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A fundamental challenge of modern infectious disease epidemiology is to quantify the networks
of social and physical contacts through which transmission can occur. Understanding the
collective properties of these interactions is critical for both accurate prediction of the spread
of infection and determining optimal control measures. However, even the basic properties of
such networks are poorly quantified, forcing predictions to be made based on strong assump-
tions concerning network structure. Here, we report on the results of a large-scale survey of
social encounters mainly conducted in Great Britain. First, we characterize the distribution
of contacts, which possesses a lognormal body and a power-law tail with an exponent of
22.45; we provide a plausible mechanistic model that captures this form. Analysis of the
high level of local clustering of contacts reveals additional structure within the network, imply-
ing that social contacts are degree assortative. Finally, we describe the epidemiological
implications of this local network structure: these contradict the usual predictions from net-
works with heavy-tailed degree distributions and contain public-health messages about
control. Our findings help us to determine the types of realistic network structure that
should be assumed in future population level studies of infection transmission, leading to
better interpretations of epidemiological data and more appropriate policy decisions.
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1. INTRODUCTION

The study of the spread of directly transmitted infec-
tions is intimately linked to the science of networks.
For a given disease, potential routes of transmission
between individuals form edges of a network that,
when combined, can connect entire populations [1–3].
The pervasive and highly connected nature of these net-
works is illustrated by the rapid progression around the
world of both SARS and H1N1 pandemic influenza
[4,5]. For many infectious diseases, potential trans-
mission opportunities occur whenever two people are
in close social contact; therefore the transmission net-
work is a suitably scaled version of the social contact
network. A full dynamic quantification of this social
contact network for an entire population would be a
powerful tool, allowing an accurate prediction of real-
time disease spread. Such a goal is, however, practically
unachievable; yet even a partial understanding of the
general structure of a transmission network can yield
a wealth of valuable insights. Statistical characteriz-
ations of networks such as scale-free, small-world or
locally clustered are all known to be associated with
particular patterns of disease spread and alternative
orrespondence (m.j.keeling@warwick.ac.uk).
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mechanisms of optimal control [6–8]. Quantifying
potential transmission routes and the complex structure
of the associated network is therefore a major challenge
for infectious disease epidemiology, with benefits for
public health.

For respiratory and close contact infections (such as
influenza, measles or meningitis), previous studies have
attempted to quantify appropriate social encounters
through questionnaires [9,10]. The use of such data
has highlighted the potential of social contact networks
to better describe the routes of transmission [2,11,12]
and provide insights into the effects of shifting social
interaction patterns on disease incidence [13]. However,
until now, large-scale questionnaire-based surveys have
not sought to capture either extreme behaviour, or local
network structure. Electronic proximity sensors have
the capability to provide such information [14,15],
but are limited to recording interactions between
individuals participating in the study, restricting their
ability to identify individuals with many contacts and
providing only a partial picture of the local network.

Social interactions are also pivotal in spreading ideas
and influencing individual behaviour. This has been
observed in several health-related contexts: both smok-
ing and obesity, among others, are strongly correlated
with the behaviour of close contacts [16,17]; awareness
of epidemic threat propagating through the social
This journal is q 2012 The Royal Society
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Figure 1. Capturing individual contact heterogeneity. (a) Examples of ego-centric networks collected by the survey. From left to
right: school pupil, female aged 12 years; flight attendant, female 22; fire fighter, male 44; retired, male 62. The participant (ego)
is the orange central triangle; circles represent individual contacts, and squares represent groups of contacts (size of group indi-
cated). Colours represent social settings of encounters (red, home; blue, work/school; yellow, travel; green, other). Larger symbol
sizes represent longer contact durations, while a closer proximity to the ego indicates the contact is more frequently encountered.
(b) The distribution of contacts (node degree) from the survey with no group information included (red squares) and with groups
included (black circles). (c) The distribution of the number of contacts (node degree) from the survey (open circles), compared
with our model of daily contacts (red line; see electronic supplementary material), and a guide to the eye line following a power-
law decay with exponent of 22.45. Confidence intervals of the distribution are determined by bootstrapping (open circles, with
groups; red line with dots, model; blue dashed line, dPlN fit; dashed-dotted line, slope ¼22.4).
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network can reduce the speed and extent of the disease
[18]; the local structure of the social network has
additional influence on the adoption of healthy behaviour,
with messages reinforced through tight knit, clustered
networks amplifying the spread of behaviour [19]. Our
understanding of social dynamics would therefore benefit
from a more detailed quantitative understanding of
social network structures.

