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Abstract
Marginal structural models (MSMs) with inverse probability weighted estima-
tors (IPWEs) are widely used to estimate causal effects of treatment sequences
on longitudinal outcomes in the presence of time-varying confounding and
dependent censoring. However, IPWEs forMSMs can be inefficient and unstable
if weights are estimated by maximum likelihood. To improve the performance
of IPWEs, covariate balancing weight (CBW) methods have been proposed and
recently extended to MSMs. However, existing CBW methods for MSMs are
inflexible for practical use because they often do not handle dependent cen-
soring, nonbinary treatments, and longitudinal outcomes (instead of eventual
outcomes at a study end). In this paper, we propose a joint calibration approach
to CBW estimation for MSMs that can accommodate (1) both time-varying
confounding and dependent censoring, (2) binary and nonbinary treatments,
(3) eventual outcomes and longitudinal outcomes. We develop novel calibration
restrictions by jointly eliminating covariate associations with both treatment
assignment and censoring processes after weighting the observed data sample
(i.e., to optimize covariate balance in finite samples). Two different methods
are proposed to implement the calibration. Simulations show that IPWEs with
calibrated weights perform better than IPWEs with weights from maximum
likelihood and the “Covariate Balancing Propensity Score” method. We apply
our method to a natural history study of HIV for estimating the effects of highly
active antiretroviral therapy on CD4 cell counts over time.

KEYWORDS
calibration, causal inference, covariate balancing, dropout, longitudinal data, propensity score

1 INTRODUCTION

1.1 Marginal Structural Models
and Covariate BalancingWeights

Marginal structural models (MSMs) (Robins, 1999b;
Robins et al., 2000) with inverse probability of treatment
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weighting (IPTW) are widely used to estimate causal
effects of treatment sequences on a longitudinal out-
come in the presence of time-varying confounders that
are affected by treatment history (i.e., time-varying con-
founding, Hernán et al., 2001; Daniel et al., 2013). With
dependent censoring (e.g., due to loss of follow-up of
patients), MSMs are estimated by IPTW and inverse
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probability of censoring weighting (IPCW) that addresses
the additional selection bias from censoring (Hernán et al.,
2001).
To implement IPTW and IPCW for MSMs, time-varying

weights are commonly estimated by fitting parametric
models for treatment assignment and censoring processes
and then plugging in parameter estimates frommaximum
likelihood estimation (MLE). However, theMLE approach
to weight estimation can result in inefficient and unsta-
ble inverse probability weighted estimators (IPWEs), espe-
cially when the treatment assignment and/or censoring
model is misspecified (Kang and Schafer, 2007; Cole and
Hernán, 2008; Lefebvre et al., 2008; Howe et al., 2011).
Because final weights for fittingMSMs are a product of the
time-varying weights for IPTW and IPCW, the efficiency
and stability issues of IPWEs can be exacerbated when
both time-varying confounding and dependent censoring
are present.
Motivated by improving IPWEs primarily for binary

point treatments, covariate balancingweight (CBW)meth-
ods, which directly optimize covariate balance for weight
estimation, have been proposed (Graham et al., 2012;
Hainmueller, 2012; Imai and Ratkovic, 2014; Zubizarreta,
2015; Chan et al., 2016; Yiu and Su, 2018; Fong et al., 2018).
In empirical studies, CBW methods have been shown
to dramatically improve the performance of IPWEs by
reducing their mean squared errors (MSEs) under both
correct and incorrect model specification. Recent theoret-
ical investigations by Tan (2020) also reveal that, unlike
the MLE approach, CBWmethods can bound the MSEs of
IPWEs even under model misspecification.
Recently, CBWmethods have been extended to improve

the IPWEs in MSMs. Imai and Ratkovic (2015) first
extended the “Covariate Balancing Propensity Score”
(CBPS) method to MSMs with binary treatments. How-
ever, because the number ofmoment conditions for weight
estimation increases exponentially with the number of
follow-up visits, CBPS could only practically accommodate
a small number of visits and covariates, and is compu-
tationally intensive. Yiu and Su (2018) demonstrated that
their CBW framework for a general point treatment can be
extended to estimate the short-term direct effect of a time-
varying treatment on a longitudinal outcome.Nonetheless,
it is often of greater interest to estimate the total effect
of a treatment sequence in MSMs (i.e., both the direct
treatment effect and the indirect treatment effect through
time-varying confounders on the longitudinal outcome).
Focusing onMSMs with continuous treatments, Zhou and
Wodtke (2020) proposed a different approach called “resid-
ual balancing”, where conditional means of time-varying
confounders are modeled, and weights for IPTW are esti-
mated by balancing the residuals of the time-varying con-
founder models across future treatments as well as the his-

tory of treatments and confounders. In practice, it is unde-
sirable to model a whole set of time-varying confounders
and to specify the functional form of future treatments for
balancing. A notable limitation of the CBW methods in
Imai and Ratkovic (2015), Yiu and Su (2018), and Zhou
and Wodtke (2020) is that they do not address the com-
mon problemof dependent censoring inMSMs. Kallus and
Santacatterina (2019) developed “Kernel Optimal Weight-
ing” to handle both time-varying confounding and depen-
dent censoring in MSMs. However, their approach is
restricted to binary treatments and requires modeling con-
ditional means of potential outcomes given observed his-
tories of treatments and confounders. With the exception
of Yiu and Su (2018), the aforementionedmethods focused
on MSMs for an eventual outcome at a study end, instead
of MSMs for a longitudinal outcome over time, which are
often of interest in practice. In summary, more research is
required to improve the flexibility and practicality of CBW
methods for their widespread use in longitudinal settings.

1.2 Joint Calibration Approach to
Weight Estimation

To enhance the flexibility of CBW methods for practi-
cal use in MSMs, we propose a new calibration approach
to CBW estimation that can accommodate (1) both time-
varying confounding and dependent censoring, (2) binary
and nonbinary treatment sequences, and (3) eventual and
longitudinal outcomes. Specifically, by building on the
“Covariate Association Eliminating Weights” framework
by Yiu and Su (2018) for point treatments, we propose
novel moment conditions (i.e., calibration restrictions) for
weight estimation that jointly remove covariate associa-
tions over time with both treatment assignment and cen-
soring processes after weighting the observed data sam-
ple (i.e., to optimize covariate balance for both treatment
assignment and censoring processes in finite samples).
The joint calibration of CBWs based on our proposed

moment conditions can be implemented by three types
of methods, as pointed out by a referee. These include:
Type (1), calibrating an initial set of estimatedweights (e.g.,
from MLE) with an exponential tilting term containing a
parameter vector with dimension equal to the number of
moment conditions (see Han (2016) for an example in han-
dling dependent censoring); Type (2), estimating model-
based parameters of inverse probability weights by solving
estimating equations based on the proposed moment con-
ditions (e.g., Imai and Ratkovic, 2015); Type (3), estimating
weights nonparametrically by solving a constrained opti-
mization problem that incorporates the proposed moment
conditions in the constraints (e.g., Zubizarreta, 2015; Chan
et al., 2016; Yiu and Su, 2018; Kallus and Santacatterina,
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2019; Zhou and Wodtke, 2020). We discuss the pros and
cons of all threemethods in theMSMs settings and develop
both Types (1) and (2) methods for implementing the joint
calibration in Section 4.3.
Besides flexibility, an important feature of our approach

is its computational efficiency. This is because, (I) unlike
the methods in Zhou and Wodtke (2020) and Kallus
and Santacatterina (2019), it does not require models for
the conditional means of time-varying confounders or
potential outcomes, (II) unlike the CBPS method in Imai
and Ratkovic (2015), it allows for parsimony in deriving
moment conditions when there exist many time-varying
confounders and visits, therefore the number of proposed
moment conditions does not have to increase exponen-
tially with the number of visits. For example, the number
of moment conditions can increase linearly even if sep-
arate treatment assignment models are specified at each
visit. Together the flexibility and computational efficiency
of our approach can encouragemore widespread and prac-
tical use ofMSMs in complex longitudinal settings. Further
details of the related literature and our contributions are
provided in Web Appendix A.
Aswe focus on themain idea of the proposed calibration

approach toCBWs, its implementation, and empirical eval-
uation in this paper, we leave the theoretical investigation
of the robustness and efficiency of the proposed IPWEs for
future work. In Section 7, we briefly discuss the robust-
ness and efficiency issues regarding the proposed IPWEs
in light of the recent theoretical development in the CBW
literature (Wang and Zubizarreta, 2020).

