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Abstract

Background: Zebrafish is a popular model organism, which is widely used in developmental biology research.
Despite its general use, the direct comparison of the zebrafish and human oocyte transcriptomes has not been well
studied. It is significant to see if the similarity observed between the two organisms at the gene sequence level is
also observed at the expression level in key cell types such as the oocyte.

Results: We performed single-cell RNA-seq of the zebrafish oocyte and compared it with two studies that have
performed single-cell RNA-seq of the human oocyte. We carried out a comparative analysis of genes expressed in the
oocyte and genes highly expressed in the oocyte across the three studies. Overall, we found high consistency between
the human studies and high concordance in expression for the orthologous genes in the two organisms. According to
the Ensembl database, about 60% of the human protein coding genes are orthologous to the zebrafish genes. Our
results showed that a higher percentage of the genes that are highly expressed in both organisms show orthology
compared to the lower expressed genes. Systems biology analysis of the genes highly expressed in the three studies
showed significant overlap of the enriched pathways and GO terms. Moreover, orthologous genes that are commonly
overexpressed in both organisms were involved in biological mechanisms that are functionally essential to the oocyte.

Conclusions: Orthologous genes are concurrently highly expressed in the oocytes of the two organisms and these
genes belong to similar functional categories. Our results provide evidence that zebrafish could serve as a valid model
organism to study the oocyte with direct implications in human.
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Background
The implementation of zebrafish (Danio rerio) as an animal
model to study human disease is growing at an unprece-
dented pace [1]. The applications span a wide range and in-
clude models for neurological disorders, aging, cancer,
behavior, pharmacology, and toxicology, among others [2–7].

The fact that its embryo is transparent, placed zebra-
fish as one of the main vertebrate models to study devel-
opmental processes [8]. It has been shown that cellular
and molecular events leading to and governing gastrula-
tion, the formation of the primitive streak, and organo-
genesis in zebrafish show great parallels with mammals
[9–11]. However, less is known about the differences
and similarities between the female gametes.
Here, we sought to compare the transcriptome profile

of the single matured human and unfertilized zebrafish
oocytes at the time of ovulation. Our study shows that
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despite the significant evolutionary distance between
humans and zebrafish, the mature female gametes of both
species have significant similarities in gene expression.

Results
Gene expression by type
Our data analysis involve three single-cell RNA-seq
datasets for the oocyte, each with three samples: zebra-
fish data generated by our group (ZF), human dataset 1
(H1) [12] and human dataset 2 (H2) [13]. In Fig. 1, we
show the transcripts per million (TPM) distribution for
each of the nine samples used in our analysis. As ex-
pected, most of the genes showed very low or no expres-
sion; on average 75, 65, and 45% of the genes had zero
TPM, and 87, 80, and 61% of the genes had less than
one TPM in the H1, H2, and ZF datasets, respectively.
The smaller percentage of genes with little-to-no expres-
sion in zebrafish was due to the lower number of identi-
fied pseudogenes in the zebrafish genome, which tend to
have low read assignments. In the supplementary data
(Supplementary file 1), we break down the TPM distri-
bution for each of the 9 samples (3 samples each coming
from the 3 datasets) based on the 46 and 30 gene types
described in human and zebrafish, respectively.
About 88% of the gene abundance comes from

protein-coding genes in human (90% for the H1 and

86% for the H2 datasets), whereas in zebrafish, this ratio
is around 79%. In human, most of the noncoding gene
abundance comes from mitochondrial ribosomal RNAs
(Mt-rRNAs) and long intervening noncoding RNAs
(lincRNAs). In zebrafish, the lincRNA abundance is less sig-
nificant with most of the noncoding gene abundance com-
ing from Mt-rRNAs and rRNAs (Supplementary file 1).

Orthologous gene expression
There are 18,388 orthologous gene pairs defined be-
tween the two organisms in the Ensembl database.
These gene pairs involve many-to-many mappings, i.e.,
one human gene may be orthologous to more than one
zebrafish gene; and there may be more than one human
gene orthologous to the same zebrafish gene. The 18,388
orthologous gene pairs involve 13,963 human genes and
16,546 zebrafish genes. The Ensembl database further
groups the orthologous gene pairs as high-confidence
and low-confidence orthology. There are 9809 high-
confidence orthologous gene pairs between the two
organisms, and this mapping involves 9020 human
genes and 9495 zebrafish genes. In Fig. 2, we
summarize the types of genes involved in the orthol-
ogy mapping and their confidence levels. Approxi-
mately 60% of the human protein-coding genes have
an orthologous zebrafish gene.

Fig. 1 Transcripts per million (TPM) distribution for the nine samples used in our analysis: TPM values are divided into five intervals for each
sample and the number of genes in each interval are shown. Biological replicates are indicated with lower case letters, a,b,c. Sample order
follows the two human datasets (H1 and H2) followed by our zebrafish dataset (ZF)
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In order to identify the expression of orthologous genes
between the two organisms, we first identified genes that
are “expressed” in a dataset as the genes that have a TPM
value higher than one in all three biological replicates used
in the dataset. This resulted in 5753, 9917, and 12,383
genes expressed in the H1, H2, and ZF datasets, respect-
ively. There were 5443 genes common in the expressed
gene lists for the two human datasets showing ~ 95% over-
lap between them. We then divided the expressed genes
in each dataset into 10 quantiles, i.e., the first quantile
consists of the top 10% of the most highly expressed genes
in the dataset, etc. We compared the genes in each quan-
tile across pairs of datasets, which we termed “quantile
mapping.” In Fig. 3, we show the mapping results for each
of the three pairwise comparisons; and in the supplemen-
tary data (Supplementary file 2), we show the genes in
each of the cells shown in Fig. 3 with corresponding anno-
tations, sample-level signal values, and z-scores. During
the quantile mapping between the human and zebrafish
datasets, we considered only the high-confidence ortholo-
gous genes retaining the cases that render many-to-many
mappings as described above.
The quantile mapping between H1 and H2 shows that

