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ABSTRACT

Summary: The identification of good protein structure models and
their appropriate ranking is a crucial problem in structure prediction
and fold recognition. For many alignment methods, rescoring of
alignment-induced models using structural information can improve
the separation of useful and less useful models as compared with
the alignment score. Vorescore, a template-based protein structure
model rescoring system is introduced. The method scores the model
structure against the template used for the modeling using Vorolign.
The method works on models from different alignment methods and
incorporates both knowledge from the prediction method and the
rescoring.
Results: The performance of Vorescore is evaluated in a large-
scale and difficult protein structure prediction context. We use
different threading methods to create models for 410 targets,
in three scenarios: (i) family members are contained in the
template set; (ii) superfamily members (but no family members);
and (iii) only fold members (but no family or superfamily members).
In all cases Vorescore improves significantly (e.g. 40% on both
Gotoh and HHalign at the fold level) on the model quality,
and clearly outperforms the state-of-the-art physics-based model
scoring system Rosetta. Moreover, Vorescore improves on other
successful rescoring approaches such as Pcons and ProQ. In
an additional experiment we add high-quality models based on
structural alignments to the set, which allows Vorescore to improve
the fold recognition rate by another 50%.
Availability: All models of the test set (about 2 million, 44 GB
gzipped) are available upon request.
Contact: csaba@bio.ifi.lmu.de; ralf.zimmer@ifi.lmu.de

1 INTRODUCTION
Protein structure prediction is one of oldest and most investigated
problems in bioinformatics. Many methods have been proposed
and for quite some time systematically assessed in the CASP
experiment (Critical Assessment of techniques for protein Structure
Prediction since 1994). Despite the hardness of the problem,
homology-based methods appeared to be quite successful due to
improved alignment methods and more and more available template
structures. These methods produce target–template alignments and
associated alignment scores. The alignments can be employed to
derive structural models for the target using the 3D coordinates of the
template structure according to the alignment. The alignment score
can be used to rank several candidate templates and the associated
alignments to identify the best suited one.
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A large range of methods have been proposed for both of the two
related but not identical problems: the alignment problem and the
model scoring problem. A consensus on the ultimate method have
not been reached in both cases as can be seen from the results and
discussion in the CASP experiments. Typically, different methods
have their strengths for different targets. Often computing the
correct alignment is the crucial step in homology-based modeling, as
wrong alignments typically cannot be corrected later on during the
modeling. On the other hand, the scoring system of the alignment
methods is far from perfect. In some cases the method can recognize
the best template with high confidence (for this usually a Z-score
or P-value is used). But in the absence of highly similar templates,
e.g. when only templates from the same fold but neither from the
same family nor the same superfamily are available, the scoring is
critical.

Even if the scoring system would be appropriate to identify the
best alignment between the target and a single template this would
not necessarily imply that the score can be used to compare and rank
different alignments to different template structures or the resulting
model structures. On the other hand, in many cases the alignment
between the target and an appropriate template is good enough to
build a good model, but the alignment method ranks this alignment
lower than an alignment with a wrong template. This can be due
to the fact that the alignment scoring is not comparable between
different template structures.

Thus, many approaches have been proposed to rescore the
produced models using more involved scoring functions which
are not and in many cases cannot be directly optimized by the
alignment method. A wide variety of those methods, so-called
model quality assessment programs (or MQAPs), have been used
with good success in the CASP experiments, e.g. as so-called
MQAP metaservers employing some consensus of several MQAPs
(Pawlowski et al., 2008). In principle, the rescoring approaches can
be classified into physics-based systems used for model scoring in
de novo folding approaches such as Rosetta and heuristic scoring
systems using different physico-chemical features and empirically
tuned functions.

In this article, we propose a particularly simple rescoring system
used in the successful structure alignment program Vorolign (Birzele
et al., 2007). Moreover, the Vorpsi and Vorescore methods show
how to employ a structure comparison approach for structure
prediction. Our results demonstrate that conservation in structural
neighborhoods is an important feature for sequence–structure
relationships and a determining factor for protein structures.

2 METHODS
The rescoring method we propose is based on the idea of scoring the
compatibility of a (target) sequence with a proposed model structure derived
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from an alignment of the target sequence with a template. The (re-)scoring
of the model structure is done via comparing the two structures, the native
template structure and the target model structure via a structural alignment
method. We use Vorolign as it has a very high accuracy on the family (∼97%)
and superfamily (∼90%) but in contrast to other methods also on the fold
level (∼80%) (see Birzele et al., 2007 and Section 3.1). Moreover, it is a
very simple method which is targeted at exploiting sequence information in
the context of structural contacts. Therefore, it is well suited for the task
at hand. The rescoring approach shows how to make a successful structure
comparison approach (Vorolign) available for structure prediction (Vorpsi
and Vorescore).