1.3 Motivating Example

This research is motivated by data from the HIV Epidemi-
ology Research Study (HERS), a natural history study of
1310 women with, or at high risk of, HIV infection at
four sites (Baltimore, Detroit, New York, Providence) from
1993 to 2000 (Ko et al., 2003). During the study, 12 visits
were scheduled, where a variety of clinical, behavioral, and
sociological outcomes as well as self-reported information
on antiretroviral therapies (ARTs) were recorded approxi-
mately every 6 months.
Our objective is to quantify the effect of highly active

antiretroviral therapy (HAART), which contains three or
more ART regimens, on the CD4 cell counts over time
in the HERS cohort. Because the HERS was an observa-
tional study, where therapies were not randomly assigned
and varying over time, this leads to the potential for time-
varying confounding between treatment and outcome.
Moreover, estimation of the treatment effect is further
complicated by dependent censoring due to dropout: more
than half of the 871 HIV-infected women at enrollment did

not complete the study. We provide further details about
these problems in the HERS cohort in Web Appendix G.
In the previous analysis by Ko et al. (2003), weights

for IPTW and IPCW were estimated by MLE to fit sev-
eral MSMs and address the time-varying confounding
and dependent censoring problems in the HERS data.
However, Ko et al. (2003) considered the time-varying
treatments to be binary (i.e., with and without HAART).
Because patients onART other thanHAART (i.e., less than
3 ARTs) were combined with patients not receiving any
treatment, the therapeutic effect of HAART relative to no
treatment was likely to be underestimated. In this paper,
we consider the time-varying treatment as ordinal with 3
levels—“no treatment,” “ART other than HAART,” and
“HAART,” which therefore allows more precise quantifi-
cation of the effect of HAART. However, the probability of
each level of the ordinal treatment can depend on many
baseline and time-varying covariates and their interactions
(as reflected in the treatment guidelines when the HERS
was conducted), which not only makes model misspeci-
fication likely but also makes it more challenging to bal-
ance the covariates across treatment levels. These issues
thus motivated us to develop a new calibration approach
to CBW estimation in MSMs.

2 NOTATION, SETTING
AND ASSUMPTIONS

We consider a study in which 𝑛 independent patients
are enrolled at baseline (denoted by visit 0) and then
followed up over time at visits 𝑗 = 1,… , 𝑇. For the 𝑖th
patient, baseline covariates 𝑽𝑖 (e.g., demographics) are
recorded. At each follow-up visit 𝑗, we assume that this
patient’s treatment assignment 𝐴𝑖𝑗 , time-varying covari-
ate vector 𝑿𝑖𝑗 , and longitudinal outcome 𝑌𝑖𝑗 are mea-
surable, and are recorded only if the patient makes
the visit. We further assume that the variables follow
the temporal ordering where 𝑌𝑖𝑗 , 𝑿𝑖𝑗 , and 𝐴𝑖𝑗 are only
affected by {𝐴𝑖𝑗, 𝑋𝑖𝑗, 𝑌𝑖,𝑗−1, 𝑽𝑖}, {𝐴𝑖𝑗, 𝑋𝑖,𝑗−1, 𝑌𝑖,𝑗−1, 𝑽𝑖},
and {𝐴𝑖,𝑗−1, 𝑋𝑖,𝑗−1, 𝑌𝑖,𝑗−1, 𝑽𝑖}, respectively, for 𝑗 = 1,… , 𝑇.
Here an overbar is used to represent the history of a pro-
cess, for example, 𝑋𝑖𝑗 = {𝑿𝑖1, … , 𝑿𝑖𝑗}. For ease of expo-
sition in what follows, we absorb 𝑌𝑖,𝑗−1, 𝐴𝑖,𝑗−1 and 𝑽𝑖

into the covariate history𝑋𝑖,𝑗−1 (𝑗 = 1,… , 𝑇), unless stated
otherwise.
Let𝑌

𝑎𝑗
𝑖𝑗
be the potential outcome that would have arisen

at visit 𝑗 had the 𝑖th patient been assigned the poten-
tial treatment sequence 𝑎𝑗 from the first visit after base-
line up to visit 𝑗. We assume that the causal effect of 𝑎𝑗
on 𝑌

𝑎𝑗
𝑖𝑗
can be encoded in an MSM of the form E(𝑌

𝑎𝑗
𝑖𝑗
) =

𝜇(𝑎𝑗, 𝜸) = 𝑔{ℎ(𝑎𝑗), 𝜸}, where ℎ(⋅) is a function satisfying
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ℎ(𝑎𝑗 = 𝟎) = 0, 𝟎 is the vector of zeros, 𝑎𝑗 = 𝟎 is the poten-
tial treatment sequence where no treatment is adminis-
tered at every visit up to visit 𝑗, and 𝑔(⋅) is a function
that relates the mean of the potential outcome to ℎ(𝑎𝑗)

through a finite-dimensional parameter vector 𝜸 . Note that
baseline covariates 𝑽𝑖 can also be included in the MSM.
To identify and estimate 𝜸 from the observed data, we
make the stable unit treatment value (SUTVA) assump-
tion, that is, the distribution of potential outcomes for
one patient is assumed to be independent of potential
treatment sequence of another patient, and the poten-
tial outcomes are well defined. Additionally, we make the
sequential ignorability of treatment assignment assump-
tion, that is, pr(𝐴𝑖𝑗 ∣ 𝑌

𝑎𝑗
𝑖𝑗
, 𝑋𝑖,𝑗−1) = pr(𝐴𝑖𝑗 ∣ 𝑋𝑖,𝑗−1) for 𝑗 =

1,… , 𝑇, and the positivity assumption, that is, pr(𝐴𝑖𝑗 ∈  ∣

𝑋𝑖,𝑗−1) > 0 for all 𝑋𝑖,𝑗−1 and for any set  with positive
measure. Note that 𝐴𝑖𝑗 can have arbitrary distributions
(e.g., ordinal and continuous).
In the presence of dependent censoring, the objective

is to estimate the causal effect of the treatment sequence
in MSMs without censoring, therefore further assump-
tions about the censoring process need to be made. Let
𝑅𝑖𝑗 be the indicator of whether the 𝑖th patient remains
in the study up to visit 𝑗. We assume that 𝑅𝑖0 = 1 (i.e.,
baseline visit assessments are complete for all patients)
and 𝑅𝑖,𝑗−1 = 0 ⇒ 𝑅𝑖𝑗 = 0 (monotone missingness due to
dropout). Our interest is to estimate the parameters of the
MSM for E(𝑌

𝑎𝑗,𝑟𝑗=𝟏

𝑖𝑗
), where 𝑟𝑗 is the potential sequence

of the indicator of the 𝑖th patient being in the study
by visit 𝑗 and 𝟏 is the vector of ones. To achieve this,
we make an assumption that the censoring is sequen-
tially ignorable, that is, pr(𝑅𝑖𝑗 ∣ 𝑌

𝑎𝑗
𝑖𝑗
, 𝐻𝑖,𝑗−1, 𝑅𝑖,𝑗−1 = 1) =

pr(𝑅𝑖𝑗 ∣ 𝐻𝑖,𝑗−1, 𝑅𝑖,𝑗−1 = 1) for 𝑗 = 1,… , 𝑇, where 𝐻𝑖,𝑗−1

denotes the observable history of the 𝑖th patient up to
visit 𝑗 − 1 that can include 𝑋𝑖,𝑗−1 and any other relevant
covariate information. In addition, we assume that pr(𝑅𝑖𝑗 ∣

𝐻𝑖,𝑗−1, 𝑅𝑖,𝑗−1 = 1) > 0 for all𝐻𝑖,𝑗−1, which is similar to the
positivity assumption made for the treatment process.
Throughout the paper, we make the above assumptions;

otherwise our method may result in severely biased esti-
mates for parameters in theMSM, possibly even compared
to an analysis without addressing time-varying confound-
ing and dependent censoring.