the 95% similarity between the two gene sets also follows
the same TPM distribution as the large mapping num-
bers are observed along a diagonal (Fig. 3c). Therefore,
not only do we see a high overlap among the genes
expressed in the two human datasets, but these genes
are also expressed at approximately the same relative
levels in the two oocyte sets, underscoring the quality of
the datasets. Our results for across organism mappings

suggest that more than 50% of the genes expressed in
the human oocyte have an orthologue that is also
expressed in the zebrafish oocyte: 3174 for H1 and 5057
for H2 (data not shown). When only the high-
confidence orthologs are considered, these numbers
drop down to 2314 for H1 and 3657 for H2, accounting
for ~ 40% of the genes expressed in the human oocytes
(Fig. 3a, b). However, more importantly, these genes are
concentrated on the top-left region of the quantile mapping
heatmap. In other words, a higher percentage of the genes
that are highly expressed in both organisms show high-
confidence orthology compared to the lower expressed
genes. For example, when H1 is compared to ZF, the 2314
high-confidence orthologous genes are distributed into
10 × 10 = 100 quantile mapping cells (Fig. 3a). Therefore,
on average, we would expect ~ 23 genes to be in each cell
for a random distribution. However, the very top-left cell,
which represents the genes that are in the top 10% in both
datasets and are high-confidence orthologs, for example,
has 113 genes. This is a very significant occurrence (p <
10− 21, Fisher’s exact test) showing that high-confidence
orthologous genes are concurrently highly expressed in the
oocytes of the two organisms.
A similar observation holds for H2. Out of the 3657

genes expressed in H2 with a high-confidence ortholog
in zebrafish that is also expressed in ZF, 151 are in the
top 10% in the two organisms (p < 10− 25). This signifi-
cance of occurrence does not just hold for the top-left
cell in the quantile mapping but for the top-left region,
as well. For example, if we focus on the top-left 3 × 3
corner of the quantile mapping results, i.e., high-

Fig. 2 Gene types that form an orthologous pair between human and zebrafish
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confidence orthologous genes that are expressed in the
top 30% in both of the organisms, we see 425 genes
mapped for H1 (p < 10− 12) and 668 genes mapped for
H2 (p < 10− 14). On the other hand, out of the genes that
are expressed in the human oocyte and have a high-
confidence ortholog in zebrafish (2812 for H1 and 4524
for H2; Fig. 3a, b), only about one-fifth are not expressed
in the zebrafish oocyte (575 for H1 and 997 for H2; Fig.
3a, b). The genes that are expressed in the human oocyte
and have a high-confidence ortholog in zebrafish com-
prise the total number of “unique” human genes in the
quantile mapping that span Rows 1–10 and Columns 1–
11. Among these, the unique human genes in Column
11 are the ones not expressed in zebrafish (Fig. 3a, b
Supplementary file 2).

Highly concordant orthologous genes
The 425 and 668 genes that are high-confidence ortho-
logs between the two organisms and appeared in the top
30% of the expression bracket for ZF as well as for H1
and H2 datasets, respectively, showed ~ 93% overlap, or
397 genes (Fig. 3d, Supplementary file 3). Based on the
average TPM of the 9 samples, in Table 1 we show the
top 25 of the 397 genes that we call “highly concordant
orthologous genes.” In this table, we show only the top
representative of a gene group, e.g., “mitochondrially
encoded cytochrome c oxidase,” or “ribosomal protein.”
In order to assess the similarity between the three

datasets, we performed hierarchical clustering and prin-
cipal components analysis (PCA) for the 9 samples using
the 397 highly concordant orthologous genes. The

Fig. 3 Quantile mapping between pairs of data sets: (a) H1 vs. ZF, (b) H2 vs. ZF, and (c) H1 vs. H2. For each mapping, a heatmap shows the
number of common genes in each quantile. For across organism mappings (a and b), Row 11: genes that are expressed in zebrafish, have a
high-confident orthologue in human, but are not expressed in human; Row 12: genes that are expressed in zebrafish but do not have a high-
confidence orthologue in human; Column 11: genes that are expressed in human, have a high-confident orthologue in zebrafish, but are not
expressed in zebrafish; Column 12: genes that are expressed in human but do not have a high-confidence orthologue in zebrafish. For H1-H2
mapping, Row/Column 11 identify the genes that are expressed in only one of the datasets. For each quantile, we also show the average TPM
value shown in data value bars with a yellow background. In (d), we summarize the overlap between the top 30% of highly expressed (the 3 × 3
top-left corner of the quantile mappings in a and b) genes that are high-confidence orthologs across the two organisms for the H1 and
H2 datasets
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results depicted in Fig. 4 show that the two human data-
sets are more similar to each other than they are to the
zebrafish dataset. However, this similarity is not signifi-
cantly different as the height of the hierarchical cluster-
ing branching between the two human datasets is almost
as large as the branching between the human and zebra-
fish datasets. This is also evident in the PCA plot as the
three datasets are almost equidistant from each other.
Our ANOSIM analysis did not report significant differ-
ence between the pairs of datasets (R ~ 0.8, p < 0.1) while
three-way comparison remained significant (R = 0.93,
p < 0.005). A similar result was observed in the adonis
analysis (pairwise R2 ~ 0.71, p < 0.1; three-way R2 = 0.87,
p < 0.005). Although from a different organism, the dis-
tance between the zebrafish dataset and the two human
datasets was not significantly different than the distance
between the two human datasets. These results suggest
that based on the highly concordant orthologous genes,
zebrafish and human oocytes exhibit transcriptomic

similarity as the expected organismal differences are not
pronounced.

