (Figures 4 and 5).

The micro-morphologies of the carbon steel balls are shown in Figure 9A–C. Figure 9A
shows a slight scratch on the carbon steel ball after conducting the friction test on the HDPE
composite with 4 wt% Si3N4, and it exhibited a smooth wear process. However, a few
visible cracks and scratches occurred on the carbon steel ball after the friction test was
conducted on the HDPE composite with 6 wt% Si3N4, which resulted in a rough surface
(Figure 9B). Furthermore, the carbon steel ball worn against the HDPE composite with
8 wt% Si3N4 became significantly rough with severe cracks and grooves (Figure 9C), and
the rough surface resulted in a fluctuating and unstable COF. Additionally, the vibration
responses and amplitudes were unstable. Figure 9D,E present the element distribution
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maps of the worn surfaces of the HDPE composites with 4 wt% and 8 wt% Si3N4, respec-
tively. The uniform distribution of Si and Zn on the worn surface of the HDPE composite
after a 4 wt% Si3N4 addition (Figure 9D), contributed to more than 25% reductions in the
COF and vibration, as well as more than 70% reductions in their amplitudes individually
(Figures 4 and 5). However, the significant aggregation of Si on the severely cracked and
torn areas proved that the aggregating phenomenon of Si3N4 particles in high concen-
trations (such as 6 wt%, 8 wt%) led to severe deformation, which was in contrast to the
occurrence of deforming fringes on the worn surface (Figure 9E). Moreover, the aggregating
phenomenon observed in the composites with high concentration of Si3N4, led to severe
surface deformation on the HDPE composites, and reduced its yield stress and strain
hardening properties (Figure 3). The wear-resistance due to higher yield stress and strain
hardening [44,45], reduced the surface deformation in combination with the lubricating
effect due to a 4 wt% addition of Si3N4. However, the reduced strain–stress response and
aggregating phenomenon of Si3N4 at high concentrations resulted in a rough and worn
surface with severe cracking and tearing deformations. Therefore, this resulted in a sharp
increase in COF, which reached 0.11 with severe fluctuations from 0.1 to 0.12, and unstable
vibrational behaviors with significant vibration points (Figures 4 and 5).
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5. Conclusions

HDPE composites with T-ZnOw as a fixed enhancer and Si3N4 particles were devel-
oped to reveal the frictional responses in an aqueous environment. The complex compound
reacted from the Si3N4 that existed between contact surfaces and functioned as a lubricating
film to enhance lubrication. Furthermore, the higher yield stress and strain hardening
responses in a 4 wt% Si3N4 addition improved the wear-resistance; therefore, the decrease
in surface deformation led to more than 25% in COF and vibration individually, and also
a maximum of 75% reductions in the COF amplitudes (∆A). However, the aggregation
phenomenon and the reduced strain–stress responses at a high concentration of Si3N4
disrupted the positive reduction effects and resulted in a rough and worn surface with
severe cracking and tearing deformations. Therefore, this resulted in exacerbating COF
and vibration behaviors, which sharply increased to 0.11 in COF and −1.3–1.2 m/s2 in
the vibration amplitudes. The results gained herein can provide theoretical support for
adopting Si3N4 particles as a new lubricating filler in an aqueous environment, and reveal
the synergistic effect of two fillers on improving the tribological property of polymers.
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