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Abstract

Wolbachia are obligate intracellular bacteria which commonly infect arthropods. They are maternally inherited and
capable of altering host development, sex determination, and reproduction. Reproductive manipulations include
feminization, male-killing, parthenogenesis, and cytoplasmic incompatibility. The mechanism by which Wolbachia avoid
destruction by the host immune response is unknown. Generation of antimicrobial peptides (AMPs) and reactive oxygen
species (ROS) by the host are among the first lines of traditional antimicrobial defense. Previous work shows no link
between a Wolbachia infection and the induction of AMPs. Here we compare the expression of protein in a cell line
naturally infected with Wolbachia and an identical cell line cured of the infection through the use of antibiotics. Protein
extracts of each cell line were analyzed by two dimensional gel electrophoresis and LC/MS/MS. Our results show the
upregulation of host antioxidant proteins, which are active against ROS generated by aerobic cell metabolism and during
an immune response. Furthermore, flow cytometric and microscopic analysis demonstrates that ROS production is
significantly greater in Wolbachia-infected mosquito cells and is associated with endosymbiont-containing vacuoles
located in the host cell cytoplasm. This is the first empirical data supporting an association between Wolbachia and the
insect antioxidant system.
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Introduction

Wolbachia are maternally inherited obligate intracellular gram

negative a-proteobacteria closely related to the Rickettsia. They

were first described in the ovaries of Culex pipiens, and are common

in insects and filarial nematodes. Wolbachia can induce diverse

reproductive phenotypes in hosts, including feminization, male-

killing, parthenogenesis, and cytoplasmic incompatibility [1–4] all

of which contribute to the success of infected females at the

expense of infected males.

How Wolbachia avoid destruction by the host innate immune

response is unknown. In Drosophila, gram negative bacteria activate

the IMD pathway inducing the synthesis of potent antimicrobial

peptides (AMPs) such as attacin, cecropin, drosocin, and diptericin [5].

However, endosymbionts including Wolbachia [6] and Spiroplasma

[7] fail to induce AMP synthesis in their insect hosts, nor do they

suppress ectopic immune activation.

The generation of reactive oxygen species (ROS) is among the first

lines of defense against invading microbes [8,9]. ROS, including

superoxide radicals, hydrogen peroxide, and hydroxyl radicals are

formed as by-products of aerobic metabolism. In vertebrates,

following phagocytosis of bacteria, superoxide is produced by an

NADPH oxidase complex that assembles at the phagosomal

membrane in a reaction called an oxidative burst [10]. From

superoxide additional ROS are formed, all of which are active

against bacteria [11]. In insects, superoxide generative reactions

mimic the oxidative burst seen in vertebrates [12,13]. In Anopheles

gambiae high ROS levels generated after a blood meal confer

resistance to Plasmodium infection [14] and bacterial challenge.

High concentrations of ROS create a state of oxidative stress,

resulting in damage to lipids, nucleic acids, and proteins and

reducing life span [15]. An unbalanced production of ROS has

been implicated in human disease, including atherosclerosis,

neurodegenerative and ophthalmologic diseases, and cancer

[16]. Complex antioxidant defense systems have evolved to

combat damaging ROS [17]. Detoxification of ROS is required

for maintaining fecundity in mosquitoes [18], Drosophila [19], and

mammals [20]. Herbivorous insects have developed defenses

against prooxidant allelochemicals from host plants [21].

In order to elucidate mechanisms of host-microbe symbiosis, we

have compared protein expression in an Aedes albopictus embryonic

cell line (Aa23) naturally infected with Wolbachia and a parallel cell

line cured of Wolbachia, using two dimensional polyacrylamide gel

electrophoresis (2-D PAGE). Our results show that expression of

host antioxidant proteins is induced in Aa23 cells infected with

Wolbachia. Two bacterial antioxidant proteins were also identified.

