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OBJECTIVES: Barrett’s esophagus (BE) is the precursor lesion and amajor risk factor for esophageal adenocarcinoma

(EAC). Although patients with BE undergo routine endoscopic surveillance, current screening

methodologies have proven ineffective at identifying individuals at risk of EAC. Since microRNAs

(miRNAs) have potential diagnostic and prognostic value as disease biomarkers, we sought to identify

an miRNA signature of BE and EAC.

METHODS: High-throughput sequencing of miRNAs was performed on serum and tissue biopsies from 31 patients

identified either as normal, gastroesophageal reflux disease (GERD), BE, BE with low-grade dysplasia

(LGD), or EAC. Logistic regression modeling of miRNA profiles with Lasso regularization was used to

identify discriminating miRNA. Quantitative reverse transcription polymerase chain reaction was used

to validate changes in miRNA expression using 46 formalin-fixed, paraffin-embedded specimens

obtained from normal, GERD, BE, BE with LGD or HGD, and EAC subjects.

RESULTS: A 3-class predictive model was able to classify tissue samples into normal, GERD/BE, or LGD/EAC

classes with an accuracy of 80%. SixteenmiRNAswere identified that predicted 1 of the 3 classes. Our

analysis confirmed previous reports indicating that miR-29c-3p and miR-193b-5p expressions are

altered in BE and EAC and identified miR-4485-5p as a novel biomarker of esophageal dysplasia.

Quantitative reverse transcription polymerase chain reaction validated 11 of 16 discriminating

miRNAs.

DISCUSSION: Our data provide an miRNA signature of normal, precancerous, and cancerous tissue that may stratify

patients at risk of progressing to EAC. We found that serummiRNAs have a limited ability to distinguish

between disease states, thus limiting their potential utility in early disease detection.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A160, http://links.lww.com/CTG/A161
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INTRODUCTION
Barrett’s esophagus (BE) is a metaplastic lesion that develops in
the distal esophagus in response to chronic gastroesophageal
reflux (GERD). BE is characterized by replacement of the normal
squamous epithelium of the distal esophagus by an intestinal-like
columnar epithelium. BE is known to be the premalignant pre-
cursor for adenocarcinomas of the esophagus and is associated
with a 30- to 125-fold increase in risk of developing esophageal
adenocarcinoma (EAC) (1,2). Once diagnosed, EAC has a 5-year
survival rate of 17%–22% (3,4), thus demonstrating the critical
need for early detection of patients at risk of developing EAC.
Patients with BE are monitored for dysplasia using endoscopy,
cell-sampling cytology balloons, or cytosponge (5–7), but since

only 0.1%–4% progress to EAC (8–11), the cost-effectiveness of
surveillance is controversial. Efforts are underway to identify
biomarkers with diagnostic or prognostic potential in esophageal
cancer.

MicroRNAs (miRNAs) are small noncoding RNAs that reg-
ulate gene expression. Cancers have distinctmiRNAprofiles (12),
and miRNA biomarkers have been identified for the early de-
tection of gastric, hepatocellular, breast, and non–small cell lung
cancers (13–16). In addition, miRNAs are shown to stratify
prostate cancer risk (17,18), predict recurrence, and survival in
melanoma (19) and aid in the diagnosis, therapy, and prognosis of
gastric cancer (20). At least 105 miRNAs are differentially regu-
lated in BE vs normal controls (21). MiR-133a-3p, 136-5p, 194-
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5p, 382-5p, and 451a are dysregulated in serum from patients
with BE and can differentiate between controls, BE, and EAC
patients (22). In addition, miR-192, 194, 203, 205, and 215 have
been identified as promising tissue biomarkers for the diagnosis
and monitoring of BE (23).

In this study, high-throughput sequencing (HTS) of serum
and tissue biopsy specimens obtained from normal subjects,
patients with GERD, BE, BE with low-grade dysplasia (LGD), or
EAC was performed to identify miRNA biomarkers specific to
disease stage. Logistic regressionmodelingwas used to identify 16
miRNAs which can categorize samples into either normal,
BE/GERD, or LGD/EAC. The relative expression of 11/16 miR-
NAs was confirmed by quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) using formalin-fixed, paraffin-
embedded (FFPE) samples. These data provide an miRNA sig-
nature of normal, precancerous, and cancerous tissue that may
stratify patients at risk of progressing to EAC. Furthermore, we
identified miR-4485-5p as a novel biomarker of esophageal
dysplasia.

MATERIALS AND METHODS

Ethics statement

This study was approved by the institutional regulatory board
(IRB) of the Dayton Veterans Affairs Medical Center. Informed
consent was obtained from all patients before obtaining serum
and tissue samples.

Study subjects

Study participants were randomly chosen from individuals
who underwent esophageal biopsies at the Dayton VA hospital.
Serum was obtained from 5 normal, 9 GERD, 7 BE, 5 BE with
LGD, and 5 EAC subjects enrolled in the study and was kept at2
80 °C. Tissue biopsies were obtained during high-definition/high-
resolution white light endoscopy per the American College of

Gastroenterologists guidelines using the Seattle biopsy protocol.
Specifically, four-quadrant biopsies at 2-cm intervals were collected
in patients without dysplasia and 1-cm interval in patients with
previous dysplasia. Tissue biopsies stored in RNA later were
obtained from 4 normal, 7 GERD, 7 BE, 5 LGD, and 5 EAC subjects
enrolled in the study. H&E sections from each sample were inter-
preted by an expert gastrointestinal histopathologist. A summary of
the demographic data for these samples is provided in Table 1 and
detailed in Supplemental Table 1, Supplementary Digital Content 1,
http://links.lww.com/CTG/A160.

Study samples used for qRT-PCR validation of miRNA levels
were randomly selected from archived deidentified FFPE tissues.
A total of 15 normal, 16 GERD/BE, and 15 LGD/HGD/EAC
samples were collected. The associated subject demographic data
for these samples are summarized in Table 2 and detailed in
Supplemental Table 2, Supplementary Digital Content 2, http://
links.lww.com/CTG/A161. Although the amount of “time with
BE” is a known risk factor for EAC progression, it is important to
point out that the utility of this metric of progression to EAC
varies greatly between individuals, thus making it impossible to
place an individual on the continuum as “early BE” or “ad-
vanced BE.”