Functional analysis of the orthologous genes
We used Ingenuity® Pathway Analysis (IPA) (Ingenuity
Systems, Redwood City, CA) to analyze the 397 highly
concordant orthologous genes and investigated canon-
ical pathways, downstream effects (functions), upstream
regulators, regulator effects, and interaction networks.
The complete IPA results are cataloged in the supple-
mentary data (Supplementary file 3). In Fig. 5, we
present the top members in each category along with as-
sociated functions, which is a summary generated by
IPA consolidating the detailed categories with the high-
est significance presented in Supplementary file 3. In the
supplementary data, we present the EIF2 signaling
pathway, upstream regulator results for MYCN and
HNF4A, along with their target molecules, and one gene

Table 1 Top 25 genes that are orthologous between human and zebrafish and expressed in the top 30% of all three data sets.
Average TPM was calculated using all nine samples. For a gene family, e.g., “ribosomal proteins,” only the top representative is listed.
The complete list of genes can be found in Supplementary file 3

Rank GeneID (ENSG00000+) Symbol Description Average TPM

1 198712 MT-CO2 Mitochondrially encoded cytochrome c oxidase 16,481

3 198886 MT-ND4 Mitochondrially encoded NADH 9839

7 198899 MT-ATP6 mitochondrially encoded ATP synthase 8180

9 130816 DNMT1 DNA methyltransferase 1 5089

10 132646 PCNA Proliferating cell nuclear antigen 4380

11 173207 CKS1B CDC28 protein kinase regulatory subunit 4273

13 138326 RPS24 Ribosomal protein 2701

15 182004 SNRPE Small nuclear ribonucleoprotein polypeptide E 2497

19 137707 BTG4 BTG anti-proliferation factor 4 1994

21 120533 ENY2 Transcription and export complex 2 subunit 1796

23 113387 SUB1 SUB1 homolog, transcriptional regulator 1663

24 113558 SKP1 S-phase kinase associated protein 1 1656

25 170315 UBB Ubiquitin B 1611

27 132341 RAN Member RAS oncogene family 1572

31 122674 CCZ1 Vacuolar protein trafficking and biogenesis 1526

33 198668 CALM Calmodulin 1464

36 134057 CCNB1 Cyclin B1 1384

37 132780 NASP Nuclear autoantigenic sperm protein 1379

39 173812 EIF1 Eukaryotic translation initiation factor 1 1285

40 221983 UBA52 Ubiquitin A−52 residue ribosomal protein fusion product 1 1183

43 076043 REXO2 RNA exonuclease 2 1056

46 115540 MOB4 MOB family member 4, phocein 1007

49 182117 NOP10 NOP10 ribonucleoprotein 962

56 214102 WEE2 WEE1 homolog 2 809

58 162961 DPY30 Histone methyltransferase complex regulatory subunit 790
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interaction network highlighting genes involved in embry-
onic development (Supplementary Figures 1, 2, 3 and 4).
We also analyzed the 397 highly concordant ortholo-

gous genes using the EpiFactors database [14] to infer
their roles in epigenetic regulation. In Table 2, we list
the 36 genes that have been identified in EpiFactors as
having an epigenetic function. In the supplementary data
(Supplementary file 3), we list the detailed results of the
EpiFactors analysis.

Individual oocyte data set characterization
In order to identify functional similarity in the three data-
sets that is irrespective of orthology, we performed a com-
parative analysis at the systems level. For this purpose, we
identified “highly expressed” genes in each dataset as the
genes that have a z-score (based on logged TPM value of
“expressed” genes) greater than 1.5 in two out of the three
replicates in each study. This resulted in 460 H1, 761 H2,
and 901 ZF genes (Supplementary file 4); and the two hu-
man datasets had 384 (~ 84%) highly expressed genes in
common.

We analyzed each of the three highly expressed gene
lists separately with the database for annotation,
visualization and integrated discovery (DAVID v6.8) [15]
to identify enriched Kyoto encyclopedia of genes and ge-
nomes (KEGG) pathways [16] and the biological process
(BP), molecular function (MF), and cellular component
(CC) gene ontology (GO) categories [17]. Detailed re-
sults are included in the supplementary data (Supple-
mentary file 4). In Fig. 6, we list the KEGG pathway
enrichment analysis results. Our results indicated that
the two human datasets showed extreme similarity as
expected; moreover, there was significant similarity be-
tween the zebrafish and human datasets as well. On
average, about 65% of the significantly enriched categor-
ies in the zebrafish dataset were also significantly
enriched in the human datasets.

Oocyte-specific gene expression
Although we observe significant concordance in highly
expressed genes when orthologous genes are considered,
it is possible that functionally important genes, e.g.,
genes critical in early development, may be expressed at

Fig. 4 Sample similarity between the oocytes: (a) Hierarchical clustering and (b) principal components analysis (PCA) of the 9 samples using the
397 highly concordant orthologous genes. In (b), the percent variation explained by each PC is shown in parentheses
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lower levels in the oocyte. We had previously identified
human oocyte-specific genes by comparing metaphase II
oocytes with a reference consisting of a mixture of total
RNA from 10 different normal human tissues not in-
cluding the ovary [18]. These genes may be expressed at
lower quantiles when all of the expressed genes in the
oocyte are considered, but they may still have functional
significance.