Futhermore, ROS production is significantly increased in infected

cells compared to cured cells. These results illustrate, for the first

time, an association between the insect antioxidant pathway and

Wolbachia infection.
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Results

PCR analysis of cell lines
DNA from Wolbachia-infected Aa23 cells amplified with primers

for Wolbachia surface protein (wsp) generated a band at 590 bp

(Figure 1A, top). Rifampicin treatment resulted in the total loss of

the Wolbachia signal over the course of 7 passages. All DNA

extracts produced a band at approximately 400 bp using 28S

arthropod primers, confirming DNA template quality (Figure 1A,

bottom). The two cell lines are morphologically indistinguishable

(Figure 1B).

Protein induction
A consistent 2 dimensional profile (Figure 2A) was obtained

from protein extracts representing 3 biological replicates (using

independently cured Aa23T cell lines). Six proteins (Protein ID

#1–6) shown in Figure 2B from Wolbachia-infected Aa23 cells

failed to appear on the gel from Wolbachia – free Aa23 cells. These

proteins are antioxidant proteins (Table 1). Proteins 1 (glutathione

peroxidase; GPx); 3, 4, 5 (CuZn superoxide dismutase; CuZn-

SOD) and 6 (peroxiredoxin; Prx) are host proteins. In addition to

these, spot 5 contains Wolbachia chaperone protein GroES, and

spot 3 contains Wolbachia bacterioferritin (Bfr). A third Wolbachia

protein, iron superoxide dismutase (FeSOD) was identified in

spot 2.

Several antioxidant enzymes exist as multiple isoforms,

exhibiting small variations in isolectric point and molecular mass,

which are likely the result of post-translational modifications

[22,23]. CuZn SOD is known to undergo phosphorylation [24]

and glycosylation [25] in addition to copper and zinc binding [26].

Similarly, phosphorylation of peroxiredoxin [27], and glutathione

peroxidase [28] is common. Such modifications would explain the

appearance of CuZn superoxide dismutase at three locations (spots

3,4, and 5) within close proximity of one another (Figure 2A).

The presence of the Wolbachia chaperonin GroES is not

surprising. Expression of this protein in conjunction with its

cochaperonin GroEL is common in endosymbiotic bacteria, and is

believed to play an essential role in successfully maintaining an

intracellular lifestyle by managing deleterious mutations[29].

Flow cytometric analysis
The increase in host CuZnSOD, Prx, and GPx levels in

response to a Wolbachia symbiosis suggests an increase in ROS

within this system. To investigate this further we labeled infected

and uninfected cells with the fluorescent ROS indicator carboxy-

H2DCFDA, and evaluated ROS formation by flow cytometry and

microscopy. Only 1.54% of uninfected Aa23 cells exhibited ROS

formation when examined by flow cytometry (Figure 3A, top).

This number rose to 5.47% following induction with TBHP

(Figure 3A, middle). In contrast, 9.90% of cells infected with

Figure 1. Wolbachia stably infects Aa23 cells and can be cured by antibiotic treatment. (A) PCR analysis using Wolbachia wsp primers (top)
and arthropod 28S primers (bottom) of Aa23 cells treated with 10 ug/ml rifampicin for seven passages. Lane L: molecular ladder. Lane 1: stably
infected Aa23 cells. Lanes 2 through 8: cells treated with rifampicin for 1, 2, 3, 4, 5, 6, and 7 passages. Lane 9: negative control. (B) Aa23 cells stably
infected with Wolbachia (I) and Aa23 cells cured of Wolbachia using rifampicin (II). Bar, 100 mm.
doi:10.1371/journal.pone.0002083.g001
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Wolbachia fluoresced, demonstrating a substantial increase in ROS

formation (Figure 3A, bottom). Microscopic analysis shows that

ROS generation is associated with Wolbachia in the cytoplasm of

Aa23 cells (Figure 3B).

Discussion

Host antioxidants
Superoxide dismutases (SOD) are conserved metalloenzymes

which catalyze the dismutation of superoxide radicals into

hydrogen peroxide and oxygen and are essential in combating

oxidative stress [30]. Insects have 3 families of SOD enzymes – a

mitochondrial MnSOD and two CuZnSODs, one of which is

primarily cytoplasmic and one which is extracellular [31]. The

mosquito CuZnSOD identified here (gi|94468490) is homologous

to the cytoplasmic Drosophila CuZnSOD (gi|17136496) (http://

www.ncbi.nlm.nih.gov/blast). Insects deficient in cytoplasmic

CuZnSOD suffer from a number of detrimental effects, including

a reduction in lifespan and fertility, and an increase in spontaneous

DNA damage [32], while insects overexpressing CuZnSOD in

combination with catalase show a significant extension in lifespan,

emphasizing the physiological importance of these enzymes [33].