High-throughput sequencing

Small RNAs isolated from serum and homogenized tissue using
the mirVanaTM ParisTM RNA and Native Protein Purification
kit (Thermo Fisher Scientific, Waltham, MA) were subjected to
library preparation using the Ion Total RNA-seq v2 kit (Thermo
Fisher Scientific) (24). Samples were sequenced using the Ion
Proton system, Ion P1 chip, and Ion PI HI-Q Sequencing 200 kit
(Life Technologies, Carlsbad, CA) followed by data analysis using
Partek Flow software v7.0 (Partek, St. Louis, MO) with the
miRBase mature miRNAs version 21 reference as previously
described (24).

Table 1. Demographic data of subjects used in NGS analysis

Pathology # Serum # Tissue Male, female Nonsmoker, smoker BMI Age

Normal 4 3 4, 0 2, 2 25.2 6 4.8 60.8 6 17.7

GERD 8 6 8, 0 2, 6 29.6 6 1.7 68.9 6 10.6

BE 7 7 7, 0 2, 5 27.7 6 3.4 66.4 6 12.6

LGD 5 5 5, 0 4, 1 30.2 6 3.6 66.0 6 10.7

EAC 5 4 5, 0 2, 3 28.9 6 11.1 59.2 6 9.1

BE, Barrett’s esophagus; BMI, body mass index; EAC, esophageal adenocarcinoma; GERD, gastroesophageal reflux disease; LGD, low-grade dysplasia.

Table 2. Demographic data of subjects fromwhomFFPE samples were used to validate changes inmiRNA between normal, GERD/BE, and

LGD/HGD/EAC classes

Pathology n Male, female Nonsmoker, smoker BMI Age

Normal 15 14, 1 10, 5 26.5 6 5.6 59.8 6 8.5

GERD/BE 16 16, 0 9, 7 32.4 6 6.8 64.4 6 5.4

LGD/HGD/EAC 15 15, 0 6, 9 24.9 6 5.0 72.0 6 10.0

BE, Barrett’s esophagus; BMI, body mass index; EAC, esophageal adenocarcinoma; FFPE, formalin-fixed, paraffin-embedded; miRNA, microRNA; GERD,
gastroesophageal reflux disease; LGD, low-grade dysplasia.
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Statistical analyses of miRNA data set

Because sequencing depth influences the probability of de-
tection of low-abundance transcripts, samples were rarefied to
276,919 reads each. Since read density analysis indicated that
read distribution in all samples was not normal, all values were
square-root–transformed to compress the expression range and
improve data normality (25). Loess transformation was then
used to normalize the distribution of miRNA expression values
among all samples as previously reported (26). This rarefied,
square-root–transformed, Loess-normalized data set was then
subjected to multivariate ordination analyses (27). For dis-
criminant analyses, miRNA variables with stable expression
values across all sample types were filtered out which led to the
reduction of the data set from 2,555 to 683 miRNA species.
Logistic regression with Lasso regularization (LR:LR) (28) was
chosen to generate a sample classification model. Lasso regu-
larization allowed us to limit the number of discriminatory
variables defining each sample type. The logistic regression with
Lasso regularization was the primary model used because it
allowed us to limit the number of miRNAmarkers defining each
class. Because of the ability of LR-LR classifier to use a limited
number of miRNA variables in its class prediction, this ap-
proach was chosen initially and not because it had the best

performance. The LR:LR method achieved the highest accuracy
of class prediction compared with Random Forest, Support
Vector Machines, and K-Nearest Neighbor classifiers (data not
shown). These other models were run for comparison purposes
to ensure that Lasso regularization did not compromise model
accuracy and performance.

qRT-PCR from FFPE sections

Total RNA was isolated from 25-mm FFPE tissue sections using
the truXTRAC FFPE microTube RNA kit and M220 focused
ultrasonicator (Covaris, Woburn, MA) following manufacturer
protocols. Approximately 10 ng of total RNA was converted to
cDNA using the TaqMan Advanced miRNA cDNA KIT and
amplified in a 14-cycle miR-AMP reaction per manufacturer
recommendations (Life Technologies). qRT-PCR was performed
on a QuantStudio 7 (Applied Biosystems, Foster City, CA) with
each sample run in triplicate. qRT-PCR was performed
using TaqMan Fast Advanced Master Mix (Life Technologies)
and miRNA-specific AODS as follows: hsa-miR-93-5p
(478210_mir), hsa-miR-423-5p (478090_miR), hsa-let-7g-5p
(478580_miR), hsa-miR-29c-3p (479229_mir), hsa-miR-30d-5p
(478606_mir), hsa-miR-34b-3p (478050_mir), hsa-miR-106b-3p

Figure 1.Comparison ofmiRNA expression profiles from tissue and serum samples. Similarity among all samples was assessed by unconstrained principal
component analysis (PCA, a, d) and constrained redundancy analysis (RDA, b, e) run on the square-root–transformed, Loess-normalized miRNA
expression data set. Both tissue and serum samples were included in analyses visualized in (a, b). (d and e) Visualize outputs of PCA andRDA ran on tissue
samples exclusively. Each sample is shownas circle colored according to the sample type (see legend). The percent of data set variability explained by each
axis is shown in parentheses in axis titles. In (a, d), group clouds represent areas of 3 standard errors around the group centroid (diamond). Arrows in RDA
triplot denote themagnitude and the direction of the effect of constraining continuous variables. For constraining categorical variables, each class centroid
is shown as a diamond. miRNAs that were associated strongly with particular sample groups are named. Analysis of variance diagrams (c, f) depict the
relative contribution of constraining variables to the overall variability in the data set. miRNA, microRNA.
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(478412_mir), hsa-miR-133a-3p (478511_mir), hsa-miR-193-3p
(478314_mir), hsa-miR-203a-5p (478756_mir), hsa-miR-203b-5
(478758_mir), hsa-miR-212-5p (478767_miR), hsa-miR-369-5p
(478068_mir), hsa-miR-375-3p (478074_mir), hsa-miR-381-3p
(477816_mir), hsa-miR-4783-5p (47944_miR), hsa-miR-4485-5p
(480829_miR), and hsa-miR-4792 (480052_miR). Analysis was
performed usingRelativeQuantification v3.8 (ThermoFisherCloud
utility). Raw CT values were normalized to endogenous control
miRNAs hsa-miR-93-5p and hsa-miR-423-5p, both recommended
in the TaqMan Advanced miRNA protocol (Thermo Fisher Scien-
tific, Carlsbad, CA) and displaying comparable expression across all
samples (data not shown). Relative expression presented as 22DCT.