To address these gaps in our knowledge, we con-
ducted a cross-sectional survey of the population
within Great Britain (GB), with the aim of characteriz-
ing all close contacts. Surveys were sent to 140 000
randomly selected households in GB with information
from additional participants being collected through
an online version of the questionnaire that was open
to anyone regardless of their nationality or location
(see electronic supplementary material for more
details). Participants were requested to volunteer their
basic demographic data as well as all their social con-
tacts for a single day (cf. [9,10]). Participants were
asked to note down each face-to-face conversation
(within 3 m/10 feet) during the course of a day. This
included encounters with physical contact and expli-
citly excluded virtual interactions. Each contact could
J. R. Soc. Interface (2012)
either refer to a single individual, or a group of individ-
uals all met at the same time (e.g. a dinner party of
eight people) or to a number of individuals that were
all met separately but in a similar context (e.g. serving
several different customers). In addition, information
was sought on the intimacy, context, location, duration
and frequency of each encounter. Local structure of the
contact network surrounding each participant was cap-
tured by asking which contacts were likely to have
encountered each other on the day in question or
during the previous 7 days. The postal survey was
complemented with an online version, which allowed
us to access a wider cross section of the population
and to continue collecting information. Figure 1a
shows four examples of local networks captured by
our surveys. An example of the postal questionnaire
is shown in the electronic supplementary material,
figure S1, and the online version can be found at
www.contact survey.org. By October 2010, we had col-
lected information on 5388 individuals or egos (5027 of
whom were located in GB) and 145 329 secondary con-
tacts, which forms the basis of this study. Further
details on the survey respondents are reported in the
electronic supplementary material.

http://www.contactsurvey.org
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2. DATA, NOTATION AND PROCESSING

To enable us to be more explicit in our calculation of
various quantities of interest, we first define some nota-
tion to quantify the answers of each respondent. For a
given respondent i in our survey, we can enumerate all
of their contacts c ¼ 1, . . ., ki, where ki is the degree of
respondent i. In the questionnaire, we allowed individuals
to report ‘groups’ of individuals that were met in similar
contexts; to simplify the later formulations such groups
are inflated into constituent individuals, so that if a
respondent reports contact with a group of five people it
is replaced by five individual contacts. We further define
that the first Ki contacts are associated with individual
contacts, while the remaining ki – Ki contacts are derived
from groups. Each contact (c of an individual i) has an
associated context C c

i (which could be home, work/
school, travel and other), distance from home Dc

i where
the contact occurred, frequency of meeting Fc

i , and dur-
ation T c

i . In addition, our survey collects information on
transitive connections between contacts, asking whether
two contacts had met in the past week; Wc,d

i is defined
to be one if such a connection exists between contacts c
and d of individual i, or zero otherwise.

Two modifications are required to these raw data to
allow a simple analysis of the patterns and trends. First,
the total duration of contact, T c

i , is reported as lying
within one of four discrete intervals (less than 10 min,
between 10 and 30 min, between 30 min and an hour, or
over 1 h). To allow a single-point value to be calculated
for many quantities of interest, these intervals (Tc

i) for
each contact are translated into random variables, tc

i,
chosen from a stretched exponential distribution that
fits the aggregate data (see electronic supplementary
material for details). All confidence intervals in this paper
incorporate the uncertainty arising from picking these
random variables.

The second modification concerns the time-scale differ-
ences between contacts, which are recorded for a single
day, and connections between contacts (W c,d

i ), which
are based on one week. To consider these measures on
an equal footing, we inflate the contacts to form a week-
long network by including multiple copies of contacts
(see electronic supplementary material). This process pro-
duces a new set of contacts (̂c of which there are k̂i),
transitive links (Ŵ

i
ĉ;d̂) and contact durations (T̂

i
ĉ ). This

inflation assumes that all days are similar, such that for
a contact that is encountered for the first time that day,
we would expect seven such contacts to occur in a week,
whereas a contact that is encountered most days will be
present for most of the week. Any daily snap-shot of this
inflated network returns the original sample. This
inflation makes a minimal assumption about transitive
links and does not introduce links between contacts met
on different days; therefore, calculated levels of clustering
are likely to be consistent underestimates of actual values.
Again, all results given in the paper include the confidence
intervals associated with this inflation process.
3. DEGREE DISTRIBUTION

The most fundamental characterization of a person’s
immediate social network is the total number of social
J. R. Soc. Interface (2012)
contacts or the individual’s degree; this is the key to
assessing both their risk of infection and their potential
for onward transmission [20]. Hence, population-level
distributions of this degree are crucial to understanding
the dynamics of epidemics, with theoretical studies show-
ing that heavy-tailed distributions lead to qualitatively
different disease dynamics.

