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Abstract

Several sinogram inpainting based metal artifact reduction (MAR) methods have been pro-

posed to reduce metal artifact in CT imaging. The sinogram inpainting method treats metal

trace regions as missing data and estimates the missing information. However, a general

assumption with these methods is that data truncation does not occur and that all metal

objects still reside within the field-of-view (FOV). These assumptions are usually violated

when the FOV is smaller than the object. Thus, existing inpainting based MAR methods are

not effective. In this paper, we propose a new MAR method to effectively reduce metal arti-

fact in the presence of data truncation. The main principle of the proposed method involves

using a newly synthesized sinogram instead of the originally measured sinogram. The initial

reconstruction step involves obtaining a small FOV image with the truncation artifact

removed. The final step is to conduct sinogram inpainting based MAR methods, i.e., linear

and normalized MAR methods, on the synthesized sinogram from the previous step. The

proposed method was verified for extended cardiac-torso simulations, clinical data, and

experimental data, and its performance was quantitatively compared with those of previous

methods (i.e., linear and normalized MAR methods directly applied to the originally mea-

sured sinogram data). The effectiveness of the proposed method was further demonstrated

by reducing the residual metal artifact that were present in the reconstructed images

obtained using the previous method.

Introduction

During X-ray computed tomography (CT) imaging, the presence of metallic implants, such as

dental fillings, hip prostheses, and orthopedic implants, can introduce metal artifact in the

reconstructed images. The high atomic numbers of the metals cause photon starvation, beam

hardening, and scatter, which produce severe dark and bright streak artifact in reconstructed

CT images [1, 2], thereby degrading the image quality and diagnostic performance.

Several metal artifact reduction (MAR) algorithms have been proposed. In one of the most

widely known methods called sinogram inpainting, metal trace regions are determined within

the sinogram corrupted by metal objects and replaced with appropriate correction values. Var-

ious methods are used to fill in these metal trace regions, such as simple linear interpolation
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using peripheral values (linear MAR or LMAR) [3] and other techniques based on high-order

[4–6], wavelet [7, 8], and prior knowledge [9, 10]. However, these methods are only effective

for simple structures and may introduce additional artifact owing to the increase in the estima-

tion errors when applied to images containing complex anatomical structures. The normalized

MAR (NMAR) [11] method can reduce estimation errors in metal trace regions using a prior

image, and is usually acquired from the initially corrected images from LMAR. Note that the

prior image is not equivalent to prior knowledge but is obtained from the data itself. Although

normalizing the sinogram by a prior sinogram can reduce the interpolation errors within the

metal trace regions, the performance of the NMAR is affected by the quality of the prior

image. If the original image contains severe residual artifact, the prior image also contains

severe errors that degrade the performance of the NMAR method.

To reduce the metal artifact more effectively, several iterative approaches have been pro-

posed [12–15]. Specifically, various regularization terms such as total variation [12, 13] or qua-

dratic smoothness function [14], have been adapted to handle the ill-posed conditions in

MAR. A material decomposition method using spectral CT and MAR through a penalized

maximum likelihood iterative reconstruction has also been proposed [15]. Compared to the

sinogram inpainting methods, the iterative MAR methods are robust to noise but are still

prone to issues with computation time.

Recently, several deep learning based MARs have been proposed. A simple image domain

approach is to train a convolutional neural network (CNN) to reduce the residual errors in the

NMAR image, where the training data pair is composed of the NMAR image (input) and a ref-

erence image (target) [16]. In [17], input data are composed of 3-channel uncorrected original

image, beam hardening corrected image, and linear MAR images, and the correction perfor-

mance is further improved by fully utilizing information from the 3-channel input data during

network training. In the sinogram domain approach, the CNN is trained to estimate the miss-

ing data in the metal trace regions using two simple hidden layers [18] and conditional genera-

tive adversarial network (cGAN) [19], which are more effective than traditional interpolation

based approaches. A method that utilizes data from both domains is presented in [20], where

the benefits of the CNN in each domain are combined to improve the performance of the

MAR method. Although deep learning based approaches have shown impressive results in

MAR, they require a large amount of data for network training.