We explored the expression of those human oocyte-
specific genes, which mapped to 3493 unique Ensemble
Gene IDs, in all three datasets by identifying them on
the quantile mapping described in Fig. 3a, b (Supple-
mentary Figure 5, Supplementary file 5). Out of the 3493
human oocyte-specific genes, 2403 (~ 69%) and 3036 (~
87%) were also expressed in H1 and H2, respectively. Of
those 3493 human genes, 2864 (~ 82%) had a high

Fig. 5 Summary of IPA results based on the 397 highly concordant orthologous genes. a, b Top Biofunctions and the most significantly enriched
Canonical Pathways identified by IPA. Bars represent the number of genes in the functional category or the canonical pathway (primary y-axis)
and the orange line represents the significance of the category or the pathway in -Log(p-value) (secondary y-axis). c Upstream regulators that
target a significant portion of the genes in the input list. The inferred activation states of the regulators based on the observed expression of
their targets are noted (e.g. an increased expression in targets that are induced by a regulator may imply an “activated” state for the regulator).
N/A implies an inconclusive activation state of the regulator. d Number of genes and emerging biological functions in the deduced interaction
networks that involve input genes. e Sets of regulators with a combined target gene set that show concordant enrichment in biological
functions. Bars represent the total number of genes targeted by each set of regulators. On each bar, the biological functions that are significantly
enriched by the target genes are noted
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Table 2 Thirty-six out of the 397 highly concordant orthologous genes with an epigenetic function based on the EpiFactors
database. Genes are sorted by decreasing abundance

Gene ID
(ENSG00000+)

Symbol Description Function SpecificTarget

130816 DNMT1 DNA methyltransferase 1 DNA modification dhC

132646 PCNA Proliferating cell nuclear antigen Chromatin remodeling H2A, H2B

113558 SKP1 S-phase kinase associated protein 1 Histone modification write cofactor N/A

120533 ENY2 ENY2, transcription and export complex 2 subunit Histone modification erase cofactor N/A

162961 DPY30 Dpy-30, histone methyltransferase complex regulatory
subunit

Histone modification write cofactor N/A

187109 NAP1L1 Nucleosome assembly protein 1 like Histone chaperone N/A

185787 MORF4L1 Mortality factor 4 like 1 Histone modification read H4

132780 NASP Nuclear autoantigenic sperm protein Chromatin remodeling H1

276043 UHRF1 Ubiquitin like with PHD and ring finger domains 1 Histone modification read, Histone
modification write cofactor

H3K9me3, H3R2, H3,
mCG

115289 PCGF1 Polycomb group ring finger 1 Polycomb group (PcG) protein N/A

075914 EXOSC7 Exosome component 7 Scaffold protein, RNA modification N/A

075624 ACTB Actin beta Chromatin remodeling cofactor N/A

166164 BRD7 Bromodomain containing 7 Histone modification read H3K9ac, H3K14ac,
H3K8ac

166913 YWHAB Tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein beta

Histone modification erase cofactor N/A

149554 CHEK1 Checkpoint kinase 1 Histone modification write H3.1

136938 ANP32B Acidic nuclear phosphoprotein 32 family member B Histone chaperone H3, H4

134058 CDK7 Cyclin dependent kinase 7 Histone modification write H1

136518 ACTL6A Actin like 6A Chromatin remodeling cofactor N/A

055130 CUL1 Cullin 1 Chromatin remodeling cofactor H3K9me3, H3K36me3,
H1.4K26me3

100749 VRK1 Vaccinia related kinase 1 Histone modification write H3S10, H3T3

163875 MEAF6 MYST/Esa1 associated factor 6 Histone modification write cofactor H2A, H3K14, H4K5,
H4K8, H4K12

057935 MTA3 Metastasis associated 1 family member 3 Chromatin remodeling cofactor N/A

123737 EXOSC9 Exosome component 9 Scaffold protein, RNA modification N/A

100387 RBX1 Ring-box 1 Histone modification write cofactor H3, H4

151332 MBIP MAP 3 K12 binding inhibitory protein 1 Histone modification write cofactor N/A

197323 TRIM33 Tripartite motif containing 33 Histone modification read H3K9me3, H3K18ac

119969 HELLS Helicase, lymphoid specific Chromatin remodeling N/A

169375 SIN3A SIN3 transcription regulator family member A Histone modification erase cofactor, TF DNA motif

133884 DPF2 Double PHD fingers 2 Chromatin remodeling N/A

258315 C17orf49 Chromosome 17 open reading frame 49 Histone modification read H3K4me3

108468 CBX1 Chromobox 1 Histone modification read H3K9me3, H3K27me3

177889 UBE2N Ubiquitin conjugating enzyme E2 N Histone modification write H2AX

186591 UBE2H Ubiquitin conjugating enzyme E2 H Histone modification write H2A, H2B

139620 KANSL2 KAT8 regulatory NSL complex subunit 2 Histone modification write cofactor H5

100823 APEX1 Apurinic/apyrimidinic endodeoxyribonuclease 1 DNA modification cofactor N/A

167986 DDB1 Damage specific DNA binding protein 1 Histone modification write H2A
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confident ortholog in zebrafish and 2251 (~ 79%) of
these 2864 genes were expressed in zebrafish (i.e. had a
TPM value greater than 1 in all three replicates).
Our results indicated that the percentage of the ortholo-