Statistical analysis of Reverse Transcription Quantitative

Polymerase Chain Reaction data

Independent-samples, 2-tailed t tests for equal or unequal vari-
ance were performed to test for significant differences in relative
expression (22DCT) in the predicted class vs all other samples.
Differences were considered statistically significant at P , 0.05.
Relative expression values that were not normally distributed
were assessed using the Wilcoxon two-sample test. SAS version
9.4 (SAS Institute, Cary, NC) was used for all analyses.

Ingenuity pathway analysis (IPA)

Experimentally validated humanmRNA targets for 16 predictive
miRNAs were identified using the Ingenuity Pathways Knowl-
edge Base (Qiagen, Valencia, CA). The algorithms used in IPA
(Qiagen) have been previously described (29). Identified mRNA
targets were compared with the IPA Knowledge Base lists of
mRNA associated with BE and EAC. Functional analysis of target
mRNA was performed using IPA pathway tools.

RESULTS

miRNA expression profiles determined by serum or tissue source

Principal component analysis of the HTS data set obtained from
serum and tissue samples from 31 subjects indicated a clear
separation of serum and tissue samples (Figure 1a). Although

normal andpathological tissue samples formed distinct clusters, no
separation was observed between normal and pathological serum
samples. These findings were confirmed by redundancy analysis
(RDA) in which miRNA variability was constrained by several
explanatory variables including sample source (serum or tissue),
sample type (normal or pathology), body mass index (BMI), and
age (Figure 1b). Analysis of variance indicated that sample source
was the dominant determinant of the miRNA expression, while
other variables contributed substantially less (Figure 1c). Only
sample source (tissue or serum) and sample pathology (normal,
GERD, BE, BE with LGD, or EAC) had statistically significant
contributions, indicating that tissue and serum miRNA pools
represent distinct expression profiles. Normal and pathological
tissue samples could be easily distinguished, but that was not the
case for serum samples likely because of significant measurement
noise and error arising from known technical challenges of pro-
filingmiRNAs inblood (30). Thus, all further analyses only focused
on HTS data from tissue miRNA profiles.

Tissue miRNA profiles differ between normal and

pathological state

We next reran principal component analysis and RDA analysis
only on the 25 tissue samples. Ordination algorithms clearly
separated normal samples from the rest (Figure 1d, e). Different
pathological states were partially separated from each other with
a significant overlap observed in several cases. EAC samples had
the highest variability in miRNA profiles. Analysis of variance of
RDA output indicated that sample pathology explained the
highest percent of variance (Figure 1f).

MiRNA expression does not show a gradual deviation from

healthy state

Weused principal response curve (PRC) analysis (31) to examine
whether changes in miRNA expression profiles correlated with
disease stage from normal, GERD, BE, BE with LGD, and EAC.
PRC constitutes a partial RDA that isolates the sample pathology
variable using normal samples as the baseline.MiRNAexpression

Figure 2. Modeling tissue miRNA expression with 5 classes. (a) Principal response curve (PRC) analysis of the filtered tissue miRNA data set. miRNA
expression profiles in normal samples were set as baseline and were compared with the miRNA profiles of all other samples. Larger values on the y axis
represent greater shift of themiRNAexpression from those of normal samples. (b, c) Logistic regression (LR)-baseddiscriminatory analysis of tissuemiRNA
profiles (regularization threshold C5 0.2). Each of the 5 sample types was defined as a separate class. Confusion matrix reveals the concordance of the
predicted vs actual class labels of all profiled tissue samples (b). Receiver operating characteristic (ROC) plot (c) illustrates the diagnostic ability of the LR
classifier as its discrimination threshold is varied. miRNA, microRNA.
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deviated from that of the healthy tissues in GERD, and that de-
viation did not increase in BE or BE with LGD and EAC
(Figure 2a). Therefore, PRC analysis supported the hypothesis
that miRNA profiles of individual pathologies are distinct classes
and are not progressive stages of the same disease.

Discriminant analysis of miRNA profiles does not support a 5

pathological state model

We first performed logistic regression-based discriminant anal-
ysis of the tissue miRNA expression data set using 5 classes
(normal, GERD, BE, LGD, and EAC). Lasso regularization (LR)
was used to limit the number of miRNA variables defining each
class and avoid overfitting the discriminating model. The five-
classmodel performed poorlywith an accuracy of class prediction
of 52% and average area under the curve (AUC) of 0.71
(Figure 2b, c). The model was able to discriminate normal sam-
ples, but could not distinguish betweenGERD and BE or between
LGDandEAC.The overlap inmiRNAexpression betweenGERD
and BE and between LGD and EAC corroborated the analyses in
Figure 1d, e.MiRNAprofiles of EAC samples exhibited the largest
variability and thus the worst receiver operating characteristic
curve (Figure 2c).

MiRNA profiles define 3 pathology classes

Because of the overlap between classes, a new logistic regression
model was run with 3 classes: normal, pooled GERD and BE, and
pooled LGD and EAC samples. We tested different levels of
regularization strength ranging from C 5 0.15 to 2 (Figure 3a)
and observed only a minor improvement in prediction accuracy
and AUC performance with higher numbers of discriminating
miRNAs (Figure 3a). The three-class model performed better
than the five-class model with a prediction accuracy of 80% and
average AUC of 0.92 (Figure 3b, c).Most samplesmisclassified by
this model were from the LGD/EAC class, consistent with the
partial overlap of miRNA expression profiles in this class with the
other 2 classes (Figure 1d). We chose a regularization strength
cutoff of C 5 0.2 as it produced the optimal number of dis-
criminating miRNAs among the 3 classes with 4 miRNAs de-
fining normal samples (Figure 3d), 7 miRNAs defining GERD
and BE (Figure 3e), and 5 miRNAs defining LGD and EAC
(Figure 3f).

miRNAs discriminate among the 3 tissue pathology classes

To validate the HTS data, we used qRT-PCR to compare the
expression of 16 potential predictor miRNAs (Figure 3d–f) in at