In the typical sinogram inpainting method [3–8, 11], the metal is segmented from the

uncorrected image and then forward projected to identify the metal trace region. While

inpainting based methods are effective for MAR, it is assumed that object truncation does not

occur and that all metal objects exist within the field-of-view (FOV). However, when the FOV

is small and multiple metal objects are present outside this FOV (such as in dental CT imag-

ing) or when the metal object is not completely within the FOV (such as bone biopsy needles),

the assumptions of the inpainting based MAR algorithms are violated. When metal objects are

present outside of FOV, the reconstructed image within the FOV cannot be used to locate

them; thus, the metal trace region from the metal outside the FOV can not be identified cor-

rectly. In addition, the truncated projection data still contain the object information outside

the FOV. Thus, the energy level between the forward projection of the prior image acquired

from the truncated corrected image and the truncated projection data are not matched. As a

result, the NMAR method is not effective for such applications.

In our previous work, we proposed a MAR method based on multiple prior images using a

recursive active contour segmentation [21] scheme; however, when data truncation occurs, the

residual artifact of the initial MAR process can cause severe distortions, thus making it difficult

to apply this method. In this work, we propose a new method for MAR in small FOV imaging

with data truncation. The proposed method achieves MAR using a sinogram of the small FOV
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image obtained through forward projection of an uncorrected image with metal artifact that

has only truncation corrections. The proposed method is validated using simulated extended

cardiac-torso (XCAT) data, clinical data, and experimental cylinder phantom data containing

metal implants outside the small FOV. The performance of the proposed method is compared

with those of previous methods (i.e., LMAR and NMAR directly applied to the originally mea-

sured sinogram data). The normalized mean-squared error (NMSE) and structure similarity

(SSIM) parameters were used to quantitatively evaluate and compare these methods.

Methods

Proposed method

In CT imaging, if the scanning area is smaller than the object, truncations occur in the projec-

tion measurements, which cause truncation artifact. These truncated projection measurements

are then reconstructed as a small FOV image. In this case, if the metal objects are present out-

side the small FOV, metal artifacts within the small FOV region cannot be corrected effectively

by the traditional LMAR and NMAR methods. In the proposed method, we first remove the

truncation artifact to reduce the influence of objects outside the small FOV and then reduce

the metal artifact. A small FOV image with only truncation artifact correction is obtained

using the truncation artifact reduction method. After generating a sinogram by forward pro-

jection of this small FOV image, the generated sinogram is processed using sinogram inpaint-

ing based MAR instead of the originally measured uncorrected sinogram. The overall scheme

of the proposed method is depicted in Fig 1, and the details of each step are as follows.

Step 1: Truncation artifact were corrected and the small FOV image was obtained. The origi-

nally measured sinogram has missing information outside the small FOV due to projection

truncation; hence, truncation correction is necessary to reduce the truncation artifact in

small FOV images. To reduce truncation artifact, we used the symmetric mirroring method

[22] which estimates the projection data near the truncated region in the sinogram domain

by assuming that the data outside the small FOV has a similar symmetry to the data inside

the small FOV. After step 1, no other truncations occur in the subsequent processing steps.

To estimate the projection data of the Ns pixels within the truncated region, we symmetri-

cally flip the inner sinogram by Next pixels (conventional CT geometry uses 300 and dental

CT geometry uses 150 pixels in this study) and multiply them with a weighting function (a

cosine function from 0-90˚ in this study). The weighting function for the N-th pixel is cal-

culated as

WeightingfunctionðNÞ ¼

cos
Next � N
Next

�
p

2

� �

N ¼ 0; 1; 2 . . .Next � 1

1 N ¼ Next;Next þ 1; . . .Next þ Ns � 1

cos
N � Ns � Next þ 1

Next
�
p

2

� �

N ¼ Next þ Ns; . . . ; 2Next þ Ns � 1

8
>>>>>>><

>>>>>>>:

ð1Þ

Step 2: The synthesized sinogram was acquired by forward projection of the small FOV image

after the truncation artifact correction. Note that the forward projection in this step was

conducted using a five-times finely sampled the original detector size to reduce discretiza-

tion errors.
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Step 3: The synthesized sinogram in step 2 is used for sinogram inpainting based MAR. In this

study, both LMAR [3] and NMAR [11] are used. For both MAR methods, to find the metal

trace region in the sinogram domain, we segmented the metal from a small FOV recon-

struction image using a simple thresholding and then performed a forward projection to

find the metal sinogram. Then, LMAR was conducted within the metal trace region. The

image used in NMAR is generated using LMAR result. Using simple thresholding, the bone

pixels are used as is, while the soft tissue pixels are filled with a single value that is equal to

the average value of the soft tissue that is not effected by metal artifact. The prior sinogram

is generated by forward projection of a prior image. The synthesized sinogram from the

small FOV image is normalized by dividing with the prior sinogram. The normalized sino-

gram is interpolated and then denormalized by the prior sinogram. All interpolations used

in this study were linear in the radial direction. The actual code of the proposed method is

available in S1 File.