3 INVERSE PROBABILITY OF
TREATMENT AND CENSORING
WEIGHTING FORMSMs

To identify and consistently estimate 𝜸 using observed
data under the assumptions described in Section 2, the

following inverse probability of treatment and censoring
weighted (IPTCW) estimating equations

𝑛∑
𝑖=1

𝑇∑
𝑗=1

𝑅𝑖𝑗𝑆𝑊
𝐴
𝑖𝑗
𝑊𝐶

𝑖𝑗
𝑫(𝐴𝑖𝑗, 𝜸)

{
𝑌𝑖𝑗 − 𝜇(𝐴𝑖𝑗, 𝜸)

}
= 𝟎 (1)

can be solved, where 𝑆𝑊𝐴
𝑖𝑗
=
∏𝑗

𝑘=1
pr(𝐴𝑖𝑘 ∣ 𝐴𝑖,𝑘−1)∕

∏𝑗

𝑘=1

pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1) are the stabilized inverse probability of
treatment weights, 𝑊𝐶

𝑖𝑗
=
∏𝑗

𝑘=1
1∕pr(𝑅𝑖𝑘 = 1 ∣ 𝐻𝑖,𝑘−1,

𝑅𝑖,𝑘−1 = 1) are the inverse probability of censoring
weights, 𝑫(𝐴𝑖𝑗, 𝜸) = {𝜕𝜇(𝐴𝑖𝑗, 𝜸)∕𝜕𝜸}𝑉

−1
𝑖𝑗
, and 𝑉𝑖𝑗 =

var(𝑌𝑖𝑗) (e.g., see Robins (1999b); Hernán et al. (2001); Ko
et al. (2003) for proof). Other commonly used versions of
(1) include replacing 𝑊𝐶

𝑖𝑗
with the stabilized weights for

censoring, 𝑆𝑊𝐶
𝑖𝑗
= 𝑊𝐶

𝑖𝑗

∏𝑗

𝑘=1
pr(𝑅𝑖𝑘 = 1 ∣ 𝐴𝑖,𝑘−1, 𝑅𝑖,𝑘−1 =

1), and incorporating baseline covariates 𝑽𝑖 in the numer-
ator of 𝑆𝑊𝐴

𝑖𝑗
(and 𝑆𝑊𝐶

𝑖𝑗
) when they are included in the

MSM. For simplicity, we do not consider these alternatives
here, but our proposed method described in Section 4
easily extends to these scenarios (e.g., see Web Appendix
C for more details).
The purpose behind weighting the uncensored obser-

vation for the 𝑖th patient at visit 𝑗 by 𝑊𝐶
𝑖𝑗
is to create

a representative sample of the target population (in the
absence of censoring) at visit 𝑗. This is achieved because
the

∑𝑛

𝑖=1
𝑅𝑖𝑗(𝑊

𝐶
𝑖𝑗
− 1) copies of the uncensored observa-

tions at visit 𝑗 are representative of the censored observa-
tions up to and including visit 𝑗 in terms of 𝐻𝑖,𝑗−1, and
the remaining

∑𝑛

𝑖=1
𝑅𝑖𝑗 copies of the uncensored observa-

tions represent themselves (in total there are
∑𝑛

𝑖=1
𝑅𝑖𝑗𝑊

𝐶
𝑖𝑗

copies). That is, if ∗ denotes the pseudo-population after
weighting the uncensored observations at visit 𝑗 by𝑊𝐶

𝑖𝑗
−

1, it can be shown that pr∗(𝑅𝑖𝑗 = 1 ∣ 𝐻𝑖,𝑗−1, 𝑅𝑖0 = 1) = 1∕2

(seeWebAppendixC for proof). Subsequently, the purpose
of weighting the uncensored observations further by 𝑆𝑊𝐴

𝑖𝑗
is to create a pseudo-population where𝐴𝑖𝑗 is conditionally
independent of 𝑋𝑖,𝑗−1 given 𝐴𝑖,𝑗−1, and the causal effect

of 𝑎𝑗 on E(𝑌
𝑎𝑗
𝑖𝑗
) is the same as in the original population.

Under the sequential ignorability, positivity, and SUTVA
assumptions described in Section 2, the treatment process
up to visit 𝑗 after weighting by 𝑆𝑊𝐴

𝑖𝑗
will then be causally

exogenous (Robins, 1999b), that is, pr∗(𝐴𝑖𝑗 ∣ 𝑌
𝑎𝑗
𝑖𝑗
, 𝑋𝑖,𝑗−1) =

pr∗(𝐴𝑖𝑗 ∣ 𝑋𝑖,𝑗−1) = pr(𝐴𝑖𝑗 ∣ 𝐴𝑖,𝑗−1), where ∗ denotes the
pseudo-population afterweighting by𝑆𝑊𝐴

𝑖𝑗
𝑊𝐶

𝑖𝑗
. Then stan-

dard regression methods can be used to consistently esti-
mate 𝜸 in the MSM if the weights in (1) are known.
Because theweights in (1) are unknown in observational

studies, their estimates based on MLE, 𝑆𝑊𝐴
𝑖𝑗
(𝜶, 𝜷) =∏𝑗

𝑘=1
pr(𝐴𝑖𝑘 ∣ 𝐴𝑖,𝑘−1; 𝜶)∕

∏𝑗

𝑘=1
pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1; 𝜷) and
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𝑊𝐶
𝑖𝑗
(𝜽) =

∏𝑗

𝑘=1
1∕pr(𝑅𝑖𝑘 = 1 ∣ 𝐻𝑖,𝑘−1, 𝑅𝑖,𝑘−1 = 1; 𝜽) are

usually used to implement IPTCW, where 𝜶, 𝜷, and 𝜽 are
the maximum likelihood estimates of 𝜶, 𝜷, and 𝜽 in para-
metric models pr(𝐴𝑖𝑘 ∣ 𝐴𝑖,𝑘−1; 𝜶), pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1; 𝜷), and
pr(𝑅𝑖𝑘 = 1 ∣ 𝐻𝑖,𝑘−1, 𝑅𝑖,𝑘−1 = 1; 𝜽), respectively. However,
as discussed in Section 1.1, this MLE approach to weight
estimation can be problematic, which motivated CBW
methods as an alternative.

4 JOINT CALIBRATEDWEIGHT
ESTIMATION FORMSMs

In this section, we describe our joint calibration approach
toCBWestimation inMSMs. It is important to note that the
goal for calibration is to improve IPWEs of MSM parame-
ters, and not to improve estimation of the treatment and
censoring processes.
Specifically, we propose to calibrate 𝑆𝑊𝐴

𝑖𝑗
(𝜶, 𝜷)𝑊𝐶

𝑖𝑗
(𝜽)

by jointly imposing calibration restrictions (i.e., moment
conditions) implying that, after weighting the observed
data sample, at each study visit (I) treatment assignments
are unassociated with the history of time-varying covari-
ates, and (II) we have a representative sample of the tar-
get population in the absence of censoring. For the sim-
pler setting of IPTW, 𝑆𝑊𝐴

𝑖𝑗
(𝜶, 𝜷) can be calibrated by only

imposing the restrictions for the treatment assignment
process.
Let 𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀) be the calibrated weights with parameter

vector 𝝀. Note that we use⋆ in superscript to highlight that
the weights are calibrated.
After obtaining an estimate of𝝀,𝝀, we propose to replace

𝑆𝑊𝐴
𝑖𝑗
𝑊𝐶

𝑖𝑗
by𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀) in (1) to estimate 𝜸 .