In particular, scale-free degree distributions that
generate an infinite variance in the infinite population
limit can give rise to disease dynamics with no epide-
mic threshold but where targeting control at a small
proportion of highly connected individuals is very
effective at reducing transmission [7,8].

Such distributions have been observed in electronic
proxies for social contacts [14,21], have emerged in syn-
thetic populations [22], and have been inferred for
sexual contacts [23] (although these are difficult to
confirm statistically due to the lack of samples of suffi-
cient size [24]), but have not previously been directly
recorded for social interactions.

Previous surveys of social contacts have generally lim-
ited the number of contacts that are recorded in detail,
simply due to logistical constraints [9,10], which places
an artificial bound on the contact distribution. By allow-
ing respondents the flexibility to report groups of
individuals as well as contacts with single individuals,
our questionnaire has alleviated the burden of reporting
large numbers of contacts. Figure 1b shows the reported
distribution of individual-only contact (ignoring groups
and showing the distribution of Ki) compared with
the full distribution when group data are included (dis-
tribution of ki). There is a clear censoring issue for
individual-only contacts, with a notable peak at K ¼ 20
the maximum number of individual contacts that could
be reported on the paper questionnaire.

In addition, the two measurements, ki and Ki, yield
qualitatively different forms for the distribution of con-
tacts. When groups are ignored, the degree distribution
is well modelled by a negative binomial distribution
(with r ¼ 3.0 and p ¼ 0.26, see electronic supplementary
material, SI4A) as observed in previous studies [10]. How-
ever, when groups are taken into account, the distribution
is found to possess a lognormal body with a power-law tail
with an exponent of 22.45+0.2 for numbers of contacts
K above 28. Such a distribution is poorly fitted by stan-
dard forms (see electronic supplementary material, figure
S6B), and we must adopt alternative approaches to cap-
ture this distribution. The first approach is statistical
and involves fitting a more complex functional form to
the data. The double Pareto lognormal distribution
(dPlN, blue dashed line in figure 1c) allows for both a log-
normal body and the power-law tail, and has recently been
proposed to model heavy-tailed distributions associated
with income growth [25] and degree distributions for
mobile phone networks [26]. The fitting procedure
and best-fit of the dPlN distribution are shown in the
electronic supplementary material.

The second approach is to derive a plausible mechanis-
tic model (red line, figure 1c) that captures the
distribution. We assume that individuals make new con-
tacts during the day at a heterogeneous rate (r, chosen
from a lognormal distribution), with the contact chosen
through preferential attachment [27] such that highly
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connected individuals are more likely to be contacted. In
particular, we assume that an individual who currently
has n connections is contacted by other people at a rate
proportional to a function f(n). We take f(n)¼ nþ a ,
and so when a¼ 0 we have the preferential attachment
model of Barabási & Albert [27]; but when a becomes
large connections form at random (and for a fixed r

value this generates an Erdös–Rényi network). The
probability density for an individual with contact rate r

having n contacts at time t is given by

d
dt

Pðn; r; tÞ ¼ � rþ n þ a

�nðtÞ þ a
�r

� �
Pðn; r; tÞ

þ rþ n � 1þ a

�nðtÞ þ a
�r

� �
Pðn � 1; r; tÞ;

where theaveragenumberof contacts across thepopulation
�nðtÞ ¼ 2�rt. The distribution of contacts that is of interest
is the distribution at the end of the day (t¼ 1 as we are
interested in all contacts made in a given day), i.e. the pro-
portion of individuals with n links is