Fig 1. Diagram of the proposed method. The proposed method consists of three steps. Step 1 shows truncation artifact correction. Step 2 shows small

FOV sinogram synthesizing. Step 3 shows sinogram inpainting based MAR method.

https://doi.org/10.1371/journal.pone.0227656.g001
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XCAT data

To validate the proposed method, the human head, shoulders, and hips were simulated using

the XCAT phantom images developed by Segars [23]. A metal implant was created as a binary

image by setting the position and shape similar to where the actual metal implant would be

present in the human body, after which the metal image was inserted into the original XCAT

image. Fig 2 shows the phantom and first reconstruction results.

In the simulations, the projection data were acquired using a polychromatic energy spec-

trum:

I ¼ I0
R
OðEÞ exp ð�

R
mE;SdSÞdE; ð2Þ

where I represents the transmitted intensity, I0 is the incident intensity of the polychromatic

energy, μE,S represents the linear attenuation coefficient of the object for each energy, and O

(E) denotes the incident X-ray spectrum for each energy. The polychromatic projection data

were acquired with a 120 kVp tube voltage using the Siemens X-ray spectrum [24]. Tungsten

Fig 2. Representative images of the XCAT data. Each row corresponds to a different part of the body. Each column represents the original XCAT

image, metal implant, reconstructed image, and reconstructed image with truncation artifact correction. The red circles in the images represent the

small FOV for each case. Display window width/window level = 2000 HU/0 HU.

https://doi.org/10.1371/journal.pone.0227656.g002
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was used as the X-ray shooting anode material and note that an additional beam filter such as

a bow tie filter was not used. A detailed plot of X-ray spectrum is shown in Fig 3. In the XCAT

simulations, water, bone, and metal are the main components of the object; thus Eq 2 can be

expressed as

I ¼ I0
R
OðEÞ exp ð� mw;Edw � mb;Edb � mm;EdmÞdE; ð3Þ

where, μw,E, μb,E, and μm,E are the attenuation coefficients of water, bone, and metal, respec-

tively, at the specific energy band E and were obtained from the NIST X-ray attenuation data-

base [25] and dw, db, and dm are the path lengths of water, bone, and metal, respectively. In this

study, we used gold as the metal. The transmitted intensity then follows the Poisson distribu-

tion:

y � PoissonfI þ rg; ð4Þ

where r is the mean number of the background events and readout noise variance [26–28].

Thus, the noisy polychromatic projection p is expressed as

p ¼ � ln
y
I0

� �

: ð5Þ

To simulate a polychromatic projection, it is necessary to know the composition of the

materials in each pixel; hence, the XCAT phantom image was divided into individual images

according to the material types. First, the inserted metal artifact was excluded by simple thresh-

olding, and the XCAT data were divided into bone and soft tissue images using the pixel values

from the remaining images. A simple thresholding step was sufficient to segment the metal,

soft tissue, and bone images since each pixel of the XCAT data did not contain a mixture of

different tissues. The corresponding attenuation values and polychromatic spectra from the

material specific images were then applied to obtain the polychromatic projections.

Fig 3. Siemens X-ray spectrum at 120 kVp.

https://doi.org/10.1371/journal.pone.0227656.g003
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Forward projection and reconstruction were performed using the TIGRE: Matlab-GPU

Toolbox [29]. The detailed parameters for XCAT and the subsequent simulations are summa-

rized in Table 1. Two different fan-beam CT geometries were used to confirm the feasibility of

the algorithm for both conventional and dental CT systems. The reconstructed image size was

512 x 512 pixels, and the truncations occurred with the corresponding geometries. The diame-

ter for the small FOV was the same as that of the reconstructed image. Each detector cell was

expected to receive 105 photons in the case of blank scan and each measurement followed the

Poisson distribution. In the polychromatic projection generation, we used 12 source energies

in the range of 10-120keV with a step size of 10keV. To verify the effectiveness of the algorithm,

the initial object was cropped to fit the small FOV size to prevent truncation errors, after which

the reference image was reconstructed from the generated polychromatic projection data.