In the following sections, we describe Voronoi contacts and the Vorolign
structure alignment method. Then we discuss the quality measures we need
for computing and assessing structural models (TM-align, TM-score, PPM).
The rescoring method is introduced in two variants: Vorpsi using only a
single Vorolign rescore for each computed model and Vorescore which takes
advantage of additional Vorolign model scores, i.e. Vorpsi scores, computed
for a set of similar templates. Finally, we describe the assessment setup,
which allows to evaluate the performance of the method and its comparison
with other prediction and rescoring methods on different levels of target
difficulty (family, superfamily and fold level).

2.1 Homology-based protein structure prediction and
model assessment

Homology-based protein structure prediction methods rely on an alignment
of the target sequence with a template structure from which model
coordinates are derived according to the alignment.

Here, we use simple pairwise alignment of sequences with a Dayhoff-
like substitution matrix and affine gap costs. Optimal alignments can be
efficiently computed with the Gotoh algorithm (Gotoh, 1982). The Gotoh
algorithm with the Dayhoff matrix (Dayhoff et al., 1978) and gap open costs
of −12 and gap extension costs of −1 computing global alignments is called
GOTOH in the following.

In addition, we use a sensitive alignment method HHalign from the
HHpred toolbox (Söding, 2005) based on the alignment of hidden Markov
models, which was very successful in the latest CASP experiments, with
standard parameters and call it HHALIGN.

For the generation of candidate models we additionally used 123D
(Alexandrov et al., 1996) and profile–profile alignment (PPA) (von Öhsen
and Zimmer, 2001) also with standard parameters given in the papers.

As model quality assessment method we use the Rosetta scoring function
(called ROSETTA) from the Rosetta package (Raman et al., 2009) with
standard parameters, and the ProQ method. For ProQ, we used two versions,
one based on Cα atoms from the Pcons package (Wallner and Elofsson, 2003)
and the standalone method ProQ(combined) = 5*MaxSubProQ + 1*LGProQ,
i.e. the combined version uses a weighted combination (B.Wallner, ProQ,
parameters, personal communication) of the two predicted scores of the
structure comparison methods MaxSub (Siew et al., 2000) and LGA (Local-
Global-Alignment, Zemla et al., 2003), see ProQ web page http://www.sbc.
su.se/bjornw/ProQ/ProQ.html.

2.2 Protein structure comparison and alignment via
Vorolign

Vorolign compares two protein structures and produces a structural alignment
of the two structures and an associated alignment score. The idea behind
Vorolign is very simple: it uses the (sequence) conservation of structural
neighborhoods as a measure for structural similarity of residue positions in
the two structures.

The method works as follows: for any residue in a protein structure, its
structurally contacting residues are computed (structural neighborhoods).
This is done via a Voronoi decomposition of the (typically Cβ) atoms of the
structure (therefore the name Voro-lign), where contacts between residues are
defined by shared faces of the Voronoi tesselation. The similarity of residue

positions in the two structures is measured by aligning the contacts of the
respective positions and by scoring the aligned neighbors via a substitution
matrix (e.g. the Dayhoff matrix). The alignment and the overall similarity of
the two structures is then computed via dynamic programming optimizing
this score over all alignments of structure positions.

Thereby, Vorolign exploits the sequence similarity of the two proteins
but does so in considering the residue contacts in the two structures. The
more similar the structural neighborhoods—both in terms of the number
and the residue similarity of the contacting positions—the higher the score.
Effectively, the two structures determine via their contacts which positions
are contributing (via their sequence similarity) to the Vorolign similarity
score.

Interestingly, this simple and very fast (double dynamic programming)
approach performs very well in recognizing similar protein structures on the
family, superfamily and the fold level. This means that for a query protein,
Vorolign is able to predict the correct (SCOP-) fold via taking the best scoring
fold from pairwise structural alignments of the query with a set of template
structures. The typical fold recognition rates are 97% if family members
of the respective query proteins are available in the template set, 90% if
no family but superfamily members are available and about 80% if only
fold members but not superfamily members are used in the comparison.
With these fold recognition accuracies, Vorolign is among the best structural
alignment approaches. Vorolign with standard parameters (Birzele et al.,
2007) is called VOROLIGN in the following.

As due to its construction VOROLIGN accounts for structural flexibility
and as it relies heavily on sequence–structure compatibility to measure
structural similarity it appears natural to exploit the VOROLIGN measure
for structure prediction as well. How this can be done is presented in this
article with the proposed Vorpsi and Vorescore methods.

A final remark on VOROLIGN: other more involved structural alignment
methods, e.g. PPM (Csaba et al., 2008) or TM-align (Zhang and Skolnick,
2004) are better suited for producing highly accurate structural alignments,
but it is less clear how to use them for sequence–structure prediction.