gous genes, for the functionally important ones, significantly
surpassed the percentage of the overall orthologous genes
between the two organisms (~ 82% vs. ~ 60%). Furthermore,
the functionally important genes that are orthologous are
also concurrently highly expressed in the two organisms,
which was true for the complete transcriptome as well. For
example, the functionally important orthologous genes that
are in the top 3 quantiles of expression levels in both organ-
isms (i.e., the top 3 × 3 region of the heatmaps shown in Sup-
plementary Figure 5) contained ~ 20% and~ 24% of
orthologous, functionally important genes expressed in both
organisms for H1 and H2 respectively. Both observations
were statistically significant (Fisher’s exact test p-values <
10− 14 and < 10− 16 for H1 and H2, respectively). Still, there
were genes that were functionally important but were
expressed at low levels in the two organisms e.g., orthologous
genes that fall beyond the top 3 × 3 region of the heatmaps
in Supplementary Figure 5. Nevertheless, although some at
low levels, a large subset of the genes that are important for
early development (over 80% on average) showed orthology
and concordant expression between the two organisms.

Discussion
A comparative analysis between the zebrafish and the
human genome showed high orthology between the two
organisms at the gene sequence level [19]. We explored
if this similarity was commonly observed at the tran-
scriptome level and investigated the oocyte gene expres-
sion across the two organisms. We compared our
zebrafish single-cell RNA-seq data to two published
single-cell RNA-seq datasets from human oocytes. All
three datasets have used three single cell metaphase II
(MII) oocytes at the same stage, which are comparable
across organisms, considered fully matured and ready to
be fertilized. All three datasets have been obtained using
standard RNA-seq protocols and our analysis began with
the raw data obtained in the three experiments using the
same computational workflow to prevent any variations.
We found that majority of the genes expressed in the
human oocyte have an ortholog that is also expressed in
the zebrafish oocyte. However, when we divided the
expressed genes in each data set into ten quantiles based
on their level of expression, we found that the degree of
concordance of both species increased significantly for
highly expressed genes. Our results indicate that the
number of high-confidence orthologous genes expressed
in both organisms was about four times the number of

Fig. 6 Significantly enriched KEGG pathways based on DAVID functional analysis using genes that are highly expressed in the individual datasets.
Bars represent the number of highly expressed genes in the pathway for each data set
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high-confidence orthologous genes expressed in only
one organism.
Among the genes expressed in the zebrafish egg, and

not expressed in the human oocytes or with no ortholo-
gue in human, we found members of the family of the
elongation of very long-chain fatty acid (Elovl) genes
ELOVL1A, 8B, 7B, 6 L, 1B, and 4B; and those highly
expressed were ORG, CLDND, CLDNG, and HMGB3B,
in agreement with previous reports [20–23]. Also, inter-
estingly, several pluripotency-associated genes appear
specifically in the zebrafish egg, as NANOG, Pou5f3,
GDF3, KLF2 and KLF5, opening a venue to use the zeb-
rafish oocyte as a model for studying the role of mater-
nal “pluripotency” genes that can have a significant role,
but different than those described so far in mammals,
during post-fertilization reprogramming [24].
We performed IPA analysis on the highly concordant

orthologous genes and found that EIF2 signaling and
oxidative phosphorylation were the top two activated
“canonical pathways” based on statistical significance
assessing their enrichment (p < 10− 20). For “upstream
regulators,” the top ranked were the protooncogene
MYCN (p < 10− 35), as activated, and RICTOR (p <
10− 34), as inhibited where the regulators are ranked by
the significance of overlap between their targets and the
input gene list to the IPA. Genes associated with regula-
tion of cell cycle progression were involved in regulator
effect networks analysis, which identify a congruent
theme for the targets of upstream regulators that are
among the input genes (the highly concordant ortholo-
gous genes). Furthermore, the “top active networks”
identified by IPA (based on statistical significance of the
involvement of the input genes in the networks using
Fisher’s exact test) were RNA post-transcriptional modi-
fication and embryonic development (p < 10− 50). Based
on our enrichment analysis using DAVID, “spliceosome,
” “oxidative phosphorylation,” “RNA transport,” and
“ribosome” were among the KEGG pathways common
to all three datasets further underlining the functional
similarity between the oocytes of the two organisms. De-
tails of the IPA and DAVID functional analysis can be
found in Supplementary files 3 and 4.
We used the EpiFactors database to identify genes that

are known to be involved in epigenetic modifications;
and we found a high number of the highly concordant
orthologous genes to be listed (~ 10%). The list includes
well characterized genes, such as DNMT1, PCNA, and
UHRF1. Also listed was DPY30, which has recently been
characterized in the context of embryonic development
and required for pluripotency maintenance [25]. Other
epigenetic chromatin reprogramming factors, such as
TET3 digoxygenase or histone modifier factors (HDAC1,
HDAC8, SIRT1, SIRT7, HAT1, or TRAM1), with a cru-
cial role in the zygote following fertilization and nuclear

reprogramming also appear listed, further confirming
functional concordance between species [26, 27]. Simi-
larly, the expression of MTA3 in all datasets is thought
provoking. MTA3 belongs to the family of metastasis as-
sociated proteins, known for their role in cancer pro-
gression; however, there are no studies describing its
role in gametes or embryonic development [28].
When we explored the distribution of oocyte-specific

genes in order to assess the levels of expression and
orthology for genes that may be important in early de-
velopment, we observed an improved agreement be-
tween the two organisms. Both the percentage and
expression levels of the orthologous genes for the
oocyte-specific genes were higher than those observed
when all of the genes were considered. Therefore, the
amount and degree of agreement between the two or-
ganisms increased for functionally crucial genes, further
validating the use of zebrafish as a model organism in
developmental biology.