Clinical data

A simulation study was conducted using clinical data to evaluate the performance of the pro-

posed method. We used reconstructed image data from the “2016 Low-dose CT Grand Chal-

lenge” dataset [30] and the cancer imaging archive [31]. Abdomen, shoulder, hip, and head

images were selected as the former three had geometries similar to a general conventional CT

scan (Fig 4) and the head image had a geometry similar to a dental CT scan (Table 1). Metal

implants were inserted into the clinical reconstruction images to generate metal artifact. By

following the same procedure to generate the polychromatic projection data as in the XCAT

simulations, we created binary images of the metal implants similar to those in a real human

body and replaced the corresponding parts in the clinical data. The metal artifact inserted

images were reconstructed using the generated polychromatic projection data, and the pro-

posed algorithm was applied to reduce the metal artifact.

Unlike the XCAT data, the clinical images are not classified precisely by pixel values for

each material in the target. Therefore, to generate the polychromatic projections, the pixel val-

ues were provided as those for a mixture of materials by considering the ratio of the each com-

ponents. After excluding metal area, the soft tissue is identified when the ith pixel value ii is less

than threshold T1(i.e., 80 HU), the bone is identified when it was larger than the threshold T2

(i.e., 660 HU), and when the value of the pixel was between T1 and T2, it was identified as the

mixture of water and bone; the mixture ratio is obtained using a soft threshold based weighting

method [32]:

wðxiÞ ¼

0 xi <¼ T1

1 xi >¼ T2

xi � T1

T2 � T1

T1 < xi < T2

8
>>><

>>>:

; ð6Þ

Table 1. Parameters for data acquisition and reconstruction for both the simulations and the experiments.

Parameters Conventional CT Geometry Dental CT Geometry

Source to iso-center distance 700 mm 500 mm

Detector to iso-center distance 500 mm 200 mm

Number of views 720 view 720 view

Detector cell size 0.388 × 0.388 mm2 0.388 × 0.388 mm2

Detector number 1024 512

Reconstructed image size 358.4 × 358.4 mm2 143.36 × 143.36 mm2

Reconstructed matrix size 512 × 512 512 × 512

Reconstructed pixel size 0.7 × 0.7 mm2 0.28 × 0.28 mm2

https://doi.org/10.1371/journal.pone.0227656.t001
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where w(xi) is the ith pixel weighting. Hence, the ith pixel components of bone and water (xib
and xiw, respectively) are expressed as

xib ¼ wðxiÞxi; ð7Þ

xiw ¼ ð1 � wðxiÞÞxi: ð8Þ

For the bone, water, and metal images, the attenuation coefficient for each energy band was

applied according to the spectrum at 120 kVp. We used the same method to generate the poly-

chromatic projections as that described in the previous section for the XCAT data. To compare

Fig 4. Representative images of the clinical data. Each row corresponds to a different part of the body. Each column represents the

original clinical image, metal implant, reconstructed image, and reconstructed image with truncation artifact correction. The red

circles in the images represent the small FOV for each case. Display window width/window level = 2000 HU/0 HU.

https://doi.org/10.1371/journal.pone.0227656.g004
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the performance of the algorithm for the clinical data, a reference image was created using the

same procedure as that for generating the reference XCAT data.

Experiments

For the experimental data acquisition, we used the benchtop system as shown in Fig 5(a). The

geometry parameters for the benchtop system were identical to those of the conventional CT

geometry in the XCAT and clinical data (Table 1). We conducted the experiments using a disk

phantom of 25 cm in diameter with 32 cylinders of 5 mm diameter inserted along its perimeter

(Fig 5(b)). To examine the robustness of the proposed method, we examined three cases where

the number of metal objects outside the small FOV increased from one to three. Note that the

disk phantom contained three metal objects inside the small FOV.

We obtained the projection data using the benchtop CT system comprising of a generator

(Indico 100, CPI Communication and Medical Products Division, Georgetown Ontario, Can-

ada), a tungsten target X-ray source with a 0.6 × 0.6 mm2 focal spot (Varian G-1592, Varian X-

ray Products, Salt Lake City, UT), and a 300 × 400 mm2 flat panel detector (PaxScan 4030CB,

Varian Medical Systems, Salt Lake City, UT). The projection data for the disk phantom were

obtained at 90 kVp and 6 mA and Feldkamp-Davis-Kress reconstruction was performed on

512 × 512 matrices with a pixel size of 0.7 × 0.7 mm2.