Figure 3. Discriminating tissue miRNA expression with 3 distinct classes. (a) Dependency of logistic regression (LR)-based discriminatory analysis on the
strength of regularization threshold (c). AUC—area under the curve inROCanalysis represents the discrimination ability of eachmodel (higher value equals
better discrimination). The combined number of discriminating miRNA variables among 3 classes is plotted on the left-hand y axis; AUC and prediction
accuracy values are plotted on the right-hand y axis. C5 0.2 was chosen for further model assessment. (b, c) LR discriminatory analysis of tissue miRNA
profiles with 3 defined classes (Figure 2). (d through f) miRNA expression levels (arbitrary units) of discriminatory miRNAs selected by the LR algorithm to
define each class. Note that y axis values are plotted on a log2 scale. miRNA, microRNA; ROC, receiver operating characteristic.
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least 15 FFPE samples in each of the 3 classes (n 5 46 total).
MiR-212-5p, miR-4792, and miR-4783-5p were undetectable by
qRT-PCR and excluded from further analysis. Relative expression
(22DCT) of the remaining 13 miRNAs (Figure 4, lower panels) and
the corresponding miRNA read abundances measured by HTS
(Figure 4, upper panels) are shown. Two of the 4miRNApredictors
of normal samples, miR-369-5p and miR-203b-5p, showed similar
trends in median expression by qRT-PCR as observed by HTS
(Figure 4a), while the trends for miR-203a-5p and miR-381-3p
differed from those observed by HTS. Although all 4 miRNA pre-
dictors of GERD and BE (miR-133a-3p, miR-29c-3p, miR-30d-5p,
andmiR-34b-3p) showed an increase inmedian expression relative
to normals by qRT-PCR as observed byHTS (Figure 4b), onlymiR-
29c-5p reached statistical significance (P 5 0.043). MiRNA pre-
dictors of LGD and EAC showed similar trends by qRT-PCR with
minor deviations observed for GERD/BE samples formiR-193b-5p
andmiR-4485-5p (Figure 4c). BothmiR-193b-3p andmiR-4485-5p
showed significantly different expression levels vs normal and
GERD/BE classes (P5 0.005 and 0.014, respectively).

Target analysis of miRNA predictors of esophageal pathology

We used IPA to identify 36 validated mRNA targets of the 16
miRNAs identified in this study (Figure 3d–f) as shown in Table 3.
Three of thesemRNA targets, COL1A2,DAD1, andCCND1, were
previously shown to be associated with BE or EAC (32–34). The
remainingmRNA targets have not been previously associated with
BE or EAC. Overall, the mRNAs targets in Table 3 showed en-
richment for relevant cellular functions including fibrosis, cell
movement, colony formation, and cell invasion (all P, 0.0001).

DISCUSSION
The histological presence of dysplasia in esophageal biopsies
is frequently overlooked because of sampling bias during

endoscopy and poor interobserver agreement (35,36), thus ne-
cessitating improved methods for staging disease and risk. Models
that incorporate clinical and histologic data with biomarkers show
improved predictive capacity (37). Our study usedHTSprofiling of
miRNA from serum and esophageal tissue biopsies to identify
miRNAs predictive for normal, GERD/BE, and/or LGD/HGD/
EAC pathology classes. Sixteen miRNAs were identified which
successfully classified biopsy samples into 3 classes (normal, GERD
and BE, and BE with LGD and EAC) with a prediction accuracy of
80%. qRT-PCR confirmed the relative expression of 11 miRNAs,
providing an miRNA signature with potential clinical utility as
staging biomarkers. These miRNAs could be used to improve di-
agnosis when used as an adjunct to current histopathology.
Moreover, the cost associated with this added screening would be
kept to aminimumsince tissuemiRNA levelsmaybe assessed from
existing FFPE samples collected during normal histologic screen-
ing. Finally, the identification of downstream mRNA targets of
these miRNAs and their function will provide critical insights into
the pathophysiology of esophageal cancer.

The importance of incorporating relevant clinical data into
mathematical models is well documented (38). This study used
RDA (Figure 1c) to account for the effect of BMI, age, and sample
pathology as confounding variables. Most variance between the
samples used for HTS was attributed to sample pathology, while
age and BMI had a smaller influence (Figure 1f). Although pre-
vious studies have shown a correlation between high BMI and
EAC (39), the trend was not observed in our data set. The effect of
sex was not incorporated into the RDA model since all the NGS
samples were acquired from male patients (Table 1). This sam-
pling is consistent with previous reports that esophagitis, BE, and
EAC are more common in male patients (40). Although this
sample distribution rules out sex as a confounding variable in our
analysis, it is possible that some of the changes in miRNA

Figure4.Comparisonof relativemiRNAexpressionmeasurements byHTSandqRT-PCR.Relative expression ofmiRNAspredictive of (a) normal, (b) GERD
and BE, and (c) LGD and EAC samples is shown as determined by HTS (square-root–transformed and Loess-normalized miRNA read counts, upper row
panels) and qRT-PCR from FFPE tissue samples (22DCT values, lower row panels). Y axes are plotted on a log2 scale. Box plots of 22DCT values obtained by
qRT-PCRdisplaymedian value (midline) and first and thirdquartile values. Light blue shading indicates thepredictingclass for eachmiRNA. *P,0.05.BE,
Barrett’s esophagus. EAC, esophageal adenocarcinoma; FFPE, formalin-fixed, paraffin-embedded; GERD, gastroesophageal reflux disease; LGD, low-
grade dysplasia; miRNA, microRNA; qRT-PCR, quantitative reverse transcription polymerase chain reaction.
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expression may be male-specific. Additional testing would be
required to determine whether similar changes in miRNA ex-
pression are observed in esophageal biopsies from female
patients. Finally, consistent with previous reports that cigarette
smoking is a risk factor for EAC (41), we observed that a majority
of normal biopsies were collected from nonsmokers, while
a majority of samples in the LGD/HGD/EAC group were from
smokers. Altogether, our analysis indicates that pathology
explained a majority of the variance in our HTS data set. An
increase in sample size would be required to determine the effect
of other confounding variables.

Previous reports have reported a 3- to 7-fold increase in the
rate of disease progression in patients with long-segment BE
compared with short-segment BE (42,43). All but one of the
samples used in this study were obtained frompatients with long-
segment BE, thus excluding segment length as a confounding
variable. Analysis of miRNA levels from longitudinally collected
samples including a mix of short- and long-segment BE would be
required to identify miRNA which predict patients at risk of
disease progression.

The extent to which circulating biomarkers reflect changes at
the affected tissue level is unclear. Sierzega et al. (44) found that
only 7 of 20 circulating miRNAs upregulated in gastric cancer
were overexpressed in primary tumors, suggesting elevated
miRNA levels may not originate from primary tumors.
This discordance between circulating and tissue miRNA levels
has also been observed in response to acute resistance exercise
(45). Our study failed to identify a serum miRNA signature of
disease state, thus suggesting that miRNA may have limited

ability to distinguish between disease states and limiting the
utility of circulating miRNA in early disease detection. Further-
more, our analysis supports a disconnect between serum and
tissue mRNA profiles since miRNA levels measured from
esophageal tissue biopsies correctly characterized samples into
normal, BE/GERD, or LGD/EAC groups with 80% accuracy. The
three-class model used in this study yielded an accuracy of 80%
(AUC 5 0.92), in line with previous BE studies. Duits et al. (46)
reported an AUC of 0.73 for their model using histology and 3
mRNAbiomarkers to predict progression to EAC. Eluri et al. (47)
reported an accuracy of 89.9% (AUC 5 0.95) for their model
using mutation load to predict disease progression.