In the next sections, we derive calibration restrictions
for the treatment assignment and censoring processes
before developing the implementation procedures for the
joint calibration.

4.1 Calibration Restrictions for
Treatment Assignment

Wederive calibration restrictions for treatment assignment
by building on the framework proposed in Yiu and Su
(2018) for point treatments. Let pr(𝐴𝑖𝑗 ∣ 𝑋𝑖,𝑗−1; 𝜷w) be a
parametric model for the treatment assignment. Here we
use the subscript “w” in 𝜷w to highlight that this is the para-
metric model used to derive restrictions. Following Yiu
and Su (2018), we use the partition 𝜷w = {𝜷wb, 𝜷wd}, where
𝜷wd are the unique parameters that characterize the depen-
dence of 𝐴𝑖𝑗 on 𝑋𝑖,𝑗−1 excluding the treatment history

𝐴𝑖,𝑗−1 (i.e., regression coefficients of baseline and time-
varying covariates and their interactions with 𝐴𝑖,𝑗−1), and
𝜷wb include the intercept terms and parameters that char-
acterize the dependence on treatment history (i.e., regres-
sion coefficients of 𝐴𝑖,𝑗−1). Here the subscripts “d” and
“b” stand for dependence and baseline, respectively. With-
out loss of generality, let pr(𝐴𝑖𝑗 ∣ 𝑋𝑖,𝑗−1; 𝜷wb = 𝜶, 𝜷wd =

𝟎) = pr(𝐴𝑖𝑗 ∣ 𝐴𝑖,𝑗−1; 𝜶), that is, setting {𝜷wb = 𝜶, 𝜷wd = 𝟎}

results in a treatment process model that only depends on
treatment history and is parameterized by 𝜶.
Now suppose that 𝝀 is fixed and we have knownweights

𝑊𝐴𝐶⋆
𝑖𝑗

(𝝀), it is possible to examine whether 𝜷wd = 𝟎 in the
weighted samplewith𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀), by finding the value of 𝜷w,

that is, 𝜷w, that maximizes

𝑇∏
𝑗=1

𝑛∏
𝑖=1

{
𝑗∏

𝑘=1

pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1; 𝜷w)

}𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

, (2)

or equivalently solves the score equations

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

𝜕

𝜕𝜷w
log{pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1; 𝜷w)} = 𝟎.

(3)

The terms in the curly brackets in (2) make it explicit that
𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀) is used to weight the likelihood of the observed

treatment sequence for the 𝑖th patient up to visit 𝑗.
We propose to derive calibration restrictions by invert-

ing (3) and finding the value of 𝝀 implying that {𝜷wb =
𝜶, 𝜷wd = 𝟎} are the values that maximize (2). That is, we
solve for 𝝀

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

𝜕

𝜕𝜷w
log{pr(𝐴𝑖𝑘 ∣ 𝑋𝑖,𝑘−1; 𝜷w)}

|||{𝜷wb=𝜶,𝜷wd=𝟎} = 𝟎. (4)

Satisfaction of the restrictions in (4) means that,
after weighting by 𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀), the treatment assignments

up to visit 𝑗 are unassociated with the covariate his-
tories conditional on the treatment histories in the
observed data sample (i.e., 𝜷wd = 𝟎). Note that the struc-
ture of the covariate associations is characterized by
the specified parametric treatment process model. More
discussion about this general framework for weight
estimation for point treatments can be found in Yiu
and Su (2018). In addition, Web Appendix B provides
details of deriving calibration restrictions for the eventual
outcome setting.
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4.1.1 Application to ordinal treatments

We consider the following model for the ordinal treatment
variable in the HERS data,

logit{pr(𝐴0
𝑖𝑗
= 1 ∣ 𝑋𝑖,𝑗−1)} = 𝑿0⊤

𝑖,𝑗−1
𝜷0,

logit{pr(𝐴1
𝑖𝑗
= 1 ∣ 𝑋𝑖,𝑗−1, 𝐴

0
𝑖𝑗
= 1)} = 𝑿1⊤

𝑖,𝑗−1
𝜷1,

(5)

where𝐴0
𝑖𝑗
is the indicator of whether at least one ART was

administered, 𝐴1
𝑖𝑗
is the indicator of whether HAART was

administered, 𝑿0
𝑖,𝑗−1

and 𝑿1
𝑖,𝑗−1

are functionals of 𝑋𝑖,𝑗−1

(e.g., transformations and interactions) including 1, and 𝜷0

and 𝜷1 are corresponding regression coefficients. Apply-
ing (4), restrictions based on (5) can be derived as

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

(
𝐴0
𝑖𝑘
− 𝑒0

𝑖𝑘

)
𝑿0
𝑖,𝑘−1

= 𝟎,

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

𝐴0
𝑖𝑘

(
𝐴1
𝑖𝑘
− 𝑒1

𝑖𝑘

)
𝑿1
𝑖,𝑘−1

= 𝟎,

(6)

where 𝑒0
𝑖𝑘
and 𝑒1

𝑖𝑘
are the predicted probabilities of receiv-

ing treatment at visit 𝑘 from fitting the model (5) but
with treatment history as the only covariates. The restric-
tions in (6) are in spirit similar to the covariate balancing
restrictions/conditions for binary point treatments (Imai
and Ratkovic, 2014; Yiu and Su, 2018), but they are aggre-
gated over time. Examining these restrictions carefully, we
can see that they aim to remove the associations of the
covariates,𝑿0

𝑖,𝑗−1
and𝑿1

𝑖,𝑗−1
, with the residuals of the treat-

ment variables (after fitting (5) with treatment history as
the only covariates) over time.

4.1.2 Application to continuous
treatments

We assume that a time-varying continuous treatment at
visit 𝑗 for the 𝑖th patient follows a heteroscedastic nor-
mal linear model 𝐴𝑖𝑗 ∼ 𝑁{𝑿

𝜇⊤

𝑖,𝑗−1
𝜷𝜇, exp(𝑿𝜎⊤

𝑖,𝑗−1
𝜷𝜎)}, where

𝑿
𝜇

𝑖,𝑗−1
and 𝑿𝜎

𝑖,𝑗−1
include 1 and functionals of 𝑋𝑖,𝑗−1 (e.g.,

interactions), and 𝜷𝜇 and 𝜷𝜎 are corresponding regression
coefficients. After applying (4) to this model for treatment
assignment, we obtain the following restrictions

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑇𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

(𝐴𝑖𝑘 − �̂�𝑖𝑘)

𝜎2
𝑖𝑘

𝑿
𝜇

𝑖,𝑘−1
= 𝟎,

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑇𝑊
𝐴𝐶⋆
𝑖𝑗

(𝝀)

𝑗∑
𝑘=1

{
−1 +

(𝐴𝑖𝑘 − 𝜇𝑖𝑘)
2

𝜎2
𝑖𝑘

}
𝑿𝜎
𝑖,𝑘−1

= 𝟎,

where 𝜇𝑖𝑘 and 𝜎2
𝑖𝑘
are the estimated mean and variance of

the continuous treatments from fitting the same normal
linear model but with treatment history as the only covari-
ates. It is easy to see that these restrictions are designed
to remove the associations between the covariates 𝑿𝜇

𝑖,𝑘−1
,

𝑿𝜎
𝑖,𝑘−1

and the standardized residuals of a treatment model
that depends only on treatment history.