Conclusions
In order to understand the differences and similarities
between human and zebrafish matured oocytes, we per-
formed RNA-seq of individual zebrafish eggs and com-
pared them to two different datasets of individual
human oocytes at the same developmental stage. Our re-
sults indicate that the degree of orthology between the
expressed genes in the two organisms is significantly lar-
ger for highly expressed genes. Moreover, the functional
relevance based on gene expression in the two organ-
isms’ oocytes shows high concordance. Our study com-
pares the observed transcriptome of the metaphase II
oocytes, including genes that are deposited in the oo-
cytes for late usage during the development. Our results
represent the similarity between the two organisms for
the given stage and indicates not only high orthology
but high functional similarity in their transcriptomes.
Despite the significant evolutionary distance between

human and zebrafish, the mature female gametes of both
species show significant similarities in gene expression.
The results of these functional analyses underscore the
use of zebrafish as a valuable animal model and provide
evidence for future hypothesis-driven experiments related
to germ cell development, gametogenesis, and epigenetic
inheritance, among others. Future studies may involve
comparative transcriptome analysis on other cell types.

Methods
Zebrafish maintenance
All experimental protocols were approved by the Mich-
igan State University Institutional Animal Care and Use
Committee, the Spanish Institutional Animal Use and
Care Committee regulations and the Regional Andalu-
sian Government (code A/ES/14/43). All animal
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methods were carried out in accordance with standard
practices described in ‘The Zebrafish Book’ and by ZM
Varga 2016 [29, 30]. The zebrafish used in this study
were obtained from the Zebrafish International Resource
Center (ZIRC; http://zebrafish.org). After the study, ani-
mals were euthanized according with our American As-
sociation for Accreditation of Laboratory Animal Care
(AAALAC) approved protocol: Fish were euthanized in
sodium bicarbonate buffered tricaine methanesulphonate
(MS-222) at a concentration of 250 mg/L according to
American Veterinary Medical Association (AVMA)
guidelines on euthanasia. This is administered by adding
directly to the water to which fish are acclimated. Solu-
tion was made fresh for every 10 fish to ensure that the
dosage and buffering remain effective. Death was con-
firmed by absence of heartbeat and corneal reflex.

Zebrafish egg isolation
The F1 zebrafish, a cross between the Tübinguen and
AB lines of zebrafish were used as egg donors. Only fe-
males proven to give rise to > 90% of fertilized eggs at
24 h post fertilization (hpf) were chosen and subse-
quently used for egg collection. The eggs were obtained
from the same female to minimize variability. Equipment
and reagents were prepared beforehand as previously de-
scribed [31]. Females were transferred into a beaker with
a sedation solution (0.02% w/v tricaine solution or
MS222). When movement ceased, we rinsed the fish in
clean water. Each female was set on a folded Kimwipe®
paper in an upturned position so that the genital open-
ing was easily accessible. The abdominal area surround-
ing the genitalia was dried with Kimwipe paper. A small
amount of pressure was gently applied to two sides of
the belly using a rounded-edge glass rod and a fingertip.
Inactivated eggs were collected in Chinook salmon ovar-
ian fluid (CSOF) to maintain the metaphase-arrested
stage of the eggs [32]. The morphological appearance of
each egg was examined, and only high-quality eggs were
used for sequencing, as previously described [31–33].
Eggs were rinsed twice in 0.5% bovine serum albumin in
Hank’s Balanced Salt Solution to wash off the CSOF.
Then, the eggs were swiftly rinsed in RNAse-free phos-
phate buffered saline (PBS) three times and immediately
transferred to a 1.5-ml tube –one oocyte per tube– with
the least amount of PBS left, snap frozen using liquid ni-
trogen for 1 min of immersion, and then stored at −
80 °C until RNA isolation.

RNA-seq experimental procedure
RNA isolation and purification were performed using
Direct-zolTM RNA MicroPrep according with manufac-
turer instructions (Zymo Research, Irvine, CA) on three
individual oocytes. Briefly, frozen eggs were thawed at
room temperature and resuspended in Tri Reagent,

followed by addition of 95% ethanol, DNase I treatment,
and centrifugation in an IC column [34]. Final RNA elu-
tion was performed using DNase/RNase-free water.
Total RNA was processed for library construction by
Cofactor Genomics (St. Louis, MO) according to the fol-
lowing procedure: Briefly, total RNA was reverse-
transcribed using an Oligo (dT) primer, and limited
cDNA amplification was performed using the SMAR
Ter® Ultra® Low Input RNA Kit for Sequencing – v4
(Takara Bio USA, Inc., Mountain View, CA). The result-
ing full-length cDNA was fragmented and tagged,
followed by limited PCR enrichment to generate the
final cDNA sequencing library (Nextera® XT DNA Li-
brary Prep, Illumina, San Diego, CA). Libraries were se-
quenced as single-end 75 base pair reads on an Illumina
NextSeq500 following the manufacturer’s instructions.