2.3 Protein structure comparison measures
There is a wide range of methods to measure the structural similarity of
protein structure and, related to that, the similarity of a model structure to a
native structure. The latter problem is used to assess the quality of structure
predictions (e.g. in the CASP experiment) and is somewhat easier as the
involved protein sequences are the same and, thus, the alignment is given.

Well-known methods are Vorolign, PPM (Csaba et al., 2008), TM-
align optimizing the TM-score (Zhang and Skolnick, 2004), GDT_TS
(Global-Distance-Test, Zemla, 2003), LG-score and MaxSub. TM-score and
GDT_TS are often used by assessors and predictors to evaluate predicted
models in the CASP experiment.

Due to the importance of the problem, e.g. for protein structure
classification, structure analysis and structure prediction many more
approaches have been proposed, classical ones such as CE (Shindyalov and
Bourne, 1998) and also recent ones [Mustang (Konagurthu et al., 2006)],
STACCATO (Shatsky et al., 2006), FATCAT (Ye and Godzik, 2005), both
pairwise and multiple alignment methods.

Interestingly, the problem of protein structure comparison has not yet
reached overall consensus and there is still room for discussion on both
the best alignment and the best score. This is also true for the best model
assessment method as all methods arguably have some difficulties.

As GDT is kind of ‘official’ CASP assessment protocol we focus on the
TM-score as an independent measure for similarity of model and native
structure and use it in the following as our main quality measure. TM-score is
derived from the maximum number of matched atoms in a rigid superposition
of two structures and is supposed to be protein-length independent. In the
following, we evaluate our methods, Vorpsi and Vorescore, with respect to the
TM-score and the increase of TM-score in comparison with models predicted
by competing methods.
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Fig. 1. Overview of the VORSPI (box) and the VORESCORE methods.
Proposed models are rescored with VOROLIGN against the used template
structure (VORPSI) or against all members of the template’s fold except for
the template’s own family (VORESCORE), respectively.

2.4 Rescoring of homology-based models
Rescoring methods predict 3D structural models for protein target sequences.
They consist of the following steps (see box in Fig. 1): (i) a prediction method
is used to propose model structures; (ii) if the prediction/alignment method
produces a highly confident model and alignment with a template structure,
we take this template-induced model as the prediction (i.e. Z-score >7.0 for
HHALIGN); and (iii) Otherwise, the models are rescored to determine the
best scoring model as the final structure prediction.

For the prediction step, typically, alignment or threading methods are used
to align the target sequence against a library of protein templates. This yields
a ranked list of alignments with associated scores (prediction method scores
or alignment scores), which are used to rank the alignments and to select
the best one. As prediction method many methods have been proposed such
as pairwise and multiple sequence alignment (Gotoh, 1982, 1996), profile
(Luthy et al., 1992) and hidden Markov alignments (Eddy, 1996, 1998),
profile–profile (von Öhsen and Zimmer, 2001) and HMM–HMM (Söding,
2005) alignments and structure-based alignments [123D (Alexandrov et al.,
1996), RDP (Thiele et al., 1999)].

The alignment is used to derive structure models for the target protein
from the template coordinates. For this we use the program modeller (Eswar
et al., 2008).

2.5 Scoring of a model based on the template: VORPSI
The rescoring method VORPSI needs for the second (rescoring) step only
the model and template structures. Vorpsi tries to evaluate the compatibility
of the target sequence with the proposed model structure. For this, it employs
the VOROLIGN structural comparison between the model structure for the
target with the native template structure used for the model. If alignment
approaches are used to produce the model structures, also the alignments
and in particular also the used templates are known and can directly be used.
Otherwise templates need to be identified via structural search with the model
structure against a template library.

The rescoring method computes new model scores by comparing the
model structure with native template structures via VOROLIGN. The
resulting model scores are sorted and the best scoring model is selected
as the VORPSI structure prediction for the target. Thus, the rescore score
replaces the original prediction method (alignment) score to select the best
model. This selection can be better or worse than the original one. This is
assessed by comparing the respective models using the TM-score between

the model and the native structure. The evaluation estimates how much and
how often the TM-score is increased by the rescored model.

The rationale of this simple rescoring approach is as follows. Even simple
prediction methods might be able to propose good models, but maybe are
not able to score and rank them appropriately.

2.6 Scoring of models using knowledge of the structure
space: VORESCORE

In order to exploit knowledge on the sequence–structure space for the model
selection problem, we use the following simple approach. Instead of using
the template structure of the model for the rescoring we take all structures in
the fold of the template, apply VORPSI, and take the best score among these
templates. This requires to compute additional VOROLIGN alignments for
the selected templates in the fold.

In more detail, VORESCORE works as follows (Fig. 1): (i) apply VORPSI
for the target; (ii) if the best rescored template does not have additional
structures beyond its family in the same fold, VORESCORE takes the best
scored model; and (iii) otherwise, for every model from a template t, new
alignments/models are computed for the target using all templates in the fold
of t except for the family of t. The best of these templates according to the
VOROLIGN score is selected as the VORESCORE prediction.