Image quality evaluation

The NMSE and SSIM [33] were used to quantitatively evaluate and compare the image quali-

ties of the previous and proposed methods. The NMSE represents the difference in value

between the two images, and the SSIM indicates how similar the structures of the two images

are. The NMSE is defined as

NMSE ¼
1

N

XN

k¼1

ðf ðkÞ � fref ðkÞÞ
2

f ðkÞ fref ðkÞ
;

ð9Þ

f ðkÞ ¼
1

N

XN

k¼1

f ðkÞ and fref ðkÞ ¼
1

N

XN

k¼1

fref ðkÞ; ð10Þ

where f(k) and fref(k) represent the intensities of the target and reference images at pixel

Fig 5. Experimental setup. (a) Experimental benchtop system and (b) semi-top view of the disk phantom.

https://doi.org/10.1371/journal.pone.0227656.g005
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location k, respectively; N is the number of image pixels; and f ðkÞ and fref ðkÞ denote the aver-

age intensities of the target and reference images, respectively.

The SSIM is defined as

SSIMðA;BÞ ¼
ð2mAmB þ C1Þð2sAB þ C2Þ

ðmA
2 þ mB

2 þ C1ÞðsA
2 þ sB

2 þ C2Þ
; ð11Þ

where μA, σA, μB, and σB represent the average intensities and standard deviations of image A
and B, respectively; σAB is the covariance between the images; and C1 and C2 denote the coeffi-

cients for the SSIM calculations and range from 0 to 1. The NMSE and SSIM were calculated

between the reference image and the corrected MAR images.

Results

XCAT data results

Fig 6 shows the results of the previous and proposed LMAR and NMAR methods from XCAT

data. Each row corresponds to the head, shoulder, and hip region. The leftmost column shows

the reference image for each case, which is an image obtained by creating an object without

truncation and the metal. In each reference image, the yellow area represents the metal object

region, and the red box represents the area where the NMSE and SSIM are measured for

image quality evaluation. The resulting images show that both MAR methods can reduce the

metal artifact. However, as indicated by the red arrows, the proposed method provided supe-

rior performance for both LMAR and NMAR compared to the previous method. The metal

artifact produced by the metals inside the small FOV were effectively reduced by both the pre-

vious and proposed methods, as shown in the head image. However, the previous LMAR and

Fig 6. Results using XCAT data. Each row corresponds to a different part of the body. Each column represents the reference image, uncorrected metal

artifact image (corrected for only truncation artifact), and LMAR and NMAR result images using the previous and proposed methods. Display window

width/window level = 2000 HU/0 HU.

https://doi.org/10.1371/journal.pone.0227656.g006
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NMAR methods were not effective at removing the artifact produced by the external metal

objects, although the proposed method is still effective for reducing them. It can also be seen

that the NMAR reduced metal artifact more effectively than the LMAR, as indicated by the

green arrows in Fig 6.

Fig 7 shows the sinogram used for the XCAT shoulder images and projection data in the

189th view, along with the resulting sinograms from the previous and proposed LMAR and

NMAR methods. In the central profile graph, the blue line is the value of each resulting sino-

gram, and the red line is the value of the reference sinogram. The gray shaded region of the

plot indicates the metal trace region where interpolation was conducted. It is clear that the pro-

posed method estimated the reference sinogram better than the previous method as the former

uses the sinogram created through forward projection of the small FOV in Fig 7(b) instead of

the originally measured sinogram. Thus, the value outside the metal trace region matches well

with that in the reference sinogram. In particular, it can be observed that with the previous

method, the sinogram was corrupted by the external metal trace during interpolation, and this

was effectively prevented in the proposed method. In addition, the previous NMAR method

amplified the estimation error within the metal trace region when the area corrupted by the

metal object outside the small FOV was normalized and denormalized; this adversely affected

the performance of the previous LMAR method compared to that of the proposed one.

Fig 7. Sinograms and central profiles (189th view) of the XCAT shoulder results. (a) Originally measured uncorrected sinogram, (b) small FOV

based sinogram, (c,e) sinograms with the previous LMAR and NMAR methods, and (d,f) sinograms with the proposed LMAR and NMAR methods.