Cytoplasmic SOD in the scallop Chlamys farreri has been shown to

be inducible upon challenge with Listeria anguillarium and

Micrococcus luteus [34].

Peroxiredoxins (Prx) are ubiquitous antioxidant enzymes which

reduce peroxides in a thiol dependent manner [35]. Two subgroups

have been identified, the 1-Cys and 2-Cys Prxs, based on the number

of conserved cysteine residues present [36]. Most 2-Cys Prxs utilize

reduced thioredoxin (Trx) as an electron donor and are therefore

referred to as thioredoxin peroxidases (TPx) [37]. Prx mutant yeast

strains demonstrate a growth rate significantly less than wild-type

strains under aerobic conditions, suggesting this group of proteins is

essential for cell growth and division [38]. The mosquito Prx induced

Figure 2. 2-D Page of Wolbachia-infected and uninfected Aa23 cells. (A) Identification of proteins unique to Wolbachia-infected Aa23 cells.
Approximately 750 ug of protein extract from an Aa23 cell line stably infected with Wolbachia (I) and a parallel cell line cured of a Wolbachia infection
(II) were analyzed. Proteins expressed only in the presence of a Wolbachia infection (ID #1–6) are identified. (B) Gel sections showing proteins
selected for LC/MS/MS analysis.
doi:10.1371/journal.pone.0002083.g002

Wolbachia Induces Antioxidants

PLoS ONE | www.plosone.org 3 May 2008 | Volume 3 | Issue 5 | e2083



by Wolbachia (gi|55233150) in this study shares 58% sequence

identity with human Prx-5 (gi|83405871) (http://www.ncbi.nlm.

nih.gov/BLAST) and further investigation is required to character-

ize its antioxidant function.

Glutathione peroxidase (GPx) (gi|108871563) expression is also

enhanced in Wolbachia infected cells. GPx catalyzes the reduction

of hydrogen peroxide and organic hydroperoxides using reduced

glutathione (GSH) as an electron donor [39]. The flavoenzyme

glutathione reductase (GR) recycles the oxidized form of

glutathione, glutathione disulfide (GSSH) back to its reduced

form, maintaining high concentrations of GSH [40]. Drosophila

melanogaster lacks a functional GR which seems to support early

findings that insects lack GPx activity [41,42]. However, Trx is

capable of reducing GSSH, suggesting that a Trx system

compensates for the absence of GR in Drosophila [42]. The

Drosophila genome contains two GPx homologs [43], one of which

utilizes reduced Trx as an electron donor; as a result, it has been

described as a GPx homolog with TPx (thioredoxin peroxidase)

activity (GTPx-1) [44]. GTPx-1 maintains a key role in the

oxidative stress response [44]. The second GPx homolog of

Drosophila (termed-GPx-like) has not yet been biochemically

characterized [44].

Table 1. Identification of proteins visualized by 2D PAGE.

2D PAGE - Host Protein Matches (Aedes albopictus)

Protein
ID

Organism
Database

Mowse
Score PI Mass (Da)

Coverage
(%) Protein Accession # Matched Peptides

1 Aedes aegypti 99 6.13 19,150 14 Glutathione peroxidase gi|108871565 K.GNYAELTELSQK.Y
R.VNVNGDDAAPLYK.Y

3 * Aedes aegypti 59 5.77 15,616 13 Cu2+/Zn2+ superoxide
dismutase

gi|94468490 R.TVVVHADPDDLGLGGHELSK.S

4 Aedes aegypti 157 5.77 15,616 32 Cu2+/Zn2+ superoxide
dismutase

gi|94468490 K.AVCVLSGDVK.G

K.VDISDSQISLSGPLSILGR.T

R.TVVVHADPDDLGLGGHELSK.S

5 * Aedes aegypti 65 5.77 15, 616 12 Cu2+/Zn2+ superoxide
dismutase

gi|94468490 K.VDISDSQISLSGPLSILGR.T

6 Aedes aegypti 355 6.71 16,862 56 Peroxiredoxin-like protein gi|55233150 K.VNMADLCAGK.K+Oxidation (M)

R.YSMVLEDGVIK.S

R.YSMVLEDGVIK.S+Oxidation (M)