The rationale behind VORESCORE is the following: if the prediction
method mistakenly ranks a certain template best, e.g. because of chance
similarities with the wrong and missing sequence similarities with the correct
template, chances are high that the VORPSI rescoring will also be mistaken.
In these cases, we resort to alternative models taken from the same fold.
Therefore, we explicitly remove all family members of the original template
and take all its fold members as alternative candidates.

3 RESULTS AND DISCUSSION
We propose to employ our structure comparison method
VOROLIGN for structure prediction by using it for rescoring
structural models produced by some alignment method.

The assessment works for any alignment method, which aligns
target sequences against structural templates. The rescoring then
VOROLIGNs the model structure with the template structure used
for the model building.

We have comprehensively evaluated the VORESCORE method
for a range of alignment and threading methods. Here we focus on
results for representative methods, a simple method and a highly
sensitive and accurate method producing poor and high-quality
alignments and models, respectively. We compare our new method
Vorescore against a range of quality assessment and rescoring
approaches and present results on a physics-based (ROSETTA) and
an empirical PROQ method as examples.

Our results on VORESCORE from this assessment are as follows:
First (Section 3.1), we define an appropriate test set of 410 target

proteins for the performance evaluation. This set is difficult for
sequence-based alignment methods, but allows for good structural
template-based models with a TM-score >0.3 (up to high scores of
>0.9). The test set is derived from the CATHSCOP consensus set and
allows for an unbiased, large-scale evaluation of the performance
in different scenarios and different levels of difficulty, e.g. family,
superfamily and fold recognition.

Second (Section 3.2), we apply different alignment methods such
as pairwise sequence alignment (GOTOH) and hidden Markov
model alignment (HHALIGN). From the alignments we build model
structures using modeller (Eswar et al., 2008) and rescore the
resulting models with VOROLIGN and other rescoring methods
such as ROSETTA and PROQ. The results show improvements
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of VORESCORE rescoring over the original alignments in about
40% of the cases, significant improvements of VOROLIGN over
ROSETTA, which cannot really be used for successful rescoring
of models and some improvement over the best state-of-the-art
rescoring methods (such as PROQ) using involved scoring methods
and meta-/consensus approaches.

Finally, in (Section 3.3), we evaluate the potential of the rescoring
if very good structural alignments and models are available. On one
hand, VORESCORE can improve by another 50% of the cases as
compared with the GOTOH or HHALIGN models, which again
shows the ability of the simple VOROLIGN scoring to select good
models. On the other hand, there is still much room for improvement:
even if very good models are available the selection process misses
the best models in many cases, and this margin is even larger for the
rescoring of actual models predicted by sequence methods, which
reinforces the necessity of producing good alignments (and models)
in the first place.

3.1 Definition of an appropriate test set
CATH (Orengo et al., 1997) and SCOP (Murzin et al., 1995)
are the two most prominent hierarchical classifications of protein
structure domains. Unfortunately, they are not completely consistent
w.r.t. similarities and dissimilarities. Therefore, we defined a
comprehensive and consistent set of similar (and maybe more
importantly dissimilar) pairs of domains, the CATHSCOP set (Csaba
et al., 2009). The CATHSCOP set contains lists of templates
of consistently classified domains for 4859 target domains with
pairwise maximal sequence similarities of 50%. As the CATHSCOP
set defines both similar and dissimilar pairs, we can perform tests on
more distant similarity recognition. The CATHSCOP set contains
3919 and 2197 target domains, where superfamily (beyond the
family similarities) or fold similarities (beyond the superfamily
similarities) can be found, respectively.

As our tests are computationally costly due to the model building
runs, we create a smaller, but similarly challenging test set using the
‘hard’ targets for the simple sequence alignment method GOTOH.

The test set is defined as the set of the domains, where GOTOH
scores a dissimilar domain (neither in the same SCOP fold nor in the
same CATH architecture) better than a domain from its own SCOP
family and CATH superfamily. We found 410 such targets, inducing
321 641 target–template pairs. In the test set 338 and 181 targets can
be used to perform superfamily and fold tests, respectively.

To investigate the properties of the consistent sets, we checked the
performances of different sequence alignment methods on both the
whole CATHSCOP set (4891 targets, 3 739 824 pairs) and the test
set (410 targets covering 224 families, 171 superfamilies and 134
folds, 321 641 pairs). The results are summarized in Table 1 and 2,
respectively. We perform three fold recognition tests: (i) family-level
test: all similarities are available, (ii) superfamily-level test: members
of the target family are excluded; and (iii) fold-level test: members
of the target superfamily are excluded.