The red dotted lines in the sinogram images represent the central profiles at the 189th view, and the gray shading in the central profiles represent the

metal trace regions. The blue lines in the plots represent the sinogram values at the 189th view, and the red lines represent the reference sinogram values

at the 189th view.

https://doi.org/10.1371/journal.pone.0227656.g007
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Table 2 summarizes the NMSE and SSIM values for LMAR and NMAR for the previous

and proposed methods. The region of interest (ROI) in the reference images of the head,

shoulder, and hip were used in the comparison. The NMSE and SSIM values show that the

proposed method performs better than the previous method. In addition, the NMAR performs

better than the LMAR for the proposed method.

Clinical data results

Fig 8 presents the result images after applying the previous and proposed LMAR and NMAR

methods to the clinical data of the abdomen, shoulder, hip, and head. The leftmost column is

the reference image for each case, and the area of the metal object is marked in yellow. The red

box shows the ROI for quantitative comparisons of the image quality. The next two images

show the LMAR results obtained using the previous method (left) and proposed method

(right). The last two images are the NMAR results for the previous method (left) and proposed

method (right). The results show that all methods reduced the metal artifact compared to the

uncorrected metal artifact images. However, as indicated by the red arrows, the residual arti-

fact effectively removed by the proposed method still remain after applying the previous

method.

Table 3 summarizes the NMSE and SSIM values for the clinical data for the abdomen,

shoulder, and head. The results indicate that the proposed method performs better than the

previous method for all cases.

To validate the proposed method for various clinical data, additional simulations were per-

formed using clinical data, as given in the Supporting Information. These additional simula-

tions were performed on the leg, pelvis, abdomen, lung, spine, shoulder, brain, and orbit

regions. The reference and metal inserted images for these simulations are available in S1 Fig,

the results of applying the proposed method are given in S2 Fig, and the NMSE and SSIM

results are presented in S1 Table.

Experimental results

Fig 9 shows the original disk phantom, where the number of metals inside the small FOV was

fixed as three and number of metals outside the small FOV increased from one to three. The

MAR results in Fig 10 are observed to be better than those of the uncorrected images in all

cases. However, as indicated by the red arrows, dark streak artifact still remains in the MAR

images obtained with the previous method. Moreover, the image distortions became more

severe as the number of metal objects outside the small FOV increased. On the other hand, as

indicated by the red arrows, the metal artifact were effectively reduced in the MAR images

obtained with the proposed method. Although the previous MAR method reduced the streaks

caused by the metal artifact inside the small FOV, these residual streak artifact still remained

Table 2. NMSE and SSIM results with XCAT images.

NMSE SSIM

Previous Proposed Previous Proposed

ROI 1 LMAR 0.0458 0.0380 0.8606 0.8763

NMAR 0.0602 0.0326 0.8313 0.8810

ROI 2 LMAR 0.0885 0.0432 0.6294 0.7222

NMAR 0.1961 0.0348 0.6043 0.7436

ROI 3 LMAR 0.2191 0.0325 0.7160 0.8365

NMAR 1.3586 0.0317 0.5980 0.8373

https://doi.org/10.1371/journal.pone.0227656.t002
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because the artifact produced by the metal objects outside the small FOV were difficult to

remove. However, with the proposed method, the small FOV based sinogram mitigated the

effects of the external metal trajectories, thereby reducing the residual metal artifact more

effectively. It is also observed that the NMAR was more effective at recovering the boundary

of the cylinder phantom than the LMAR, as indicated by the green arrows in Fig 10. The

Table 3. NMSE and SSIM results with clinical images.

NMSE SSIM

Previous Proposed Previous Proposed

ROI 1 LMAR 0.0815 0.0339 0.8413 0.9090

NMAR 0.1128 0.0286 0.8304 0.9162

ROI 2 LMAR 0.1904 0.1632 0.7279 0.7975

NMAR 0.3824 0.1504 0.6335 0.7986

ROI 3 LMAR 0.0597 0.0350 0.8800 0.9298

NMAR 0.1517 0.0298 0.7423 0.9407

ROI 4 LMAR 0.0479 0.0442 0.9040 0.9154

NMAR 0.0459 0.0339 0.8981 0.9155

https://doi.org/10.1371/journal.pone.0227656.t003

Fig 8. Results using clinical data. Each row corresponds to a different part of the body. Each column represents the reference image, uncorrected metal

artifact image (corrected only truncation artifact), and LMAR and NMAR result images using the previous and proposed methods. Display window

width/window level = 2000 HU/0 HU.

https://doi.org/10.1371/journal.pone.0227656.g008
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quantitative assessments via NMSE and SSIM, given in Table 4, confirmed our observations.