4.1.3 Additional restrictions for IPTW
when implementing with the Type (1)
method

When the Type (1)method is used to implement IPTWonly
(e.g., when censoring is assumed to depend on treatment
history only), we propose to estimate calibrated weights
𝑊𝐴⋆

𝑖𝑗
(𝝀) for IPTW (instead of 𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀) for IPTCW) by

jointly imposing (4) and additional restrictions

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴⋆
𝑖𝑗

(𝝀) =

𝑛∑
𝑖=1

𝑅𝑖𝑗 (7)

for 𝑗 = 1,… , 𝑇, in the same spirit as in Cao et al. (2009).
That is, we also constrain the average of the calibrated
weights to equal 1 at each visit. The purpose of these restric-
tions is to avoid the trivial solution of zeros for the weights
in (4), and to improve the stability of the IPWE by prohibit-
ing extremely large weights. As we shall see in Section 4.2,
the calibration restrictions for IPCW already impose con-
straints on the sample size after weighting. Therefore,
restrictions in (7) are redundant when calibrating weights
for IPTCW.

4.2 Calibration Restrictions for
Censoring

To derive calibration restrictions for IPCW, we utilize the
proposition that at visit 𝑗 (𝑗 = 1,… , 𝑇), IPCWcreates a rep-
resentative sample of the target population (in the absence
of censoring) at visit 𝑗 after weighting the uncensored
observations by 𝑊𝐶

𝑖𝑗
. This proposition can be proved by

induction (seeWeb Appendix C). An important step in the
proof is to validate the inductive steps up to visit 𝑗, that is,
weighting the uncensored observations at visit 𝑘 = 1,… , 𝑗

by 1∕𝜋𝑖𝑘 − 1, where 𝜋𝑖𝑘 = pr(𝑅𝑖𝑘 = 1 ∣ 𝐻𝑖,𝑘−1, 𝑅𝑖,𝑘−1 = 1),
creates a representative sample of the censored observa-
tions at visit 𝑘, assuming that the proposition holds at
visit 𝑘 − 1 and the uncensored observations at visit 𝑘 − 1

have beenweighted by𝑊𝐶
𝑖,𝑘−1

. Thereforewe derive calibra-
tion restrictions for censoring by inverting weighted score
equations of a parametric model evaluated at the point
implying no evidence against the inductive steps.
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Specifically, suppose that 𝝀 is fixed and the calibrated
weights𝑊𝐴𝐶⋆

𝑖1
(𝝀), … ,𝑊𝐴𝐶⋆

𝑖𝑗
(𝝀) are known. We can assess

the validity of the proposition at visit 𝑗 by specifying
a parametricmodel𝜋𝑖𝑘(𝜽w) = pr(𝑅𝑖𝑘 = 1 ∣ 𝐻𝑖,𝑘−1, 𝑅𝑖,𝑘−1 =

1; 𝜽w) (𝑘 = 1,… , 𝑗) and estimating its parameter 𝜽w by
maximizing

𝑗(𝜽w) =

𝑛∏
𝑖=1

𝑗∏
𝑘=1[

𝜋𝑖𝑘(𝜽w)
𝑅𝑖𝑘{1∕𝜋

⋆
𝑖𝑘
(𝝀)−1}{1 − 𝜋𝑖𝑘(𝜽w)}

1−𝑅𝑖𝑘
]𝑊𝐴𝐶⋆

𝑖,𝑘−1
(𝝀)𝑅𝑖,𝑘−1

,

(8)

where 1∕𝜋⋆
𝑖𝑘
(𝝀) = 𝑊𝐴𝐶⋆

𝑖𝑘
(𝝀)∕𝑊𝐴𝐶⋆

𝑖,𝑘−1
(𝝀) (𝑘 = 1,… , 𝑗),

𝑊𝐴𝐶⋆
𝑖0

(𝝀) = 1, and by convention 00 = 1. The terms in (8)
are used to assess the validity of the inductive steps at
visits 𝑘 = 1,… , 𝑗 in the observed data sample, given that
weighting by𝑊𝐴𝐶⋆

𝑖,𝑘−1
has been applied at visit 𝑘 − 1. In par-

ticular, if 𝜋𝑖𝑘(𝜽w = 𝟎) = 1∕2 ∀𝑘, deviations from 𝜽w = 𝟎 in
the observed data sample would provide evidence against
the inductive step at one or more visits up to and including
visit 𝑗, and thus evidence against the proposition at visit 𝑗.
Similarly, we can simultaneously assess the validity of the
proposition at all visits by maximizing

𝑇∏
𝑗=1

𝑗(𝜽w) =

𝑇∏
𝑗=1

𝑛∏
𝑖=1[

𝜋𝑖𝑗(𝜽w)
𝑅𝑖𝑗 {1∕𝜋

⋆
𝑖𝑗
(𝝀)−1}{1 − 𝜋𝑖𝑗(𝜽w)}

1−𝑅𝑖𝑗

](𝑇−𝑗+1)𝑊𝐴𝐶⋆
𝑖,𝑗−1

(𝝀)𝑅𝑖,𝑗−1

(9)

with the score equations

𝑇∑
𝑗=1

𝑛∑
𝑖=1

(𝑇 − 𝑗 + 1)

[
𝑅𝑖𝑗

{
𝑊𝐴𝐶⋆

𝑖𝑗 (𝝀) −𝑊𝐴𝐶⋆
𝑖,𝑗−1(𝝀)

} 𝜕

𝜕𝜽w
log

{
𝜋𝑖𝑗(𝜽w)

}

+ 𝑊𝐴𝐶⋆
𝑖,𝑗−1(𝝀)(𝑅𝑖,𝑗−1 − 𝑅𝑖𝑗)

𝜕

𝜕𝜽w
log{1 − 𝜋𝑖𝑗(𝜽w)}

]
= 𝟎. (10)

The terms in square brackets in (9) are weighted by 𝑇 − 𝑗 + 1
because they are required for assessing whether the proposition
holds at visits 𝑗, … , 𝑇. We derive restrictions by finding 𝝀 such
that 𝜽w = 𝟎 are the values that solve (10). That is, we solve for 𝝀
such that

𝑇∑
𝑗=1

𝑛∑
𝑖=1

(𝑇 − 𝑗 + 1)

[
𝑅𝑖𝑗

{
𝑊𝐴𝐶⋆

𝑖𝑗 (𝝀) −𝑊𝐴𝐶⋆
𝑖,𝑗−1(𝝀)

} 𝜕

𝜕𝜽w
log

{
𝜋𝑖𝑗(𝜽w)

}

+ 𝑊𝐴𝐶⋆
𝑖,𝑗−1(𝝀)(𝑅𝑖,𝑗−1 −𝑅𝑖𝑗)

𝜕

𝜕𝜽w
log{1−𝜋𝑖𝑗(𝜽w)}

]|||𝜽w=𝟎 = 𝟎. (11)

In this paper, we assume a logistic model
logit{𝜋𝑖𝑗(𝜽w)} = �̃�⊤

𝑖,𝑗−1
𝜽w, where �̃�𝑖,𝑗−1 is a vector of

functionals of 𝐻𝑖,𝑗−1 including 1. Then the restrictions
based on (11) are

𝑇∑
𝑗=1

(𝑇 − 𝑗 + 1)

𝑛∑
𝑖=1

[
𝑅𝑖𝑗𝑊

𝐴𝐶⋆
𝑖𝑗 (𝝀) − 𝑅𝑖,𝑗−1𝑊

𝐴𝐶⋆
𝑖,𝑗−1(𝝀)

]
�̃�𝑖,𝑗−1 = 𝟎.