Due to its construction, GOTOH does not recognize the correct
family for the targets in the test set. This does not necessarily
mean that GOTOH does not produce any meaningful alignments.
In fact, as shown in Figure 2 a large number of acceptable models
can be derived from the GOTOH alignments. Figure 2 also shows
that the test set allows for lots of improvements between the
favored models of GOTOH (‘+’) and the best models possible

Table 1. Fold recognition rates for the CATHSCOP set

Maximum similarity in the CATHSCOP set

Family Superfamily Fold
(4859) (3919) (2197)

GOTOH 84.07% (4085) 40.50% (1587) 23.81% (523)
123D 77.94% (3784) 30.75% (1205) 21.94% (482)
PPA 93.72% (4554) 73.92% (2897) 50.71% (1114)
HHALIGN 94.11% (4573) 76.24% (2988) 47.06% (1034)
VOROLIGN 97.53% (4739) 90.25% (3537) 77.70% (1707)

We show for every test the number of targets involved in the given set in parentheses.
Recognizing the correct fold having all similarity levels (family column) available is an
easy task for the current best alignment methods (PPA and HHALIGN), which achieve
almost the performance of VOROLIGN. For the superfamily and fold level only more
distant similarities are available. Thus, the recognition rates for sequence-based methods
are much lower. On the fold level, even the best methods fail on the fold-recognition
task on every second target. Also for this case, the use of structural neighborhoods
exploited by VOROLIGN improves by >50% on the best sequence method (PPA) to
over 75% fold recognition rate. The maximum values in each column, i.e. maximum
fold recognition rate for each level, are indicated in bold.

Table 2. Fold recognition rates on the test set

Maximum similarity in the test set

Family Superfamily Fold
(410) (338) (181)

GOTOH 22.68% (93) 27.51% (93) 16.57% (30)
123D 22.93% (94) 22.19% (75) 19.34% (35)
PPA 81.46% (334) 50.07% (176) 20.99% (38)
HHALIGN 89.76% (368) 66.57% (225) 37.02% (67)
VOROLIGN 96.10% (394) 87.87% (297) 76.80% (139)

The test set is a subset of the CATHSCOP set with 410 query proteins. It is somewhat
harder for the sequence methods, but the fold recognition performance of VOROLIGN
on the test set is about the same as on the comprehensive CATHSCOP set. The maximum
values in each column, i.e. maximum fold recognition rate for each level, are indicated
in bold.

[‘best(all models)’]. The optimum among the GOTOH alignments
would be ‘best(GOTOH)’ and the actual improvement achieved by
the VORESCORE rescoring is ‘VORESCORE’.

The need for a smaller test set results from the expensive tests that
we perform. We create models for each alignment computed with
several sequence and structural methods resulting in about 2 000 000
models for the smaller test set. On our machines this takes almost
a year single-CPU time (modeler takes about 15 s pro-alignment on
average).

The defined test set is representative and only slightly more
challenging than the CATHSCOP set and it allows for improvement
via rescoring. We use the test set for the evaluation in the following.

3.2 Model quality improvement over alignment
methods

In this section, we present the improvements achieved with
VORESCORE when applied to various prediction methods. Due
to space constraints, we restrict the results presented here to
two alignment methods, GOTOH and HHALIGN and to two
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Fig. 2. Model quality of GOTOH alignments. The figure shows the quality
(measured with the TM-score) for the models build from GOTOH alignments
for the family-level recognition test. The y-axis shows the number of targets
having a selected model with TM-score larger than the value on the x-axis.
Due to the construction of the test set the rates for the best model of GOTOH
are rather low, but as shown by the ‘best(GOTOH)’ rates, there are a large
number of high-quality models which could be predicted via perfect rescoring
of the GOTOH models. In fact, ‘VORESCORE’ can improve the quality of
the selected models significantly. Of course, much better models beyond the
GOTOH alignments are possible [‘best(all models)’].

rescoring methods, ROSETTA and PROQ. We also focus only on
the performance of VORESCORE, which performs slightly better
than the simpler VORPSI method. The assessment is based on a
comprehensive evaluation of a large number of difficult targets
(410). It involves building and scoring more than two million
models.

Significant improvements can be observed for both simple
(GOTOH) and the most sensitive alignment methods (HHALIGN).
The largest improvements of about 40% of the cases are found
on the most difficult (fold) level, as should be expected for
the sequence-based prediction methods. Surprisingly, the simple
VORESCORE method outperforms both the involved ROSETTA
[4-fold, the net improvement of ROSETTA on the fold level
is −8% =(6.63−14.92) for GOTOH, +10% for HHALIGN, for
VORESCORE +40% for both GOTOH and HHALIGN] and
PROQ (by about 30%) scoring systems with respect to the net
improvements of selecting better models (Table 3).