Human datasets
We used two single-cell RNA-seq datasets from human
oocytes (labeled H1 and H2). For dataset H1 (Gene Ex-
pression Omnibus (GEO) accession number GSE44183),
oocytes were obtained from female patients that were
between 26 and 35 years old. Oocytes were vitrified and
thawed at the time of RNA isolation. Only oocytes that
had an intact cell membrane and zona pellucida were
used (n = 3) [12]. For dataset H2 (GEO accession num-
ber GSE110798), oocytes were also obtained from
women undergoing fertility treatments. RNA isolation
was performed in in vivo matured oocytes immediately
after follicle aspiration (n = 3) [13].

RNA-seq analysis
We generated single-end, single-cell RNA-seq data for
three zebrafish oocytes (labeled ZF). The average read
length was 75 base pairs (bp), and the average number
of reads per sample was ~ 46.3 million. Both human
datasets were processed using paired-end sequencing.
The first dataset, H1, had an average read length of 90
bp and an average number of reads per sample of ~ 37.4
million (~ 18.7 million fragments) [12]. The average read
length for H2 samples was 100 bp with an average num-
ber of reads per sample of ~ 59.9 million (~ 30.0 million
fragments) [13].
We processed all three datasets using FastQC (v.

0.11.5) and Trimmomatic (v 0.38) [35, 36]. Overrepre-
sented sequences due to experimental artifacts (e.g.,
adapters and similar technical sequences) were identified
and subsequently removed. Trimmomatic was used in
the palindrome mode, based on default alignment detec-
tion and scoring parameters. Low quality bases were
trimmed using the maximum information quality filter-
ing followed by a minimum average read quality thresh-
old of 25. Following technical sequence and low-quality
base removal, reads that were shorter than 40 bp were
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filtered out. Sequencing quality metrics for all three
datasets (both for raw and trimmed+filtered reads) were
assessed using FQStat, which resulted in passing values
with respect to the default quality control thresholds
identified therein [37].
Transcript quantification was done using Salmon (v.

0.8.2) with default parameters based on Ensembl data-
base annotations [38, 39]. Salmon uses sample-specific
models, such as correction for guanine-cytosine (GC)
content bias, that improve the accuracy of transcription
abundance estimates. We used transcripts per million
(TPM) in Salmon’s output as the normalized relative
abundance measure employed in our downstream ana-
lysis. Gene-level abundance estimates were obtained
using the R package (tximport) as gene-level signal sum-
maries have shown to be the more robust statistic [40].

Gene expression analysis
For each dataset, we identified genes that are “expressed”
in a dataset as the genes that had a TPM value greater
than 1 in all three replicates used in the dataset. In order
to identify genes that are “highly expressed” in a dataset,
we calculated the z-score of the genes (in a dataset)
based on the logged TPM values of the “expressed”
genes. If the gene’s z-score in a dataset exceeded 1.5 in
at least two out of the three replicates, we identified the
gene as “highly expressed” in this dataset. Orthologous
genes between the two organisms were obtained from
the Ensembl database along with the confidence assess-
ment in orthology, which is a binary classification: 1
(high) or 0 (low).
Genes expressed in a human dataset were contrasted

with the genes expressed in the zebrafish dataset using
quantile mapping. Genes expressed in a human data set
were divided into ten quantiles, and genes in each quantile
were mapped through orthology to the ten expression
quantiles identified for the genes expressed in the zebra-
fish dataset. For each human quantile, we further assessed
the genes that did not have an orthologue in zebrafish and
the genes that had an orthologue in zebrafish but were
not identified as expressed in the zebrafish dataset. Simi-
larly, for each zebrafish quantile, we identified genes that
did not have an orthologue in human and genes that had
an orthologue in human but were not identified as
expressed in the human dataset. Quantile mapping was
done for the two human datasets as well, in order to assess
their similarity in gene expression.
Clustering of samples was done using the unweighted

pair group method with arithmetic-mean (UPGMA)
method with Pearson’s correlation as the distance meas-
ure [41]. The expression data matrix was row normal-
ized prior to the application of average linkage
clustering. Samples were also used for principal compo-
nents analysis (PCA), which is a dimension reduction

technique that represents samples along orthogonal PCs
(axis) that decreasingly capture the variance in the
underlying data [42]. Plotting the samples along the PCs
reflect the closeness between the samples and inherently
imply an alternative clustering view for the samples.
Both the hierarchical clustering and PC analyses were
done using MATLAB® (The MathWorks, Inc., Natick,
MA). Analysis of similarity (ANOSIM) [43] and adonis
(permutational multivariate analysis of variance using dis-
tance matrices) [44] tests were applied to PCA results using
the vegan package (v. 2.3–5 and v. 2.4–2) in R (v. 3.5.3) to
evaluate the differences between the three datasets.

Systems biology analysis
Gene sets of interest were analyzed using the database
for annotation, visualization and integrated discovery
(DAVID v6.8), the Ingenuity® pathway analysis (IPA) (In-
genuity Systems, Redwood City, CA), and the EpiFactors
database [14, 15]. Functional analysis of the gene lists
was done using DAVID based on the biological process
(BP), molecular function (MF), and cellular component
(CC) gene ontology (GO) categories and the Kyoto
encyclopedia of genes and genomes (KEGG) pathways
[15, 16]. The expression analysis systematic explorer
(EASE) score was used to assess over represented cat-
egories that are biologically relevant and warrant further
investigation. The EASE score is the upper bound of the
distribution of jackknife iterative resampling of Fisher
exact probabilities with Bonferroni multiple testing cor-
rection. Categories containing low numbers of genes are
under weighted so that the EASE score is more robust
than the Fisher exact test. The EASE score is a signifi-
cance level with smaller EASE scores indicating increas-
ing confidence in over representation. We picked GO
categories and KEGG pathways that have EASE scores
of 0.05 or lower as significantly overrepresented.
We employed IPA, which uses Ingenuity® Pathways