Ð1

0 Pðn; r; 1Þdr. This
model captures the shape of the distribution well and pro-
vides an intuitive, plausible mechanism for the creation of
real social encounters during a single day. We find that
assuming that thedistributionof contact rates (r) is lognor-
mal produced a good fit to the distribution of contacts
(ki) when a � 1:26 and �r2 � 2787. Hence, the best-fit
distribution of contact rates is highly overdispersed
ð�r � 13:48Þ; and the model requires a relatively
strong degree of preferential attachment (the electronic
supplementary material provides more details).
4. LOCAL STRUCTURE

We now focus on a second novel aspect of our survey,
the transitive (triangle forming) links between contacts,
that determines the clustering within the local ego-
centric networks. The simplest measure would be to
calculate, for each individual, the proportion of pairs
of contacts that are connected by a transitive link:

fi
simple ¼

P
c;d W i

c;d

½kiðki � 1Þ� :

Although we report such values, there is a potential bias
in this calculation: the contacts are from a single day,
whereas transitive links are reported for an entire week.
To equalize these measures, we inflate the contacts to
form a one-week network by including multiple copies
of contact types (see the electronic supplementary
material). Using the associated weekly measures, we
can calculate an unweighted measure of clustering that
captures the topology of the local network:

fi
unweighted ¼

P
ĉ;d̂ Ŵ

i
ĉ;d̂

½k̂iðk̂i �1Þ�
;

and a weighted measure of clustering that accounts for
the time spent with each contact:

fi
weighted ¼

P
ĉ; d̂ t̂

i
ĉ t̂

i
d̂ Ŵ

i
ĉ;d̂P

ĉ=d̂ t̂
i
ĉ t̂

i
d̂

:
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In general, clustering is high with means of around 0.38,
0.07 and 0.11 for simple, unweighted and weighted
measures, respectively.

However, more important than the mean values is
the relationship between clustering and degree (k̂i).
For networks where links between individuals are
formed by a homogeneous process that connects free
half-links (for example, in the configuration model [28]
or the recently proposed generalization [29]), theoretical
considerations predict that the unweighted (topologi-
cal) clustering must scale like 1/(k – 1). The intuition
behind this argument is relatively straightforward: if a
highly connected individual has high clustering, then
each of its contacts must be connected to many of its
other contacts; this means that each contact must also
have high degree, which breaks the random-connection
assumption implicit in the network formation. Our clus-
tering measures show exactly this behaviour. While the
level of clustering declines with increasing degree, the
rate of decline is far slower than the theoretically
expected 1/(k – 1) decline. Therefore, the network of
social connections must be degree-assortative, with
high-degree nodes more likely to connect to other
high-degree nodes than expected at random. Degree
assortativity is epidemiologically very important,
inflating the basic reproductive ratio due to greater-
than-expected transmission within the high-degree,
‘core group’ of the population [20]. (Some estimation
of the strength of this assortativity is given in the
electronic supplementary material.)

We now wish to understand the underlying mechan-
ism that drives this high degree of clustering within the
network. In the literature, two commonly used mechan-
isms for generating clustered networks are membership
of different cliques [30] or spatially localized contact for-
mation [31]. We investigate these by considering the
transitive matrix (often named confusion matrix); this
measures the proportion of times a transitive link is pre-
sent between two contacts that are either made in
specified contexts or at specified distances from home.
For two contexts A and B, the transitive matrix is
defined as

uA;B ¼
P

i

P
Ci

c¼A

P
Ci

d¼B ti
ct

i
dW

i
c;dP

i

P
Ci

c¼A

P
Ci

d=c¼B ti
ct

i
d
;

where the sum is performed over all c and d where the
information on transitive links is available. Here, we
are using a weighted measure based on the time spent
with each contact, which we feel is more biologically
motivated; a similar formulation holds for the transitive
matrix based on distance from home (see the electronic
supplementary material for more details).

Our results do not conform to the predictions of
either clique or spatial models. Although transitivity
is highest between contacts in similar social contexts,
significant transitivity between contexts is also
observed, which would not be present if contacts are
generated through clique membership alone. We note
that work-related contacts form the most cohesive
group that is isolated from other social contexts
(figure 2b). In addition, transitivity does not decay
with distance as expected if a purely spatial process is
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involved (figure 2c); instead we find the highest cohe-
sion occurs between contacts made over 50 miles from
home, suggesting that when people travel a significant
distance, they are more likely to meet as a highly inter-
connected group. These findings show that the social
processes that generate clustering are complex, driven
by the movement of individuals in space and the
overlapping contexts within which interactions occur.
5. EPIDEMIOLOGICAL IMPLICATIONS