Table 3 and Figure 3 show different aspects of the same data.
The figures show that for all three levels VORESCORE achieves
improvements over the whole TM-score range, i.e. for all levels of
target difficulty. The more pronounced improvements are observed
for the more difficult cases (TM-scores between 0.3 and 0.5). For
high TM-scores the performances converge, as due to the high
similarities the alignment models often are already the best models
possible and, thus, cannot be improved via rescoring.

Table 3 summarizes our results on the overall rescore success
rates. VORESCORE selects worse models in only very few cases.
For GOTOH it is able to find better models in 60% of the cases for
family level and 40% of the cases for superfamily and fold levels.
The test set is not easy: ROSETTA does much worse here, it selects
worse models in 20–30% of the cases and better models only in
rare cases 3–7% (best performance for the fold level). Results are
interesting in that they show that improvements are possible even

Table 3. Rescore success rate for ROSETTA, PROQ and VORESCORE on
two alignment methods GOTOH and HHALIGN

Family Superfamily Fold

GOTOH
Rescored model worse
ROSETTA 21.95% (90) 24.56% (83) 14.92% (27)
PROQ 9.02% (37) 11.83% (40) 6.08% (11)
VORESCORE 3.17% (13) 5.03% (17) 2.76% (5)

Rescored model better
ROSETTA 4.88% (20) 4.14% (14) 6.63% (12)
PROQ 47.80% (196) 34.02% (115) 35.91% (65)
VORESCORE 62.44% (256) 43.49% (147) 43.65% (79)

HHALIGN
Rescored model worse
ROSETTA 11.22% (46) 17.46% (59) 20.44% (37)
PROQ 6.14% (25) 7.25% (24) 10.23% (18)
VORESCORE 4.88% (20) 4.73% (16) 5.52% (10)

Rescored model better
ROSETTA 5.12% (21) 17.75% (60) 30.39% (55)
PROQ 8.35% (34) 26.59% (88) 40.91% (72)
VORESCORE 9.02% (37) 23.67% (80) 44.20% (80)

If the alignment method predicts with high confidence, all three rescoring methods
simply accept this prediction. Otherwise, the rescoring with ROSETTA, PROQ and
VORESCORE is based only on the models predicted by the respective alignment
(GOTOH and HHALIGN) method. We call the rescored model worse or better if
the TM-score difference between the rescored model and the methods first model is
smaller than −0.05 or larger than 0.05, respectively, and neutral otherwise. The net
improvement of a method is given by the respective difference between the number of
better and worse models. The best performance among the three methods ROSETTA,
PROQ and VORESCORE for both GOTOH and HHALIGN alignments and the three
levels Family, Superfamily and Fold is highlighted as bold.

for very simple alignment methods. It appears that due to the low
specificity of the method wrong models can be scored much better
than good models and that good models nevertheless are actually be
produced despite the overall low performance of the method. And
VORESCORE is able to detect these models via a simple structure
comparison of model and template structure.

For HHALIGN, the situation is different as HHALIGN belongs
to the most sensitive and most accurate sequence-based methods.
HHALIGN is supposed to produced better alignment scores and
better alignments for the best scoring one—but also for the other
candidates. So again the situation is not easy for a rescoring method.
Again VORESCORE selects better models in many cases (10% on
the family up to 50% on the fold level) and worse models in very few
cases (5–6%). For every level the net improvement (better-worse)
is significant (5, 15, and 40% for the different levels, respectively),
with an overall improvement for 189 of the 410 targets as compared
with 41 targets, where the models are actually worse than the original
ones. ROSETTA again performs very differently here: rescoring
selects more worse than better models depending on the level
resulting in a net improvement only on the fold level, resulting in
an overall worse performance (127 worse, 114 better) as compared
with the original HHALIGN. Thus, ROSETTA cannot be used as a
rescoring method in, e.g. the CASP competition. PROQ works quite
well with similar performance as VORESCORE for HHALIGN
on the family and superfamily levels, but 30% lower rates on the
fold level [+30%= (40.91−10.23) as compared with +40% for
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Fig. 3. Comparative recognition performances for alignment and rescoring
methods. The three figures show the recognition rates for the family (A)
superfamily (B) and fold (C) levels for the relevant range of model qualities
(TM-score >0.3 up to convergence). The relative performance is similar for
all levels and all model quality ranges: the pairwise alignments are clearly
outperformed by profile alignment and these by rescoring methods.

VORESCORE]. For the GOTOH alignments PROQ performs much
worse as compared with VORESCORE on all three levels (39%
versus 59%, 22% versus 38%, and 30% versus 41%).

The same data of Table 3 is presented in more detail in Figure 3.
In the figure the results are plotted against the TM-score of the
models to show the dependency on the similarity of the target

and template structure (as measured by the TM-score between the
predicted model and the native structure). The results are shown in
three plots for the family, superfamily and fold levels, respectively.