The predictive power of the model relies only on the associ-
ation of alteredmiRNA levels with a specific disease stage(s), thus
inferences related to the role these miRNAs play in disease pro-
gression cannot be made. Furthermore, it is unclear from the
predictive model whether the observed changes in miRNA ex-
pression are drivers or readouts of disease pathology. Nonethe-
less, themiRNA identified by thismodel and the validatedmRNA
targets of these miRNAs provide information which is critical to
the understanding of miRNA in esophageal cancer physiology.
Future studies using samples taken over time from the same in-
dividual could be used identify miRNA biomarkers of disease
progression.

Our analysis identified a 13 miRNA signature of esophageal
disease from normal tissue, GERD and BE, and LGD and EAC.
Additional insights into the functional role played by these
miRNAs in esophageal cancer may be made by correlating our
HTS data with studies focused on known mRNA targets

Table 3. Identified functional roles, seed sequences, and validated humanmRNA targets for predictor miRNA identified from esophageal

biopsies

miRNA Reported functional role Validated human targets

Let-7g-5p Promotes apoptosis, invasion,

and inhibits EMT

BCL2L1, COL1A2, DAD1, EIF4G2, HMGA2,

and IGF2BP1

miR-106b-3p Oncogenic, suppresses apoptosis None

miR-133a-3p Regulates muscle growth, EMT, differentiation FSCN1, KLF15, KRT7, PKM, and RHOA

miR-193b-3p Role in tumor progression and invasion CCND1, ESR1, ETS1, and PLAU

miR-203a-5p Unknown none

miR-203b-5p Unknown none

miR-29c-3p Regulates extracellularmatrix proteins involved

in cell migration and metastasis

CDC42, COL15A1, COL1A1, COL1A2,

COL3A1, COL4A1, COL4A2, DNMT3A,

DNMT3B, FBN1, LAMC1, PIK3R1, SPARC,

SRSF10, and TDG

miR-30d-5p Role in cell cycle regulation, apoptosis, and

invasion

BCL6, GNAI2, and RUNX2

miR-34b-3p Regulates androgen signaling and tumor

aggressiveness

none

miR-369-5p Regulates EMT none

miR-375 Role in proliferation, apoptosis, migration, and

invasion

CIP2A and YAP1

miR-381-3p Roles in EMT, cell cycle, and invasion DNMT3A

miR-4485-5p Unknown none

EMT, epithelial-to-mesenchymal transition; miRNA, microRNA.
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(Table 1). For example, miR-29c-3p is upregulated only in BE but
not EAC (48) and is shown to target 10 extracellular matrix
proteins involved in cell migration and metastasis in HeLa and
HepG2 cells, suggesting it can play a role in the cell migration and
metastasis observed in EAC (49).

Eleven of the 13 miRNAs tested by qRT-PCR showed
matching profiles of expression between classes when compared
with the HTS data further validating the HTS data. Our results
demonstrated a significant upregulation ofmiR-29c-3p in BE and
downregulation of miR-193b-3p in EAC consistent with pre-
viously published studies (50,51). In addition, we observed that
miR-133a-3p andmiR-106b are upregulated in bothBE andEAC,
and that miR-375 is upregulated in BE and downregulated in
EAC as shown previously (48,52–54).

Let-7g-5p was shown to be upregulated in GERD/BE and
LGD/EAC samples relative to normal controls (Figure 4). Al-
though Let-7g-5p is upregulated in advanced renal cell carcinoma
(55) and associatedwith recurrence in lung adenocarcinoma (56),
it has not been previously associatedwith esophageal disease, thus
identifying it as a potential novel biomarker of early esophageal
disease. Let-7g-5p directly targets BCL2L1 (BCL-X) (57), and loss
of BCL2L1 has been associated with progression to EAC and
reduced survival (58,59). In addition, Let-7g-5p has also been
shown to target high mobility group AT-hook 2 (HMGA2),
IGF2BP1 (IMP-1), and COL1A2 previously shown to be associ-
ated with EAC (60–63).

MiR-193b-3p was significantly downregulated in LGD/EAC
samples relative to normal controls by HTS and qRT-PCR (P 5
0.0141), consistent with previous reports (50,51). Loss of miR-
193b-3p leads to elevated uPA levels and increases breast cancer
progression and invasion (64), but a role for uPA in BE or EAC
has not been reported. MiR-193b-3p targets ERa (ESR1) (65)
which is hypermethylated in GERD, BE, and EAC (66), sug-
gesting that miR-193b-3p and epigenetic silencing may act in
parallel to silence ESR1. MiR-193b-3p also targets CCND1 and
ETS1 to induce cell cycle arrest and inhibit migration and in-
vasion (67). Polymorphisms in CCND1 are associated with in-
creased risk of GERD (68).

MiR-30d-5p was upregulated in all pathologies relative to
normal controls by HTS and qRT-PCR. Although dysregulation
ofmiR-30d-5p occurs in colon and non–small cell lung cancer, its
association with BE or EAC has not been reported (69,70). MiR-
30d-5p directly targets BCL6 (71), and BCL6 downregulation
leads to increased cyclin D2 expression and invasion (72,73),
suggesting that miR-30d-5p may regulate cell cycle progression
and metastasis in EAC. MiR-30d-5p also targets the proto-
oncogene Galphai2 (GNAI2) (74), but altered GNAI2 levels in
EAC have not been reported. Finally, miR-30d-5p also targets
RUNX2 (70) which has been linked to BE to EAC pro-
gression (75).

MiR-375 was downregulated in LGD/HGD/EAC samples
relative to GERD/BE samples by HTS and qRT-PCR. These
results are consistentwith previous reports linkingmiR-375 to BE
to EAC progression (48,52,76). Downregulation of miR-375-3p
increases yes-associated protein (YAP) (77), a marker upregu-
lated in gastric cancer associated with poor prognosis (78). YAP1
is overexpressed in EAC cell lines relative to BE cell lines (79),
thus suggesting that loss of miR-375 in EAC may promote pro-
liferation and invasion of cancer cells. MiR-375 regulates c-MYC
by targeting Cancerous Inhibitor of PP2A (CIP2A) (80), both of
which are overexpressed in BE and EAC (81). Finally, miR-375

targets YWHAZ (14-3-3z) which regulates proliferation, apo-
ptosis, migration, and invasion in gastric cancer cell lines (82).