K.IPSIDLFEDSPANK.V

K.QLELGADLPPLGGLR.S

K.VVLFAVPGAFTPGCSK.T

K.SLNVEPDGTGLSCSLADK.I

K.EGDKIPSIDLFEDSPANK.V

2D PAGE - Endosymbiont Protein Matches (Wolbachia pipientis)

Protein
ID

Organism
Database

Mowse
Score PI Mass (Da)

Coverage
(%) Protein Accession # Matched Peptides

2 Wolbachia (D. mel)54 5.98 24,048 10 Fe superoxide dismutase gi|42520581 M.SFTLPELPYDK.T

K.IQDDIGGFDK.F

3 * Wolbachia (D. mel)109 5.74 18,573 22 Bacterioferritin gi|42521044 K.NELNEELEHANK.L

K.GVPNFQDTNEISK.H

5 * Wolbachia 314 6.49 8457 79 GroES gi|21742794 K.TGDKVFYR.Q

K.ESDLLAVIK.-

K.GEVIAIGGGSR.N

K.QGGIVLPSSAEK.K

K.KPTKGEVIAIGGGSR.N

R.QWAGTEVEHDNEK.Y

K.YVVMKESDLLAVIK.-

K.YVVMKESDLLAVIK.-+Oxidation (M)

R.QWAGTEVEHDNEKYVVMK.E

Proteins 1–6 are expressed only in the presence of a Wolbachia infection. Proteins denoted with a * match both host and endosymbiont proteins. Protein matches to
mosquito (Ae. aegypti) and Wolbachia are reported, along with the corresponding mowse score, isoelectric point, molecular mass, sequence coverage, protein name,
accession number, and predicted matching peptide sequences.
doi:10.1371/journal.pone.0002083.t001
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Endosymbiont antioxidants
Intracellular free iron reacts with H2O2 to generate highly

reactive hydroxyl radicals. Superoxide radicals can destroy

enzymes containing Fe-S clusters, and release additional free iron

into the intercellular environment [45]. Ferritins are a broad

superfamily of iron-storage proteins common to both aerobic and

anaerobic organisms and are essential components of antioxidant

pathways [46]. Iron is sequestered by ferritins and strictly regulated

under normal circumstances and during times of oxidative stress.

Although ferritins generally lack haem groups, some bacterial

forms are haem-containing, and are referred to as bacterioferritins

(Bfr) [47]. Like their eukaryotic homologs, Bfr are integral factors in

bacterial iron storage and in combating iron-mediated oxidative

stress [48]. Bfr mutants of P. aeruginosa demonstrate an increased

sensitivity to peroxides, emphasizing the importance of Bfr in the

redox stress response [49]. Our data suggest that Wolbachia Bfr

(gi|42521044) may protect the endosymbiont from ROS generated

in its intracellular compartment.

Bacterial superoxide dismutase (Fe-SOD) contains iron at its

catalytic center and plays an important role in the pathogenesis of

numerous bacteria, including Shigella flexneri [50], Pseudomonas

aeruginosa [51] and Bordetella pertussis [52]. In E. coli, Fe-SOD is

constitutively expressed, while two other forms, a manganese-

containing form (MnSOD) and a copper and zinc-containing form

(CuZnSOD) are induced in response to oxygen [53,54] . In

contrast to E. coli, the genome of the Wolbachia endosymbiont of

Drosophila melanogaster (wMel) has only one SOD gene, which

corresponds to the FeSOD identified here (gi|42520581). This

enzyme likely plays a fundamental role in the management of

oxidative stress within the vacuoles harboring Wolbachia.