For various methods, each figure shows the number of models
produced by the method above a certain TM-score. Of course
this number is highest for smaller TM-scores and is decreased by
increasing the required TM-score. Overall, there are 410 targets
(family level, 338 for the superfamily and 181 for the fold level)
in the used test set above the TM-score threshold of 0.3 (that is why
the plot starts at TM-score 0.3).

The figure shows seven plots for seven ‘methods’. The methods
shown are the four alignment methods: HHALIGN, PPA, 123D and
GOTOH and the three rescoring methods: VORESCORE, PROQ
and ROSETTA applied to all models proposed by the alignment
methods.

For example, ‘HHALIGN’ shows the number of original
HHALIGN ranked models (i.e. selecting the best scoring HHALIGN
alignment) above the respective TM-score (as compared with the
native structure of the target). Thus, this number approximates the
HHALIGN performance in a CASP assessment for the 410 targets
in our test set. The other plots show the respective numbers for the
other alignment and rescoring methods. The selected figures are just
a small portion of the data that we produced on the test set.

The plots show several things. The same trend (with different
amounts) and the same ranking is observed for all family,
superfamily and fold levels. First, the curves are clearly sorted
for all TM-score levels, i.e. there is a consistent ranking for all
TM-score values. The highest (i.e. best performing) curve are the
two rescoring methods, VORESCORE followed by PROQ. This
is followed by HHALIGN, which on the family and superfamily
level performs equally well but worse on the fold level. HHALIGN
clearly outperforms PPA on all levels. The ROSETTA rescoring
only works for the family and superfamily level where it is better
than PPA for the easier targets but worse for the harder ones. Thus,
ROSETTA appears to work for good models only, on the fold level
its performance is almost down to the pairwise alignment methods,
123D and GOTOH, which performs worst on all the levels on the
hard targets of the test set.

Overall, the effects are TM-score dependent in that the differences
are largest for smaller TM-score thresholds and are converging
for the higher TM-score thresholds as the models tend to be
very similar (and thus the problem easier) for large TM-scores.
The improvements observed for VORESCORE are quite small
on the family level and they increase for the superfamily level
to the quite drastic effects on the fold level (as hoped). On the
fold level, VORESCORE is able to produce almost twice as many
good models based on the HHALIGN alignments (as compared with
HHALIGN) for lower TM scores (say <0.5). For example, on the
fold level, GOTOH finds two, 123D three, ROSETTA nine, PPA
12, HHALIGN 21, PROQ 32 and VORESCORE 38 models with a
TM-score of ≥0.4.

3.3 Model quality improvement using high-quality
alignments

The above results show the performance of the rescoring method
in a realistic structure prediction setup similar to, e.g. the CASP
assessment. In this section, we evaluate the performance of the
rescoring methods in a somewhat artificial setting where the best
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Table 4. Rescore success rate of VORESCORE over GOTOH and
HHALIGN on all models

Model Family Superfamily Fold

GOTOH
Worse 1.46% (6) 4.73% (16) 1.66% (3)
Neutral 17.80% (73) 30.47% (103) 31.49% (57)
Better 80.73% (331) 64.79% (219) 66.85% (121)

HHALIGN
Worse 5.85% (24) 5.62% (19) 3.87% (7)
Neutral 79.27% (325) 55.62% (188) 27.62% (50)
Better 14.88% (61) 38.76% (131) 68.51% (124)

Rescoring is based on both GOTOH and HHALIGN predictions and, additionally, TM-
align- and PPM-based models. We call the rescoring worse or better if the TM-score
difference between the rescored model and the methods first model is smaller than -0.05
or larger than 0.05, respectively, and neutral otherwise. The largest of the respective
three values is highlighted as bold.

models are actually given and also subject to the rescoring. For this,
we compute structural alignments with TM-align and PPM and add
them to the models under investigation.Again VORESCORE is used
to rescore the model structures against the native template structures
and rank all the models. Table 4 and Figure 4 show the results.

In Table 4 three numbers are given: how often a worse model is
selected; how often a better model is selected; and as an intermediate
neutral case, how often the original and rescored models are of the
same quality (TM-score difference less than 0.05). First Table 4
shows these numbers for the family, superfamily and fold levels
for GOTOH alignments. VORESCORE selects worse models in
very rare singular cases and better models in >80% of the cases
(family level). The number and percentage of better models is
somewhat smaller at 65% and 67% of the cases at the superfamily
and fold levels. This reflects the fact that models for the family level
are much better as compared with the more distant models on the
fold level which appear to be more difficult also for rescoring.

For HHALIGN (Table 4), the situation is similar: again rescoring
performs extremely well and improves on the HHALIGN models
in 15, 38 and 68% of the cases for the respective levels (family,
superfamily and fold). Of course, HHALIGN produces much better
rankings and models in the first place, such that it is more difficult
to select better models if at all (e.g. on the family level). So, on the
family and superfamily level it is often not possible to improve on
the HHALIGN alignment (in 80 and 55% of the cases). On the fold
level, however, VORESCORE comes up with better models in 60%
and with better or neutral models in >96% of the cases.