(12)

The term ∑𝑛

𝑖=1
[𝑅𝑖𝑗𝑊

𝐴𝐶⋆
𝑖𝑗 (𝝀) − 𝑅𝑖,𝑗−1𝑊

𝐴𝐶⋆
𝑖,𝑗−1(𝝀)]�̃�𝑖,𝑗−1 in (12) can

be interpreted as the covariate balance summary of �̃�𝑖,𝑗−1

between the weighted uncensored observations at visit 𝑗
and the weighted uncensored observations at visit 𝑗 − 1.
Equation in (12) is equivalent to

𝑇∑
𝑗=1

𝑛∑
𝑖=1

𝑅𝑖𝑗𝑊
𝐴𝐶⋆
𝑖𝑗 (𝝀)

{
(𝑇 − 𝑗 + 1)�̃�𝑖,𝑗−1 − (𝑇 − 𝑗)�̃�𝑖𝑗

}
= 𝑇

𝑛∑
𝑖=1

�̃�𝑖0

(13)

(see details in Web Appendix C). Since �̃�𝑖,𝑗−1 (𝑗 =

1,… , 𝑇) includes 1, (13) implies ∑𝑇

𝑗=1

∑𝑛

𝑖=1
𝑅𝑖𝑗𝑊

𝐴𝐶⋆
𝑖𝑗 (𝝀) = 𝑛𝑇,

which means that the total number of “observations”
after weighting is equal to 𝑛𝑇, the total number of
observations of the target population without censor-
ing. If �̃�𝑖,𝑗−1 includes baseline covariates 𝑽𝑖, (13) implies∑𝑇

𝑗=1

∑𝑛

𝑖=1
𝑅𝑖𝑗𝑊

𝐴𝐶⋆
𝑖𝑗 (𝝀)𝑽𝑖 = 𝑇

∑𝑛

𝑖=1
𝑽𝑖, that is, the weighted

average of 𝑽𝑖 over all visits is equal to the sample aver-
age of 𝑽𝑖. If �̃�𝑖,𝑗−1 includes an indicator for visit, 𝐼(𝑗 = 𝑘)

(𝑘 = 1,… , 𝑇), and an interaction between this visit indica-
tor and 𝑽𝑖, 𝐼(𝑗 = 𝑘)𝑽𝑖, then (13) implies

∑𝑛

𝑖=1
𝑅𝑖𝑘𝑊

𝐴𝐶⋆
𝑖𝑘

(𝝀) =

𝑛 and ∑𝑛

𝑖=1
𝑅𝑖𝑘𝑊

𝐴𝐶⋆
𝑖𝑘

(𝝀)𝑽𝑖 =
∑𝑛

𝑖=1
𝑽𝑖 for 𝑘 = 1,… , 𝑇. That is,

at each visit the sample size after weighting is 𝑛 and
the weighted average of 𝑽𝑖 is equal to the sample aver-
age of 𝑽𝑖. Note that interactions between visits and time-
varying covariates can also be included in �̃�𝑖,𝑗−1, therefore
time-varying covariates at different visits can be balanced
separately.
In this section, we have derived restrictions for cal-

ibrating unstabilized weights for censoring; restrictions
for stabilized weights for censoring can be found in Web
Appendix C.

4.3 Implementation of the Joint
Calibration

4.3.1 Pros and cons of implementation
methods

We discuss the pros and cons of the three types of
implementation methods for calibration introduced in
Section 1.2. The advantage of Type (1) methods is that they
almost always result in a unique solution and they are
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computationally efficient. This is explained in Section 4.3.3
by showing that Type (1) methods are equivalent to solving
a convex minimization problem. The disadvantage of Type
(1) methods is that they can inherit the poor performance
of the initial weights, for example, when the initial weights
are generated by a severely misspecified model. Type (2)
methods do not have this problem because no initial
weights are required. However, they are not guaranteed
to produce weights that satisfy the calibration restrictions
exactly, not to mention a unique set of weights if such a set
exists. This problem is especially prominent for long treat-
ment sequences and complex models involving nonbinary
treatments. For example, in our first simulation study in
Section 5, the Type (2) method in Section 4.3.4 worked
well when only IPTW was required, but failed to converge
(i.e., did not find weights that satisfied our proposed
moment conditions) for the majority of simulated data
sets when IPTCWwas applied. Furthermore, in our HERS
data example, the same Type (2) method produced several
sets of weights that differed by more than a constant of
proportionality, that is, there existed multiple solutions.
Type (3) methods look promising because they seem not

to suffer from the disadvantages of Type (1) and (2) meth-
ods. Nevertheless, we discourage using Type (3) meth-
ods to implement our calibration approach because (a)
they may not result in a consistent estimator of treatment
effects in MSMs even when the models for deriving cal-
ibration restrictions are correctly specified, and (b) they
can be computationally intensive. Issue (a) arises because
in longitudinal settings, unlike Type (1) and (2) meth-
ods, Type (3) methods do not impose enough structure
on the weights to ensure that they converge to the true
weights for IPTCW. One way to address issue (a) is to
impose more calibration restrictions by either specifying
and/or modeling conditional means of the time-varying
confounders given observed histories (Zhou and Wodtke,
2020), or conditional means of the potential outcomes
given observed histories (Kallus and Santacatterina, 2019).
However, in practice, it would be cumbersome and unde-
sirable to conduct additional complex modeling, apart
from specifying the treatment and censoring models for
IPTCW in MSMs.

4.3.2 Generic estimation procedure for
joint calibration

For ease of exposition, we collect all standard IPTCW
weights by MLE 𝑆𝑊𝐴

𝑖𝑗
(𝜶, 𝜷)𝑊𝐶

𝑖𝑗
(𝜽) and calibrated weights

𝑊𝐴𝐶⋆
𝑖𝑗

(𝝀) into two 𝑚 × 1 vectors 𝑾(𝜶, 𝜷, 𝜽) and 𝑾⋆(𝝀),
respectively, where𝑚 is the number of weights. If no cen-
soring occurs, then 𝑚 = 𝑛𝑇. Here, 𝜶, 𝜷, and 𝜽 denote

parameter estimates byMLEwithoutweighting. The imple-
mentation of joint calibration requires solving a system
of linear equations in terms of 𝑾⋆(𝝀) since the restric-
tions (4), (7), and (13) are linear in the calibrated weights.
Let 𝑲 be the known𝑚 × 𝑟matrix and 𝒍 be the known 𝑟 × 1

vector, where 𝑟 is the numbers of restrictions. For exam-
ple, for IPTCW, 𝑟 would be the combined size of 𝜷w and
𝜽w. Both𝑲 and 𝒍 are determined by the calibration restric-
tions (4), (7), and (13). For obtaining the calibratedweights,
we need to solve

𝑲⊤𝑾⋆(𝝀) − 𝒍 = 𝟎, (14)

which can be performed in R (R Development Core Team,
2014) by using the package nleqslv (Hasselman, 2018),
once the form of the calibrated weights 𝑾⋆(𝝀) has been
specified. The forms of the calibrated weights in the Type
(1) and (2) methods differ and are now specified in the fol-
lowing sections.

4.3.3 Calibrated weights in the Type (1)
method

We consider calibrated weights of the form 𝑾⋆(𝝀) =

𝑾(𝜶, 𝜷, 𝜽)◦ exp(𝑲𝝀) for the Type (1)method, where exp(⋅)
is performed element-wise, ◦ denotes element-wise prod-
uct, and 𝝀 is an 𝑟 × 1 vector of parameters. Although other
forms of calibration are possible (e.g., see Han (2016)), this
particular choice is appealing because solving (14) is equiv-
alent to minimizing the convex function for 𝝀,

𝟏⊤{𝑾(𝜶, 𝜷, 𝜽)◦ exp(𝑲𝝀)} − 𝒍⊤𝝀, (15)

where 𝟏 is an 𝑚 × 1 vector of ones. The convexity of (15)
ensures that the solution to (14) is unique and can be
found efficiently. For the HERS analysis in Section 6, it
took approximately two seconds to obtain the calibrated
weights by imposing 84 restrictions for 2581 observations
on a Linux machine with 2.40GHz CPU (four processors)
and 128 GB memory.