Antioxidant pathways and the endosymbiont
For the first time, we report a significant increase in ROS which

may be a host-mediated immune response to Wolbachia or,

alternatively, may be generated by the aerobic metabolism of

Wolbachia themselves [55]. In either case, increased host

antioxidant expression is an adaptation to symbiosis and our

evidence suggests that the neutralization of potentially deadly

ROS by elevated antioxidant levels is important for maintaining

this unique relationship.

The E. coli genome has numerous antioxidant proteins,

including three SOD’s – a CuZnSOD [56], an MnSOD, and an

FeSOD [57], two catalases [58], four peroxidases – GPx [59], thiol

peroxidase [60], bacterioferritin comigratory protein [61], alkyl

hydroperoxide reductase [62], and Bfr [63] (http://wishart.

biology.ualberta.ca/BacMap/) [64]. The genome of wMel con-

tains four homologs of these ten E. coli proteins - FeSOD, Bfr,

bacterioferritin comigratory protein, and alkyl hydroperoxide

reductase (http://www.ncbi.nlm.nih.gov/blast). Wolbachia, like

most obligate endosymbionts, has a reduced genome [55], the

result of an ongoing adaptation to an intracellular lifestyle. The

induction of host antioxidant proteins by Wolbachia may be an

adaptive mechanism for coping with ROS despite having lost

genes coding for bacterial antioxidants.

R. rickettsii, the agent of Rocky Mountain Spotted Fever,

stimulates the production of ROS in mammalian endothelial cells

and inflicts host cell damage via lipid peroxidation of membranes

[65]. Expression of host antioxidants is modified in a manner that

is consistent with the generation of intracellular peroxides [66–68].

Such evidence lends support to the premise that Wolbachia

manipulates host antioxidant systems in a manner that is beneficial

to its survival.

Microarray analyses using Drosophila have found little induction

of host antioxidant transcription in response to pathogenic

Figure 3. Analysis of ROS formation in Wolbachia -infected and
uninfected Aa23 cells. (A) Flow cytometric analysis of Wolbachia –
infected and uninfected Aa23 cells using the fluorescent ROS marker
carboxy-H2DCFDA. Histograms representative of three replicates are
shown. The negative control (shaded) consists of unlabeled cells. Test
samples (black lines) include: uninfected Aa23 cells (top panel),
uninfected Aa23 cells induced to produce ROS using TBHP (middle
panel), and infected Aa23 cells (bottom panel). Carboxy-H2DCFDA
positive cells are represented on each histogram. (B) Microscopic
analysis of Wolbachia-infected (I) and uninfected (II) Aa23 cells. Hoechst
stain was used to label DNA (left panel). Carboxy-H2DCFDA was used to
label ROS (right panel). Bar, 10 mm.
doi:10.1371/journal.pone.0002083.g003
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bacteria (E. coli and M. luteus) or fungi (B. bassiana). While one study

[69] discovered a single transcript induced in response to septic

injury (a peroxidase), a second study identified none [70].

Recently, DNA microarray analysis of Drosophila S2 cells infected

with Wolbachia demonstrated an increase in transcripts belonging

to the Toll and Imd immune signaling pathways, and the

antimicrobial peptides attacin and diptericin [71]. In this experiment

the Wolbachia were introduced artificially using the shell vial

technique and the infection was subsequently lost after 18

passages. In contrast, our results show that a stable symbiotic

interaction with Wolbachia in mosquito cells involves ROS

generation and induction of antioxidant enzymes. Although the

role of ROS and antioxidants in maintaining symbiosis in vivo has

not yet been determined, it will be interesting to see if these

pathways differentiate between insects that can establish a long

term association with symbionts and those that cannot.

Materials and Methods

Cell culture
The Aa23 cell line was provided by Steven Dobson and cultured

as previously described [72]. The growth medium consisted of

equal volumes of Mitsuhashi-Maramorosch (MM) and Schneider’s

Insect medium (Sigma) supplemented with 20% heat-inactivated

fetal bovine serum (Sigma). Three uninfected cell lines were

independently generated from the original cell line by adding

10 mg/ml rifampicin to the culture medium for 7 passages [73].