The Figure 4 is similar to Figure 3. The difference is that in the
latter only predicted models, i.e. by sequence-based alignments, are
used, whereas the former applies to the rescoring also to structure
alignments from TM-align and PPM computed between the template
and the native target structure. Moreover, the figure contains the
model qualities for the best and best predicted models. Thus,
the ‘best(all models)’ (1) figure shows the number of the overall
best possible model for the target at the given TM-score value—
this is the theoretical optimum for the test set given the template
library independent from any alignment and rescoring method. The
‘best(all predicted models)’ (2) gives this figure for all actually
proposed models, i.e. the performance of a perfect rescoring method.
‘VORESCORE on all predicted models’ (3) presents the actual
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Fig. 4. Theoretical model quality for the test set (fold level). The figure
shows the number of models above a certain TM-score threshold for
several methods as compared with the theoretical optimum. Here, structure
alignment-based models are also available for the rescoring. The number
for the best possible template-based model, the best of all predicted models,
and the best VORESCORE models (rescoring of all models) are compared
with the actual VORESCORE (on all predicted models) and HHALIGN
performance.

performance achieved by VORESCORE on the proposed models
and the difference to the former figure (2) indicates the shortcomings
of the VORESCORE rescoring. ‘VORESCORE on all models’ (4)
shows what the rescoring could do if the best (structure-based)
models would be available, again the difference to the theoretical
optimum (1) shows that the rescoring is not perfect. On the other
hand, it shows that the rescoring could perform very well on good
models [as the difference to the actual performance (3) is quite
large]. Finally, ‘HHALIGN’ (5) shows the HHALIGN performance
in comparison. The difference of what is possible with the best
alignment methods (5) to what can be done with rescoring (3) is
large. The difference to what could be done if better models (4)
and/or better rescoring (1) and (2) would be available is even larger.
As an example, at the TM-score threshold 0.4, HHALIGN finds 21
models, VORESCORE on all predicted models 38, VORESCORE
on all models (also structural alignments) 88, whereas the best of all
predicted models yields 87 and the best possible 179 models above
TM-score 0.4.

With respect to what is theoretically possible on the current test
set the results are somewhat disappointing: while on the family
and superfamily levels VORESCORE as the best method can find
about 75 and 60% of the best models (data not shown) this is not
possible on the fold level, where VORESCORE only finds about
45% of the models and fails in well >50% of the cases (Fig. 4).
Also in comparison to the best structural models (TM-align and
PPM models) the difference is very large, which indicates that
sequence-based alignments fail to produce any reasonable model
for many cases (at least at the fold level). Unfortunately, also on the
superfamily level there is still a large margin (data not shown).

Last but not least, there is also quite some margin between the
TM-align and PPM models and the native structures, which indicates
more intricate problems of scoring and assessing structures and
structural models, again especially on the fold level as structures
become more diverse.
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4 CONCLUSIONS
Selecting the correct model is of great importance for homology-
based modeling. The alignment score is not the best measure for
identifying the best template and alignment. Even if the alignment
scoring is far from perfect often good models are proposed and can
be selected via appropriate rescoring, e.g. VORESCORE, which
performs best among the methods evaluated here.

From our results we draw the following conclusions:

(1) We have shown that template-based protein structure
prediction can be significantly improved by using structure
information via rescoring of alignment-induced models.
Many alignment methods often produce reasonable
alignments which score worse than alignments with
alternative templates. Rescoring the produced alignments
using appropriate sequence–structure information helps to
select those models which improve GDT- or TM-score,
measures used in the CASP predictions to assess the model
quality and to rank the predictions.

(2) As might be clear beforehand, scoring functions which do
not directly take sequence–structure information into account
such as ROSETTA do perform badly on the task of selecting
the best alignment-induced templates. This is especially the
case in comparison with VORESCORE, which drastically
outperforms these methods.

(3) Maybe not very surprisingly, there is still much room for
improvement of those methods. In particular, the method
can only select the best of the proposed alignment-induced
models. Thus, it is important that good models are actually
proposed. If models from the best structural alignment
methods are available, rescoring can improve by another large
margin (on rescoring only actual sequence-based alignment
models). Unfortunately, rescoring is not perfect even in these
cases. It was and remains crucial to determine the best
alignments with the best models.

It remains to be seen how far one can go with purely
sequence–based methods, but rescoring is certainly one way to
incorporate additional sequence–structure information into the
structure prediction process. The particularly simple rescoring
system VORESCORE shows how to use structure comparison
for structure prediction and the presented results demonstrate that
conservation in structural neighborhoods is an important feature for
sequence–structure relationships and a determining factor for protein
structures.

Conflict of Interest: none declared.
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