4.3.4 Calibrated weights in the Type (2)
method

For the Type (2) method, we consider calibrated weights
of the form 𝑾⋆(𝝀) = 𝑾(𝜶, 𝜷, 𝜽). That is, the calibrated
weights take the form of the standard IPTCW weights.
However, the parameters characterizing theseweights,𝝀 =

{𝜷, 𝜽}, are estimated by solving (14) once 𝜶 has been esti-
mated by MLE. Recall that if only IPTW is to be applied
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using the Type (2) method, (14) will only include restric-
tions (4) (not additional restrictions (7)) in order to ensure
that the number of parameters to be estimated is equal
to the number of moment conditions. Unlike the Type (1)
method, this Type (2) method resulted in multiple solu-
tions in the HERS data example, and failed to converge
when IPTCW was applied in both the HERS data example
and simulation studies.

4.3.5 Other practical guidelines

It can be shown that the true inverse probability weights
must satisfy the proposed moment conditions asymp-
totically, that is, the calibration/exponential tilting func-
tion in the Type (1) method should converge to 0 if the
initial weights are estimated from a correctly specified
model (see Web Appendix F for proof). Thus the proposed
moment conditions can also be used for model check-
ing. For example, in the HERS data analysis, we calcu-
lated the variance of the estimated calibration function
since, if the treatment and censoring models for the ini-
tial weights are correctly specified, this variance should
be close to zero (see Section 7.4 in Web Appendix G).
Alternatively, one could detect whether a particular set of
weights approximate the true IPTCW weights by assess-
ing how close these weights are to satisfying the proposed
moment conditions.
We distinguish between covariate histories that are pre-

dictive of E(𝑌
𝑎𝑗,𝑟𝑗=𝟏

𝑖𝑗
), denoted as 𝑋

𝑌

𝑖,𝑗−1, and those that

are predictive of 𝐴𝑖𝑗 , denoted as 𝑋
𝐴

𝑖,𝑗−1. Some elements

of 𝑋
𝑌

𝑖,𝑗−1 and 𝑋
𝐴

𝑖,𝑗−1 overlap, which leads to confounding
bias. We recommend prioritizing 𝑿𝑌

𝑖,𝑗−1
, that is, function-

als of 𝑋
𝑌

𝑖,𝑗−1, for inclusion in the models of the treatment
and censoring processes for deriving restrictions at visit 𝑗
(Zhao and Percival, 2017). In Web Appendix D, we provide
further discussion on model choices for deriving calibra-
tion restrictions.

5 SIMULATION

We conduct two simulation studies to assess the finite
sample performance of IPWEs for MSMs based on our
calibration approach. The set-up of the first simulation
study is motivated by the HERS data, where ordinal time-
varying treatments are observed over long follow-up peri-
ods and dependent censoring is present. Because the CBPS
approach of Imai and Ratkovic (2015) can only handle
binary treatments with a small number of visits, we are
only able to compare the performance of our calibration

approach with the MLE approach in the first simulation
study. To include the CBPS approach for comparison, we
design a second simulation study for binary treatments at
five follow-up visits and with no censoring. The comput-
ing time for the CBPS approach implemented by the CBPS
package in R is 800 or more times than those for the cal-
ibration and MLE approaches. Full details of the simula-
tion studies can be found in Web Appendix E. The R code
for the simulation study is also available in the Supporting
Information.
Overall, the simulation results confirm that both IPWEs

for MSMs with weights from MLE and our calibration
approach (implemented by both Type (1) and Type (2)
methods) have negligible bias when the treatment and
censoring models are correctly specified. IPWEs from
the CBPS approach have small amounts of biases when
the treatment model is correctly specified. However, with
modelmisspecification for weight estimation, IPWEs from
all approaches may have large biases that do not disap-
pear with increasing sample sizes. Notably, the IPWEs
with calibrated weights are considerably less variable and
have much smaller MSEs than their MLE counterparts,
especially when the treatment assignment and censor-
ing models are misspecified. In particular, when model
misspecification is induced by functional form misspeci-
fication of the covariates, the IPWEs with weights from
MLE have large variances and MSEs that even increase
with sample size. In contrast, the IPWEs with our cali-
brated weights are more stable and have smaller MSEs
that decrease with sample size. The IPWEs with calibrated
weights also have smaller median absolute errors (MAEs)
andMSEs than their CBPS counterparts. TheMAE, which
is more robust to extreme values than the MSE, indicates
that, after throwing away the worst half of the simulations
results, our calibration approach still performs better than
the CBPS approach.

6 APPLICATION

In this section, we apply the proposedmethod to theHERS
data. Since HAART was not available at enrollment in the
HERS cohort, we follow Ko et al. (2003) and treat visit 7,
when HAART was more widely used in the HERS, as the
“baseline” and estimate the causal effects of HAART over
the 2-year period between visit 8 and visit 12. Besides attri-
tion, there were secondary sources of missing data that
resulted in intermittent missing data (before being lost to
follow-up),missing data at enrollment for CD4 counts, and
left-censored HIV viral load at the lower detection limit.
We deal with these by following the approaches in Ko et al.
(2003); see Web Appendix G for details. In total, there are
610 patients at visit 7 who had at least one CD4 count
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measured between visit 8 and 12 and sufficient informa-
tion for covariates to estimate the weights for IPTW and
IPTCW. The total number of CD4 count observations for
analysis is 2581.

6.1 Model Parameterizations
and Estimation

As discussed in Section 1.3, in order to provide a more
precise estimate of the causal effect of HAART relative to
no treatment, we consider the time-varying antiretroviral
treatment assignment as an ordinal variable, which is rep-
resented by the indicator of whether at least one ART was
administered,𝐴0

𝑖𝑗
(with a potential value 𝑎0

𝑗
), and the indi-

cator of whether HAART was administered, 𝐴1
𝑖𝑗
(with a

potential value𝑎1
𝑗
), for 𝑗 = 8,… , 12. Let𝐷𝑖 = 0 if𝑌𝑖7 < 200,

𝐷𝑖 = 1 if 200 ≤ 𝑌𝑖7 ≤ 500, and 𝐷𝑖 = 2 if 𝑌𝑖7 > 500, where
𝑌𝑖7 is the CD4 count at visit 7. We specify the following
MSM for the potential CD4 count outcome 𝑌

𝑎𝑗
𝑖𝑗
,

E(𝑌
𝑎𝑗
𝑖𝑗
) = 𝛿0𝑗 +

2∑
𝑘=1

𝛿𝑘𝐼(𝐷𝑖 = 𝑘) + 𝜹⊤𝑣 𝑽𝑖 +

2∑
𝑘=0

𝐼(𝐷𝑖 = 𝑘)

×

{
𝛾1𝑘

𝑗∑
𝑙=8

(𝑎0
𝑙
− 𝑎1

𝑙
) + 𝛾2𝑘

𝑗∑
𝑙=8

𝑎1
𝑙

}

for 𝑗 = 8,… , 12, where 𝛿0𝑗 are visit-specific intercept
terms, 𝑽𝑖 are baseline covariates evaluated at visit 7 (see
the full list in Web Appendix G), and 𝜹𝑣 are their corre-
sponding regression coefficients. This MSM encodes the
cumulative effect of HAART and 1-2 ARTs relative to
no treatment stratified by the CD4 count at visit 7. If
𝛾1𝑘 and 𝛾2𝑘 are constrained to be constant across 𝑘 (𝑘 =

0, 1, 2 for the strata), then an overall cumulative treatment
effect can be obtained. In addition, we assume a different
MSM for evaluating short-term treatment effects in Web
Appendix G.
The parameters in theMSMswere estimated by applying

IPTWand IPTCW,withweights estimated byMLE and our
calibration approach with the Type (1) method. As men-
tioned previously, we consider the Type (2) method as an
unreliable option for weight estimation in the HERS data
because it produced multiple solutions for IPTW and did
not converge for IPTCW. For IPTW, we assume the model
in (5) for the MLE approach and for deriving restrictions
for calibration.
InWeb Appendix G, we provide the full list of covariates

in (5).
For IPTCW, a logistic model with the same covariates

as those in the treatment assignment model was used for
estimating the inverse probability of censoring weights by

MLE and for deriving calibration restrictions (12). To pre-
vent extreme weights as in Cao et al. (2009), the weights
in IPTW by the MLE approach were scaled to sum to the
number of observations in the HERS data (i.e., 2581); and
the weights from MLE for IPTCW were scaled to sum to 5
times the sample size at visit 7 (i.e., the number of outcome
measurements that would have been observed had nobody
been censored from visit 7 onward). Finally, we estimated
standard errors with 2500 nonparametric bootstrap sam-
ples by treating patients as resampling units.