PCR analysis
PCR analysis using Wolbachia wsp primers [74] confirmed the

presence or absence of Wolbachia. DNA was isolated using the

Sigma GenElute Mammalian Genomic DNA MiniPrep kit and

stored until use at 220uC. PCR conditions have been previously

described [75]. The presence of Wolbachia was confirmed by the

existence of a 590 bp product. Universal 28S ribosomal DNA

primers D3A and D3B [76] produced a band at 400 bp,

confirming DNA template quality.

Protein purification
Protein extracts were prepared as described by Adrain et al.

[77]. From each cell line, 56108 cells were packed into a 2-ml

Dounce homogenizer with an equal volume of ice-cold cell extract

buffer (CEB: 20 mM HEPES-KOH, pH 7.5, 1.5 mM MgCl2,

1 mM EDTA, 1 mM EGTA, 1 mM DTT, 250 mM sucrose,

10 mM KCl, 100 mM phenylmethylsulfonyl fluoride, 10 mg/ml

leupeptin, 2 mg/ml aprotinin). Cells were incubated for 20 min-

utes on ice then homogenized. The homogenate was centrifuged

for 15 minutes at 15,0006 g. The pellet was resuspended in ice-

cold CEB with 6% IGEPAL CA-630 (Sigma), and again subjected

to the extraction procedure previously described. The supernatant

was collected, and a Bradford Assay was used to determine the

protein concentration (mg/ml). Protein (,750 mg) was precipitated

in acetone overnight, and cleared of contaminants using the Bio-

Rad 2-D Clean-Up Kit.

2 dimensional PAGE
Protein pellets were suspended in 322 ml of Amersham

DeStreak Rehydration Solution containing 0.5% Amersham

IPG buffer (pH 3–10 NL) and 10 mM DTT, then loaded onto

17 cm (pH 5–8) Bio-Rad ReadyStrip IPG strips and rehydrated

passively overnight at room temperature. Isoelectric focusing was

performed on an Amersham IPGphor Isoelectric focusing unit.

Following equilibration for 15 minutes in each of two equilibration

buffers (50 mM Tris-HCl, pH 8.8, 6M urea, 30% glycerol, 2%

SDS, 0.002% bromophenol blue), one containing 1% DTT, the

other containing 2.5% IAA, the strips were run on 12%

homogenous SDS-PAGE gels with a 4% stacking gel at 280V

for 4 hours. Gels were stained with Deep Purple (Amersham) and

imaged on a Fugifilm FLA-500 scanner at 473 nm, then stained in

Coomassie Blue (Sigma).

Protein identification
Protein spots were excised manually and analyzed by LC/MS/

MS at the Southern Alberta Mass Spectrometry (SAMS) Centre

for Proteomics at the University of Calgary. Matching protein

sequences were identified by the MASCOT search engine (www.

matrixscience.com). From the significant hits generated by

MASCOT, those corresponding to the primary sequence

databases of Ae. Aegypti and wMel were considered most probable.

ROS flow cytometric analysis
The presence of ROS within Wolbachia-infected and uninfected

Aa23 cells was evaluated using the fluorogenic marker carboxy-

H2DCFDA (Molecular Probes). Prior to labeling, cells were

suspended in PBS containing 1.26 mM CaCl2, 0.81 mM MgSO4

and 5 mM EDTA (Buffer A). For measurement of ROS, cells were

incubated in Buffer A containing 25 mM of carboxy-H2DCFDA

for 30 min at 27uC, washed twice in Buffer A, and analyzed

immediately. Positive controls were generated by incubating cells

in 150 mM tert-butyl hydroperoxide (TBHP) in cell culture

medium for 90 min followed by labeling. A total of 10 000 events

were aquired using the CellQuest software on a FACScan flow

cytometer (Beckton Dickinson).

Microscopic ROS assay
Infected and uninfected Aa23 cells were permitted to adhere to

glass slides, labeled as described above using carboxy-H2DCFDA,

and counterstained with Hoechst 333342. Slides were imaged on a

Zeiss Axiomat 40 fluorescent microscope with a Canon PowerShot

camera.
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