The collection of data on social contacts was motivated
by a desire to better understand the spread of directly
transmitted infections. Although we have shown that
the social encounter network must be scale-free in the
tail, highly clustered and therefore degree-assortative,
there are insufficient data to parametrize and build a
full social network without making some strong assump-
tions about how the recorded ego-networks interconnect.
We therefore assess the epidemiological implications of
individual heterogeneity and the network structure
surrounding each participant by calculating individual
level reproductive ratios (figure 3; cf. [32]). Assuming
that a randomly chosen contact is infected (and the
remainder are susceptible), we can calculate both the
distribution (Ri, figure 3a,b) and the expected number
ð�Ri, figure 3c) of secondary cases generated by the
participant, if they become infected.
J. R. Soc. Interface (2012)
We consider three forms of heterogeneous network:
(i) an unweighted unclustered network, where each
contact is assumed to be present for the mean duration
(�t, approx. 39 min d21) and transitive links are removed
(figure 3, red); (ii) a weighted, unclustered network,
where contact duration is specified for each contact
in the survey (blue); and (iii) a weighted clustered net-
work (green). The number of secondary cases can be
calculated via direct simulation using the following
basic methodology: we form the network around the
respondent and choose a random contact to be infected;
we monitor the ensuing epidemic and record the
number of secondary cases caused by the respondent
if they become infected. Throughout, we assume fixed-
duration latent and infection periods (PL and PI,
respectively) and a fixed transmission rate t across a
contact for the duration of infection. This method of
repeated simulation is currently the only viable
approach when the network is clustered; however
when clustering is ignored (that is we remove the links
between contacts in the local network), then analytic
results can be obtained (see the electronic supplementary
material, §5).

For the weighted clustered network, it is necessary to
simulate the epidemic process and to assign a weight for
the transitive link between contacts. As a relatively
minimal assumption about the role of clustering, we
set the duration of the transitive link between two con-
tacts (if it exists) as the minimum of the duration



10−2 1 102

10−6

10−4

10−2

mean secondary cases (per participant)
fr

eq
ue

nc
y

0 3 10 100

10−4

10−2

1

secondary cases

fr
eq

ue
nc

y

0.4(a)

(b) (c)

secondary cases secondary cases secondary casessecondary cases
5 10 150

0.2
fr

eq
ue

nc
y

50 100 1500

0.1

10 200

0.1

0.2

5 100

0.1

0.2

Figure 3. Epidemiological implications of local network structure: three network models are compared: a simple (unweighted,
unclustered) network (shown in red), a weighted network accounting for duration of contact (green) and a clustered weighted
static network accounting for the full structure around participant (blue). (a) Distributions of the number of secondary cases
(Ri) for the four examples in figure 1a. (b) Distribution of secondary cases across the entire sample of participants (Ri).
(c) Distribution of expected number of secondary cases per participant ( �Ri). We have modelled a short-lived, rapidly trans-
mitted infection, with a latent period of 3 days, an infectious period of 3 days (PL ¼ PI ¼ 72 h), and a transmission rate, t, of
0.1 h2 1 across a network connection.

Social encounter networks L. Danon et al. 2831
associated with the two contacts, as such information
was too complex to collect in our survey.

There are two measures that characterize the trans-
mission of disease: the expected number of secondary
cases that an individual will generate, �Ri, which cap-
tures the between individual variation; and the
distribution of secondary cases, Ri, which is closer to
observations taken of an epidemic and incorporates
the stochastic nature of transmission. Differences
between the network formulations are best captured
by the expected number of secondary cases, �Ri.
In the unweighted, unclustered network, the expected
number of secondary cases �Ri follows a power law
with mean 4.62 and variance 167.75; such high variance
is expected with a power-law tail in accordance with the
power-law network paradigm. For the weighted, un-
clustered network, the tail of the distribution is cur-
tailed such that the mean of the expected number of
secondary cases is substantially reduced to 2.97 with
the variance reduced by an order of magnitude to
8.59. Including the transitive links (the most complete
network formation) does not radically change the
shape of the distribution, but does lead to many more
situations where no subsequent secondary cases are gen-
erated and the mean of the expected number of cases is
further reduced to 1.96 with variance 5.91. In this final
network formulation, the distribution of secondary
cases is well modelled by a negative binomial form
(NB(r,p) where r ¼ 0.86 and p ¼ 0.31), which agrees
with estimates made during epidemics [32]. These
results highlight the role of contact duration and
J. R. Soc. Interface (2012)
clustering in predicting the spread of infection and in
dampening extremes of behaviour.
6. CONCLUSIONS