MiR-4485-5p was significantly downregulated in the LGD/
HGD/EAC class relative to normal and GERD/BE classes, thus
potentially serving as a novelmarker of disease severity. Although
dysregulation of miR-4485 in esophageal disease has not been
reported, it is a known tumor suppressor that binds to mito-
chondrial 16S rRNA and regulates mitochondrial complex 1 ac-
tivity leading to altered ATP production, caspase activation, and
apoptosis (83). Interestingly, miR-4485 is a target of NF-kB sig-
naling which is downregulated in TNFa-stimulated HeLa cells
(84). The significant downregulation of miR-4485 observed in
this study may thus be a result of the typical elevation of NF-kB
signaling observed in GERD, BE, and EAC (21).

Taken together, these miRNAs provide a signature of normal,
GERD ,and BE and dysplastic (i.e., LGD, HGD, and EAC)
pathological states. Furthermore, the dysregulation of these
miRNA may provide critical insights into the specific cellular
physiology changes that occur in Barrett’s esophagus and EAC.
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Study Highlights

WHAT IS KNOWN

3 Altered expression of serumand tissuemiRNAs is observed in
Barrett’s esophagus and esophageal adenocarcinoma.

3 Biomarkers of Barrett’s esophagus and esophageal
adenocarcinoma are needed to improve disease staging.

WHAT IS NEW HERE

3 Approximately 16miRNAswere identified which successfully
classified biopsy samples from normal, Barrett’s esophagus/
gastroesophageal reflux disease, and esophageal
adenocarcinoma subjects with an accuracy of 80%.

3 Using quantitative reverse transcription polymerase chain
reaction, the relative expression of 11miRNAswas confirmed
providing an miRNA signature with potential clinical utility.

ACKNOWLEDGEMENTS
The authors thank Anita Mays from the Dayton VAMC for their
assistance with collection of FFPE samples.

REFERENCES
1. Cameron AJ, Ott BJ, Payne WS. The incidence of adenocarcinoma in

columnar-lined (Barrett’s) esophagus. N Engl J Med 1985;313:857–9.
2. Spechler SJ, Fitzgerald RC, Prasad GA, et al. History, molecular

mechanisms, and endoscopic treatment of Barrett’s esophagus.
Gastroenterology 2010;138:854–69.

Clinical and Translational Gastroenterology VOLUME 11 | JANUARY 2020 www.clintranslgastro.com

ES
O
P
H
A
G
U
S

Craig et al.8

http://www.clintranslgastro.com


3. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med 2014;371:
2499–509.

4. Natioinal Cancer Intititute Surveillance, Epedemiology and End Results
Program. Recent Trends in SEER Incidence Rates: Adenocarcinoma of
theEsophagus 5-Year SEERRelative SurvivalRates, 2009-2015by Sex and
Race/Ethnicity, 2019. http://seer.cancer.gov. Accessed June 5, 2019.

5. Visrodia K, Singh S, Krishnamoorthi R, et al. Systematic review with
meta-analysis: Prevalent vs. incident oesophageal adenocarcinoma and
high-grade dysplasia in barrett’s oesophagus. Aliment Pharmacol Ther
2016;44:775–84.

6. Falk GW. Cytology in Barrett’s esophagus. Gastrointest Endosc Clin N
Am 2003;13:335–48.

7. Kadri SR, Lao-Sirieix P, O’Donovan M, et al. Acceptability and accuracy
of a non-endoscopic screening test for barrett’s oesophagus in primary
care: Cohort study. BMJ 2010;341:c4372.

8. Wani S, Falk GW, Post J, et al. Risk factors for progression of low-grade
dysplasia in patients with Barrett’s esophagus. Gastroenterology 2011;
141:1179–86, 1186 e1.

9. Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of
adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med
2011;365:1375–83.

10. Shakhatreh MH, Duan Z, Kramer J, et al. The incidence of esophageal
adenocarcinoma in a national veterans cohort with Barrett’s esophagus.
Am J Gastroenterol 2014;109:1862–8; quiz 1861, 1869.

11. Thota PN, Lee HJ, Goldblum JR, et al. Risk stratification of patients with
barrett’s esophagus and low-grade dysplasia or indefinite for dysplasia.
Clin Gastroenterol Hepatol 2015;13:459–65.

12. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev
Cancer 2006;6:857–66.

13. Liu X, Chu KM. Circulating cell-free DNAs and miRNAs as promising
non-invasive biomarkers for early detection of gastric cancer. Neoplasma
2016;63:1–9.

14. Wen Y, Han J, Chen J, et al. Plasma miRNAs as early biomarkers for
detecting hepatocellular carcinoma. Int J Cancer 2015;137:1679–90.

15. Arab A, Karimipoor M, Irani S, et al. Potential circulating miRNA
signature for early detection of NSCLC. Cancer Genet 2017;216-217:
150–8.

16. Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast
cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther
2017;172:34–49.

17. Hoey C, Liu SK. Circulating blood miRNAs for prostate cancer risk
stratification: miRroring the underlying tumor biology with liquid
biopsies. Res Rep Urol 2019;11:29–42.

18. Wu D, Ni J, Beretov J, et al. Urinary biomarkers in prostate cancer
detection andmonitoring progression. Crit RevOncolHematol 2017;118:
15–26.

19. Polini B, Carpi S, Romanini A, et al. Circulating cell-free microRNAs in
cutaneous melanoma staging and recurrence or survival prognosis.
Pigment Cell Melanoma Res 2019;32:486–99.

20. Yuan HL, Wang T, Zhang KH. MicroRNAs as potential biomarkers for
diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther
2018;11:3891–900.

21. Clark RJ, CraigMP, Agrawal S, et al. microRNA involvement in the onset
and progression of Barrett’s esophagus: a systematic review. Oncotarget
2018;9:8179–96.

22. Bus P, Kestens C, Ten Kate FJ, et al. Profiling of circulatingmicroRNAs in
patients with Barrett’s esophagus and esophageal adenocarcinoma.
J Gastroenterol 2016;51:560–70.

23. Mallick R, Patnaik SK, Wani S, et al. A systematic review of esophageal
MicroRNAmarkers for diagnosis andmonitoring of Barrett’s esophagus.
Dig Dis Sci 2016;61:1039–50.

24. Sakaram S, Craig MP, Hill NT, et al. Identification of novel
DeltaNp63alpha-regulated miRNAs using an optimized small RNA-Seq
analysis pipeline. Sci Rep 2018;8:10069.