Knowledge Base (IPKB), a manually curated knowledge-
base based on scientific literature that involves biological
interactions and functional annotations for genes and
gene products. Given a gene list, IPA uses enrichment
analysis-based approaches to identify canonical path-
ways, downstream effects, upstream regulators, regulator
effects, and interaction networks that best explain the
observed expression levels [45, 46]. In the canonical
pathways and downstream effects analysis, known path-
ways or functions that involve a significant number of
the input genes are identified. The upstream regulators
approach identifies transcription factors, microRNAs, ki-
nases, compounds, drugs, etc., that are known to regu-
late a significant portion of the input genes. The
regulator effects analysis combines the upstream regula-
tor and downstream effects analyses to develop a causal
hypothesis combining upstream regulators with
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supposedly regulated input genes that are significantly
represented in a biological function. Finally, the inter-
action network analysis identifies input (and other)
genes that are highly connected based on literature and
overlays a number of features, such as expression, func-
tion, drug, etc., regarding the genes in the network. IPA
also calculates the “state” of the individual analysis target
(e.g., “activating” or “inhibiting”) based on the observed
expression changes and the known causal relationships
from the literature.
In order to investigate the epigenetic involvement of

the gene lists of interest, we cross-referenced them with
the EpiFactors database. EpiFactors is a manually cu-
rated database that catalogues genes, proteins, and com-
plexes that are involved in epigenetic regulation.
Functional and relational annotation is provided for reg-
ulators and their targets, which may be used to associate
gene expression patterns with epigenetic regulation.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06860-z.

Additional file 1: Figure S1. EIF2 Signaling. Eukaryotic initiation factor
2 (eIF2) canonical pathway that is significantly enriched by the 397 highly
concordant and high-confident orthologous genes between human and
zebrafish oocytes. Members of the 397-gene set are indicated in red.
Numbers below highlighted genes show log10 of the average transcripts
per million (TPM) values. If a node is a complex/group, then the TPM
value is omitted. Intensity of the red color is proportional to the degree
of up-regulation (i.e. high TPM). Figure S2. HNF4a targets. Targets of the
upstream regulator hepatocyte nuclear factor 4 alpha (HNF4A) that are
among the 397 highly concordant and high-confident orthologous genes
between human and zebrafish oocytes. Numbers below the target genes
show log10 of the average transcripts per million (TPM) values. Intensity
of the red color is proportional to the degree of up-regulation (i.e. high
TPM). Figure S3. MYCN targets. Targets of the upstream regulator MYCN
that are among the 397 highly concordant and high-confident ortholo-
gous genes between human and zebrafish oocytes. Numbers below the
target genes show log10 of the average transcripts per million (TPM)
values. Intensity of the red color is proportional to the degree of up-
regulation (i.e. high TPM). Figure S4. Gene interaction network. Inter-
action network among a subset of the 397 highly concordant and high-
confident orthologous genes between human and zebrafish oocytes.
Numbers below the target genes show log10 of the average transcripts
per million (TPM) values. Intensity of the red color is proportional to the
degree of up-regulation (i.e. high TPM). Genes that belong to the “Embry-
onic Development” functional category are highlighted with a pink out-
line. Figure S5. Identification of the 3,493 oocyte-specific genes on the
quantile mapping described in Fig. 3A, B. (A) H1 vs. ZF, (B) H2 vs. ZF. Col-
umn 11: oocyte-specific genes that are expressed in human, have a high-
confident orthologue in zebrafish, but are not expressed in zebrafish; Col-
umn 12: oocyte-specific genes that are expressed in human but do not
have a high-confidence orthologue in zebrafish. Row 11: oocyte-specific
genes that are expressed in zebrafish, have a high-confident orthologue
in human, but are not expressed in human.

Additional file 2: Supplementary file 1. Transcripts per million (TPM)
values and distribution for all nine samples in the three data sets (H1, H2,
ZF) with respect to gene types.

Additional file 3: Supplementary file 2. List of genes described by
the quantile mapping data matrices (Fig. 3). For each location (given
row/column position in the quantile mapping matrix), genes are listed

along with their description and TPM values in the samples involved in
the mapping.

Additional file 4: Supplementary file 3. List of 397 highly concordant
and high-confident orthologous genes between human and zebrafish
oocytes and the functional and systems biology analysis results for theses
397 genes. Ingenuity Pathway Analysis (IPA) results show the list of sig-
nificant canonical pathways, biological/toxicological functions, upstream
regulators, regulator effects and gene interaction networks. EpiFactors
database analysis identifies the genes among the 397 that have been
shown to be involved in epigenetic regulation along with their targets.

Additional file 5: Supplementary file 4. Lists of highly expressed
genes in the three data sets (H1, H2, ZF) and statistically significantly
overrepresented Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, and Gene Ontology (GO) Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC) categories based on
Database for Annotation, Visualization and Integrated Discovery (DAVID
v6.8) analysis. DAVID analysis is done separately for the three highly
expressed gene lists and a comparative analysis of these individual results
are presented.

Additional file 6: Supplementary file 5. Oocyte-specific genes that
appear in the list of genes described by the quantile mapping data matri-
ces (Fig. 3), which were summarizied in Supplementary file 2.
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