6.2 Results

In Web Appendix G, we provide details of the estimated
weights and discuss the extent to which they suggest that
confounding bias from observed covariates is present and
the positivity assumption is satisfied.
Table 1 presents the estimates and standard errors of

the parameters in the specified MSMs with no weighting,
IPTW, and IPTCW. The results of the naïve analysis with
no weighting applied, as shown in the first two rows of
Table 1, strongly suggest that, comparedwith no treatment,
HAART was effective at increasing the CD4 counts over
time for those with CD4 ≤ 500 at visit 7, and 1-2 ARTs were
effective for those with 200 ≤ CD4 ≤ 500 at visit 7. How-
ever, point estimates for the group with CD4 > 500 at visit
7 showed detrimental effects of bothHAART and 1-2ARTs.
Applying IPTW with weights from MLE provides an

upward adjustment of the treatment effects, as seen in the
third and fourth rows of Table 1. The largest adjustments
for 1-2 ARTs and HAART are in the CD4 < 200 and CD4 >

500 strata, respectively. Overall, this results in a fairly sub-
stantial upward adjustment for the treatment effects in the
MSMwith no stratification. However, applying IPTWwith
weights fromMLE also increased the standard errors of the
estimated treatment effects.
The fifth and sixth rows in Table 1 present the results

from applying IPTW with calibrated weights from the
Type (1) method. It appears that HAART had an even
greater effect on increasing CD4 counts for those with
CD4 ≤ 500 at visit 7 and overall without stratification,
compared with the results based on weights from MLE.
There were also substantial increases in the estimated
effects of 1-2 ARTs for those with ≥ 200 and overall. As
anticipated, the estimated standard errors with the cali-
brated weights are much smaller even compared to the
naïve analysis with no weighting applied.
Further adjustment for selection bias due to dependent

censoring appears to have largely minor effects, as seen
in the last four rows of Table 1. The most notable mod-
ifications occur in the CD4 > 500 strata. However, there
is substantial uncertainty associated with these estimated
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TABLE 1 Parameter estimates and bootstrap standard errors of the MSMs by applying no weighting, IPTW, and IPTCW with weights
from maximum likelihood (MLE) and from the calibration approach (CMLE) to the HERS data

Strata by CD4 cell count at visit 7
Weight estimation Cumulative effect <𝟐𝟎𝟎 200–500 >𝟓𝟎𝟎 No stratification

No weighting
≤ 2 ARTs 8.57 (9.33) 13.66 (7.86) −27.36 (18.40) 0.51 (8.06)
HAART 26.34 (8.37) 27.40 (8.25) −25.59 (16.45) 14.46 (7.99)
Treatment only

MLE ≤ 2 ARTs 13.27 (9.84) 16.23 (8.71) −26.44 (23.06) 5.59 (9.58)
HAART 27.78 (9.69) 28.63 (10.24) −2.67 (23.16) 20.89 (10.04)

CMLE ≤ 2 ARTs 14.35 (9.09) 26.60 (7.60) 5.25 (18.09) 18.59 (7.23)
HAART 36.53 (8.09) 34.73 (7.88) −2.75 (17.87) 28.16 (7.36)
Treatment and dropout

MLE ≤ 2 ARTs 11.70 (9.29) 17.11 (8.57) −24.75 (22.74) 6.84 (9.07)
HAART 25.79 (9.19) 28.80 (10.49) −2.08 (22.39) 21.19 (9.72)

CMLE ≤ 2 ARTs 11.92 (8.67) 27.74 (7.66) 8.60 (17.74) 19.26 (7.08)
HAART 33.11 (7.93) 32.75 (8.00) 3.10 (16.94) 27.37 (7.24)

treatment effects, therefore the evidence is insufficient to
draw a conclusion.
As expected, our estimated treatment effects for HAART

are generally much larger (more than 1 standard error)
than those reported in Ko et al. (2003), since we have sepa-
rated the groupwith 1-2ARTs from the groupwith no treat-
ment. The slightly larger effect of HAART in the CD4 >

500 strata fromKo et al. (2003) is again associatedwith sub-
stantial uncertainty.
In conclusion, the results in Table 1 indicate that there

were clinically substantial and statistically significant
therapeutic effects of cumulative exposure to HAART for
those patients with initial CD4 count ≤ 500, which is con-
sistent with the findings in Ko et al. (2003) and the rec-
ommended treatment guideline during the study period of
the HERS.

7 CONCLUSION AND DISCUSSION

In this paper, we have proposed a new CBW approach to
MSMs that can accommodate both time-varying confound-
ing and dependent censoring, binary and nonbinary time-
varying treatments as well as eventual and longitudinal
outcomes. Simulations showed that IPWEs forMSMswith
weights from our calibration approach had smaller vari-
ances and MSEs than IPWEs with weights from the MLE
and CBPS approaches, under correct and incorrect model
specification. The flexibility and computational efficiency
of our calibration approach makes it well equipped to deal
with common scenarios in fitting MSMs using observa-
tional cohort data from clinical studies such as the HERS.
Thiswill hopefully promotemorewidespread use ofMSMs

for various types of treatments/exposure and outcomes
in practice.
We emphasize that choosing the correct set of covariates

and functionals for balancing remains important for the
performance of IPWEs with the proposed approach. This
is related to the challenging problem of “covariate selec-
tion” in causal inference literature (Shortreed and Ertefaie,
2017). Specifically, imposing exact covariate balance, as
done in both the proposed approach and the CBPS, will
limit the number of covariates and functionals included for
balancing, which can reduce the robustness and efficiency
of IPWEs if observed confounders and important predic-
tors of the outcome are omitted (Wang and Zubizarreta,
2020). One possible solution is to allow approximate
covariate balance such that more calibration restrictions
can be included, as advocated in Wang and Zubizarreta
(2020). Second, it would be useful to replace initial weights
from MLE with initial weights estimated by data-adaptive
methods. This can provide some protection from severe
model misspecification, and therefore reduce the possibil-
ity of large bias for IPWEs with calibrated weights. Third,
as pointed out by the associate editor, it would be useful
to construct double robust (DR) estimators based on the
proposed calibration approach. Focusing on binary treat-
ments, a natural way to construct a DR estimator with our
CBWs is to either incorporate them into the augmented
inverse probability weighted estimator, or into the targeted
maximum likelihood approach as a clever covariate. How-
ever, it is not clear if such estimatorswill performwell even
when the treatment assignment and outcome regression
models are both mildly misspecified (Kang and Schafer,
2007). Therefore it would be desirable to extend our pro-
posed approach by developing new DR estimators that
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can perform well when either, but not necessarily both,
of the working models for nuisance parameters are mildly
misspecified.
Similar to other CBW approaches, it warrants future

research to develop sensitivity analysis strategies for
the proposed approach to assess the impact of viola-
tions to the “no unmeasured confounders” assumption.
Ko et al. (2003) implemented the sensitivity analysis
approach suggested in Robins (1999a) by introducing a
sensitivity parameter defined as the difference between
the means of the potential outcomes given observed
treatment/covariate histories. This approach is relatively
straightforward for binary treatments and continuous out-
comes, but less straightforward for other treatment and
outcome combinations.
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