25. Paliy O, Shankar V. Application of multivariate statistical techniques in
microbial ecology. Mol Ecol 2016;25:1032–57.

26. WithmanB,GunasekeraTS, BeesettyP, et al. Transcriptional responses of
uropathogenic Escherichia coli to increased environmental osmolality
caused by salt or urea. Infect Immun 2013;81:80–9.

27. Shankar V, Gouda M, Moncivaiz J, et al. Differences in gut metabolites
and microbial composition and functions between Egyptian and U.S.
children are consistent with their diets. Msystems 2017;2:e00169–16.

28. Acharjee A, Finkers R, Visser RG, et al. Comparison of regularized
regression methods for;Omics data. Metabolomics 2013;3:126.

29. Kramer A, Green J, Pollard J Jr, et al. Causal analysis approaches in
ingenuity pathway analysis. Bioinformatics 2014;30:523–30.

30. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: Approaches
and considerations. Nat Rev Genet 2012;13:358–69.

31. Shankar V, Agans R, Paliy O. Advantages of phylogenetic distance based
constrained ordination analyses for the examination of microbial
communities. Scientific Rep 2017;7:6481.

32. Khayer N, Zamanian-Azodi M, Mansouri V, et al. Oral squamous cell
cancer protein-protein interaction network interpretation in comparison
to esophageal adenocarcinoma. Gastroenterol Hepatol Bed Bench 2017;
10:118–24.

33. Liu CY,WuMC, Chen F, et al. A Large-scale genetic association study
of esophageal adenocarcinoma risk. Carcinogenesis 2010;31:
1259–63.

34. Lv J, Guo L,Wang JH, et al. Biomarker identification and trans-regulatory
network analyses in esophageal adenocarcinoma and Barrett’s esophagus.
World J Gastroenterol 2019;25:233–44.

35. Goldblum JR. Controversies in the diagnosis of barrett esophagus and
barrett-related dysplasia: One pathologist’s perspective. Arch Pathol Lab
Med 2010;134:1479–84.

36. Downs-Kelly E, Mendelin JE, Bennett AE, et al. Poor interobserver
agreement in the distinction of high-grade dysplasia and adenocarcinoma
in pretreatment Barrett’s esophagus biopsies. Am J Gastroenterol 2008;
103:2333–40; quiz 2341.

37. Bird-Lieberman EL, Dunn JM, Coleman HG, et al. Population-based
study reveals new risk-stratification biomarker panel for Barrett’s
esophagus. Gastroenterology 2012;143:927–35 e3.

38. Volkmann A, De Bin R, Sauerbrei W, et al. A plea for taking all available
clinical information into account when assessing the predictive value of
omics data. Bmc Med Res Methodol 2019;19:162.

39. Kubo A, Corley DA. Body mass index and adenocarcinomas of the
esophagus or gastric cardia: A systematic review and meta-analysis.
Cancer Epidemiol Biomarkers Prev 2006;15:872–8.

40. Kim YS, KimN, KimGH. Sex and gender differences in gastroesophageal
reflux disease. J Neurogastroenterol Motil 2016;22:575–88.

41. Cook MB, Kamangar F, Whiteman DC, et al. Cigarette smoking and
adenocarcinomas of the esophagus and esophagogastric junction: A
pooled analysis from the international BEACON consortium. J Natl
Cancer Inst 2010;102:1344–53.

42. Hamade N, Vennelaganti S, Parasa S, et al. Lower annual rate of
progression of short-segment vs long-segment barrett’s esophagus to
esophageal adenocarcinoma. Clin Gastroenterol Hepatol 2019;17:864–8.

43. Coleman HG, Bhat SK, Murray LJ, et al. Symptoms and endoscopic
features at barrett’s esophagus diagnosis: Implications for neoplastic
progression risk. Am J Gastroenterol 2014;109:527–34.

44. Sierzega M, Kaczor M, Kolodziejczyk P, et al. Evaluation of serum
microRNA biomarkers for gastric cancer based on blood and tissue pools
profiling: The importance of miR-21 andmiR-331. Br J Cancer 2017;117:
266–73.

45. D’Souza RF, Markworth JF, Aasen KMM, et al. Acute resistance exercise
modulates microRNA expression profiles: Combined tissue and
circulatory targeted analyses. PLoS One 2017;12:e0181594.

46. Duits LC, Lao-Sirieix P, Wolf WA, et al. A biomarker panel predicts
progression of Barrett’s esophagus to esophageal adenocarcinoma. Dis
Esophagus 2019;32:1–9.

47. Eluri S, Brugge WR, Daglilar ES, et al. The presence of genetic mutations
at key loci predicts progression to esophageal adenocarcinoma in barrett’s
esophagus. Am J Gastroenterol 2015;110:828–34.

48. Wu X, Ajani JA, Gu J, et al. MicroRNA expression signatures during
malignant progression from Barrett’s esophagus to esophageal
adenocarcinoma. Cancer Prev Res (Phila) 2013;6:196–205.

49. Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-
regulated in nasopharyngeal carcinomas, up-regulating mRNAs
encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 2008;
105:5874–8.

50. Garman KS, Owzar K, Hauser ER, et al. MicroRNA expression
differentiates squamous epithelium from Barrett’s esophagus and
esophageal cancer. Dig Dis Sci 2013;58:3178–88.

51. Lu L, Liu T, Gao J, et al. Aberrant methylation of microRNA-193b in
human Barrett’s esophagus and esophageal adenocarcinoma. Mol Med
Rep 2016;14:283–8.

52. Leidner RS, Ravi L, Leahy P, et al. ThemicroRNAs,MiR-31 andMiR-375,
as candidate markers in Barrett’s esophageal carcinogenesis. Genes
Chromosomes Cancer 2012;51:473–9.

American College of Gastroenterology Clinical and Translational Gastroenterology

ES
O
P
H
A
G
U
S

Differential MicroRNA Signatures 9

http://seer.cancer.gov


53. Xi T, Zhang G. Epigenetic regulation on the gene expression signature in
esophagus adenocarcinoma. Pathol Res Pract 2017;213:83–8.

54. Kan T, Meltzer SJ. MicroRNAs in Barrett’s esophagus and esophageal
adenocarcinoma. Curr Opin Pharmacol 2009;9:727–32.

55. Gowrishankar B, Ibragimova I, Zhou Y, et al. MicroRNA expression
signatures of stage, grade, and progression in clear cell RCC. Cancer Biol
Ther 2014;15:329–41.