Here we have reported on results from a postal and online
questionnaire. As with all such surveys, several issues
emerge that could bias our results. The most obvious of
which is that we have to trust that respondents provide
reliable and accurate information; however given that
all information is provided voluntarily with no incentive,
we believe that there are no reasons why respondents
should seek to mislead. Some biases inevitably exist,
such as a propensity for older and more educated individ-
uals to complete the survey, but our qualitative findings
are robust to such biases.

Results from our ego-centric contact data provide
strong insights on the types of structures that are pre-
sent in social contact networks: a moderate to high
level of clustering, degree assortativity and power-law
topology. The reported contact degree of respondents
to our survey was highly over-dispersed with mean
and variance of 26.97 and 5194, respectively, giving a
coefficient of variation of 2.67; in addition, this degree
distribution exhibits a power-law tail with a small pro-
portion of the population having a very high number of
contacts. If we were to extrapolate the tail of the distri-
bution to infinite population sizes, the variance would
diverge (in practice, the tail of the distribution and
therefore the variance are always bounded). Such
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highly heterogeneous degree distributions are generally
associated with high basic reproductive ratios, relatively
small final epidemic sizes and an inability to control
infection by random vaccination [32].

Even though a power-law assumption holds for indivi-
duals with high numbers of contacts, the epidemiological
consequences are also related to the duration of con-
tact, and physical constraints mean that having many
contacts limits the duration that can be spent in close
proximity with each. The action of contact duration
will generally dampen or eliminate the impact of
the associated heavy tail [33], and the distribution
of the mean number of cases can be well fitted by a nega-
tive binomial distribution, thus bridging the gap between
power laws often measured or calculated for degree distri-
butions [14,21,22] and negative binomial distributions
often reported for secondary cases [32]. These results
indicate that models ignoring contact duration will
systematically overestimate both the rates of spread
and the importance of high-frequency, short-duration
contacts [31,34].

Despite the dampening effect of contact duration,
the implications of heterogeneities in contact structure
are still strong: our epidemiological simulations predict
that around 90 per cent of infections originate from the
50 per cent of the population with the highest levels of
transmission, while the heterogeneity in contact dur-
ation means that 90 per cent of transmission is to the
40 per cent of contacts with the longest total durations.
These findings suggest that contact tracing, which is
often implemented during the early stages of novel epi-
demics, could be substantially targeted with certain
types of contact being low priority.

Local clustering patterns within networks are known
to have important consequences for public health,
including contact-tracing-based interventions due to
the multiple routes via which infected people can be
traced [35,36], vaccine uptake patterns [37], the optimal
deployment and critical level of vaccination [38], and
more generally the rate of spread of infection, ideas
and behaviour [19]. Here we measured clustering in
three ways; the most naive measure simply considered
whether two contacts were thought to have met each
other during the past 7 days. While this time scale for
contacts meeting was epidemiologically motivated, the
mixture of a single day for reported contacts against
7 days for transitive links would produce an over-
estimate of clustering compared with standard network
measures. To overcome this issue, we inflated reported
contacts to 7 days (assuming a similar pattern of
social interaction on each day), allowing us to estimate
clustering for the 7-day network. Even though our
approach is likely to produce an underestimate of true
clustering, all estimates are seen to be above the theor-
etical threshold for configuration networks. This means
that the social network must be degree-assortative,
implying that high-degree nodes are more likely to
connect to other high-degree nodes.

In the light of all these findings, policy decisions
based on the predictions of random transmission
models or simple network assumptions should be re-
evaluated. The effects of network structure are known
to change the relationships between early epidemic
J. R. Soc. Interface (2012)
growth rates, final epidemic sizes and peak number of
cases [39] and hence an accurate characterization of
the network is vital if early data are to inform public
health policy. In addition, the heterogeneities detected
in our survey highlight the potential for targeted con-
trol and refined contact tracing during an epidemic. It
remains to be seen how these results translate to other
populations, where cultural, demographic and social
influences may be different from GB, or where extremes
of rural and urban living generate a wider spectrum of
population density.
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