The reference and result image data of the XCAT data, clinical data, and experiments are avail-

able in S1 Dataset.

Discussion and conclusion

Using precise values between the metal trace regions is critical for sinogram inpainting based

MAR methods to estimate the missing data in this region. However, when metal objects are

present outside the small FOV, the neighboring values of the interpolated metal traces are cor-

rupted, which introduce more interpolation errors and result in residual artifact after MAR.

Furthermore, when using a sinogram inpainting method with a prior sinogram, like the

NMAR, for small FOV imaging, the level of the originally measured sinogram does not match

the inside of the small FOV image, which can introduce additional artifact after MAR. In the

proposed method, synthesized projection data are acquired by truncation corrected small

FOV images, which are then used instead of the originally measured sinograms; this minimizes

the effects of the metal objects present outside the small FOV during the inpainting procedure.

We validated the proposed algorithm for various clinical data.However, owing to limited

access to real clinical data, we could not include the results from real clinical data with metal

inserts. Instead, we validated the proposed method using clinical images artificially by insert-

ing the effects of such metals [17, 34, 35]. In the experiment section, real data obtained from

scanning metal inserted phantom was used to validate the proposed method.

In this study, only the LMAR and NMAR were used to evaluate the results. Since the pro-

posed method uses a small FOV based sinogram instead of the originally measured one, it can

be applied to other sinogram inpainting methods, such as the metal deletion technique [36]

and total variation based MAR [12, 13]. In addition, the proposed method proceeds by forward

projection of the first reconstructed image rather than the originally measured sinogram,

which means that it starts from the image domain; thus, the originally measured sinogram is

not needed. Therefore, given the data acquisition geometry, the proposed method can be used

to reduce metal artifact in CT images.

In conclusion, we propose a small FOV based MAR method that considers the effects of

data truncation. The proposed method proceeds via forward projection of only truncation

Fig 9. Experimental data. Reference image and uncorrected metal artifact images (corrected for only truncation artifact) using the disk phantom

experimental data. The red box represents the ROI which the NMSE and SSIM were computed. Display window width/window level = 3000 HU/-500

HU.

https://doi.org/10.1371/journal.pone.0227656.g009
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corrected small FOV images instead of the original sinograms for MAR. The results confirm

that LMAR and NMAR with the proposed method can reduce artifact generated by metal

objects, which are located both inside and outside the small FOV, that cannot be removed

effectively by the previous methods.

Fig 10. Results using disk phantom experimental data. Each row corresponds to the number of metal objects outside the small FOV. Each column

represents the LMAR and NMAR result images using the previous and proposed methods. Display window width/window level = 2500 HU/-750 HU.

https://doi.org/10.1371/journal.pone.0227656.g010

Table 4. NMSE and SSIM results with experimental images.

NMSE SSIM

Previous Proposed Previous Proposed

1 Metal LMAR 0.2031 0.1767 0.8142 0.8338

NMAR 0.1604 0.1304 0.8184 0.8442

2 Metals LMAR 0.2447 0.1997 0.7388 0.7754

NMAR 0.2099 0.1653 0.7397 0.7819

3 Metals LMAR 0.2702 0.2062 0.7048 0.7554

NMAR 0.2357 0.1703 0.7089 0.7612

https://doi.org/10.1371/journal.pone.0227656.t004
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Supporting information

S1 File. Actual code of proposed method. Actual code includes main code, truncation reduc-

tion function, LMAR, and NMAR function code.

(ZIP)

S1 Fig. Supplementary simulation reference image. Representative images of additional sim-

ulations. Original clinical and metal implant images. Display window width/window

level = 2500HU/250HU.

(TIF)

S2 Fig. Supplementary simulation results image. Results with additional clinical data simula-

tion. Red boxes are the ROI of each case. Display window width/window level = 2500HU/

250HU.

(TIF)

S1 Table. Supplementary table for NMSE and SSIM experiments. Quantitative evaluations

of the additional clinical data simulations. NMSE and SSIM for each ROI.

(DOCX)

S1 Dataset. Reference images and result images for the data used in the study.

(ZIP)
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