56. Sim J, Kim Y, Kim H, et al. Identification of recurrence-associated
microRNAs in stage I lung adenocarcinoma. Medicine (Baltimore) 2018;
97:e10996.

57. Shimizu S, Takehara T, Hikita H, et al. The let-7 family of microRNAs
inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in
human hepatocellular carcinoma. J Hepatol 2010;52:698–704.

58. Raouf AA, Evoy DA, Carton E, et al. Loss of Bcl-2 expression in Barrett’s
dysplasia and adenocarcinoma is associated with tumor progression and
worse survival but not with response to neoadjuvant chemoradiation. Dis
Esophagus 2003;16:17–23.

59. Dvorakova K, Payne CM, Ramsey L, et al. Increased expression and
secretion of interleukin-6 in patients with Barrett’s esophagus. Clin
Cancer Res 2004;10:2020–8.

60. Boyerinas B, Park SM, Shomron N, et al. Identification of let-7-regulated
oncofetal genes. Cancer Res 2008;68:2587–91.

61. Mito JK, Agoston AT, Dal Cin P, et al. Prevalence and significance of
HMGA2 expression in oesophageal adenocarcinoma. Histopathology
2017;71:909–17.

62. Lin EW, Karakasheva TA, Lee DJ, et al. Comparative transcriptomes of
adenocarcinomas and squamous cell carcinomas reveal molecular
similarities that span classical anatomic boundaries. Plos Genet 2017;13:
e1006938.

63. Lv J, Liu J, Guo L, et al. Bioinformatic analyses of microRNA-targeted
genes and microarray-identified genes correlated with Barrett’s
esophagus. Cell Cycle 2018;17:792–800.

64. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to
enhance urokinase-type plasminogen activator (uPA) expression and
tumor progression and invasion in human breast cancer. Oncogene 2009;
28:3937–48.

65. Leivonen SK,Makela R,Ostling P, et al. Protein lysatemicroarray analysis
to identify microRNAs regulating estrogen receptor signaling in breast
cancer cell lines. Oncogene 2009;28:3926–36.

66. Eads CA, Lord RV, Kurumboor SK, et al. Fields of aberrant CpG island
hypermethylation inBarrett’s esophagus and associated adenocarcinoma.
Cancer Res 2000;60:5021–6.

67. Xu C, Liu S, Fu H, et al. MicroRNA-193b regulates proliferation,
migration and invasion in human hepatocellular carcinoma cells. Eur J
Cancer 2010;46:2828–36.

68. Argyrou A, Legaki E, Koutserimpas C, et al. Risk factors for
gastroesophageal reflux disease and analysis of genetic contributors.
World J Clin Cases 2018;6:176–82.

69. Hosseini SM, Soltani BM, Tavallaei M, et al. Clinically significant
dysregulation of hsa-miR-30d-5p and hsa-let-7b expression in patients
with surgically resected non-small cell lung cancer. Avicenna J Med
Biotechnol 2018;10:98–104.

70. Yu X, Zhao J, He Y. Long non-coding RNA PVT1 functions as an
oncogene in human colon cancer through miR-30d-5p/RUNX2 axis.
J BUON 2018;23:48–54.

71. Lin J, Lwin T, Zhao JJ, et al. Follicular dendritic cell-induced microRNA-
mediated upregulation of PRDM1 and downregulation of BCL-6 in non-
Hodgkin’s B-cell lymphomas. Leukemia 2011;25:145–52.

72. Liu SC, Bassi DE, Zhang SY, et al. Overexpression of cyclin D2 is
associated with increased in vivo invasiveness of human squamous
carcinoma cells. Mol Carcinog 2002;34:131–9.

73. Zeng Q, Tao X, Huang F, et al. Overexpression of miR-155 promotes the
proliferation and invasion of oral squamous carcinoma cells by regulating
BCL6/cyclin D2. Int J Mol Med 2016;37:1274–80.

74. Yao J, Liang L, Huang S, et al. MicroRNA-30d promotes tumor invasion
and metastasis by targeting Galphai2 in hepatocellular carcinoma.
Hepatology 2010;51:846–56.

75. Tavares ALP, Brown JA, Ulrich EC, et al. Runx2-I is an early regulator of
epithelial-mesenchymal cell transition in the chick embryo. Dev Dyn
2018;247:542–54.

76. Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of
esophageal cancer. Curr Pharm Des 2013;19:1292–300.

77. Liu AM, Poon RT, Luk JM. MicroRNA-375 targets Hippo-signaling
effector YAP in liver cancer and inhibits tumor properties. Biochem
Biophys Res Commun 2010;394:623–7.

78. Kang W, Tong JH, Chan AW, et al. Yes-associated protein 1 exhibits
oncogenic property in gastric cancer and its nuclear accumulation
associates with poor prognosis. Clin Cancer Res 2011;17:2130–9.

79. Song S, Honjo S, Jin J, et al. The hippo coactivator YAP1 mediates EGFR
overexpression and confers chemoresistance in esophageal cancer. Clin
Cancer Res 2015;21:2580–90.

80. Jung HM, Patel RS, Phillips BL, et al. Tumor suppressor miR-375
regulates MYC expression via repression of CIP2A coding sequence
through multiple miRNA-mRNA interactions. Mol Biol Cell 2013;24:
1638–48, S1-7.

81. Schmidt MK, Meurer L, Volkweis BS, et al. c-Myc overexpression is
strongly associated with metaplasia-dysplasia-adenocarcinoma sequence
in the esophagus. Dis Esophagus 2007;20:212–6.

82. Guo F, Gao Y, Sui G, et al. miR-375-3p/YWHAZ/beta-catenin axis
regulates migration, invasion, EMT in gastric cancer cells. Clin Exp
Pharmacol Physiol 2019;46:144–52.

83. Sripada L, Singh K, Lipatova AV, et al. hsa-miR-4485 regulates
mitochondrial functions and inhibits the tumorigenicity of breast cancer
cells. J Mol Med (Berl) 2017;95:641–51.

84. Zhou F, Wang W, Xing Y, et al. NF-kappaB target microRNAs and their
target genes in TNFalpha-stimulated HeLa cells. Biochim Biophys Acta
2014;1839:344–54.

Open Access This is an open access article distributed under the Creative
Commons Attribution License 4.0 (CCBY), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is
properly cited.

Clinical and Translational Gastroenterology VOLUME 11 | JANUARY 2020 www.clintranslgastro.com

ES
O
P
H
A
G
U
S

Craig et al.10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.clintranslgastro.com

