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ABSTRACT
BACKGROUND: Neurobiological measures may inform our understanding of individual differences in adolescents’
general risk for and resilience to depressive symptoms, including during the COVID-19 pandemic. We tested a
developmental model linking variation in amygdala–subgenual anterior cingulate cortex (sgACC) resting-state
connectivity to perceived parenting experiences earlier in adolescence, to concurrent depressive symptoms before
the pandemic, and to subsequent depressive symptoms during the pandemic.
METHODS:We used data from a longitudinal study that included three waves (N = 214 adolescents; ages 9–15 years
at time 1 [T1], 11–17 years at T2, and 12–19 years during the pandemic at T3). We assessed positive parenting (warm
and supportive) (T1), depressive symptoms (T1 to T3), and functional connectivity between the sgACC and
basolateral (BLA) and centromedial amygdala (T1 and T2). We modeled associations among earlier positive
parenting, amygdala–sgACC connectivity, and depressive symptoms before and during the pandemic.
RESULTS: Less positive parenting at T1 was associated prospectively with stronger BLA–sgACC connectivity at T2
(b = 20.22) over and above the effect of BLA–sgACC connectivity at T1. Stronger BLA–sgACC connectivity, in turn,
was associated with heightened depressive symptoms, both before the pandemic (r = 0.21) and during the pandemic
(b = 0.19; independent of the effect of pre-pandemic symptoms).
CONCLUSIONS: Adolescents who experience less positive parenting may develop a pattern of BLA–sgACC
connectivity that increases their risk for mental health problems. BLA–sgACC connectivity may be associated with
depressive symptoms in general, including during periods of heightened risk for adolescents, such as the pandemic.

https://doi.org/10.1016/j.bpsgos.2021.07.005
The COVID-19 pandemic is a unique period of disruption.
Many individuals are facing multiple challenges related to the
pandemic that pose serious threats to mental health, including
economic hardship, threats to physical health, and enforced
social isolation (1–3). Adolescents generally are at an increased
risk for mental health problems such as depression (4,5), and
depressive symptoms in adolescents appear to be increasing
during the pandemic (6,7). Some adolescents are more
vulnerable than others to experiencing difficulties during the
pandemic, differences that have been found to be indexed by
neurobiological and physiological measures (8–10). We
recently showed that aspects of neurobiology can moderate
risk and resilience to depressive symptoms during the
pandemic (8,10) and, therefore, might serve as targets for
intervention and prevention. Moreover, identifying develop-
mental factors that are associated with predictors of mental
health could inform efforts to promote resilience to
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psychopathology in general and during future periods of
heightened risk for adolescents. In this context, therefore, the
present study tests a developmental model linking variation in
neural connectivity in adolescents to experiences in the family
environment and depressive symptoms before and during the
COVID-19 pandemic.

Depression has been found to be characterized by func-
tional abnormalities in the amygdala and subgenual anterior
cingulate cortex (sgACC) (11,12). In fact, resting-state func-
tional connectivity (FC) between the amygdala and sgACC has
been implicated in both stress and depression (13,14). Broadly,
whereas the amygdala supports rapid detection and
responding to salient events (15), the sgACC is involved in
affective appraisal, sad mood, and rumination (16). Several
studies with adolescents have found that stronger positive
amygdala–sgACC connectivity is associated with depression
(14,17,18), with perceived psychological stress (19), and with
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increased sensitivity to negative stimuli (20); this latter study
also found that increases in amygdala–sgACC connectivity
were associated with the onset of depression (20). Similar
findings have been reported in adults (13); further, a stress
reduction intervention has been found to weaken amygdala–
sgACC connectivity (13). Taken together, increased intrinsic
amygdala–sgACC connectivity appears to play a role in
negative affect and vulnerability to depression. It is unclear,
however, whether amygdala–sgACC connectivity is associated
with elevated depressive symptoms during periods of height-
ened risk for mental health problems in adolescents, such as
the COVID-19 pandemic.

It is important that a longitudinal predictor of relative risk
and resilience be associated with well-being in an enduring
manner. For example, it is possible that pre-pandemic
amygdala–sgACC connectivity is associated concurrently with
depressive symptoms before the pandemic, and that this ac-
counts for prospective associations with symptoms during the
pandemic. That is, pre-pandemic amygdala–sgACC connec-
tivity may have a transient rather than an enduring effect on the
development of depressive symptoms. If amygdala–sgACC
connectivity is a viable marker of individual differences in
depressive symptoms in general, including during the
pandemic, it should be associated with pre-pandemic symp-
toms but should also predict symptoms during the pandemic
above and beyond the effect of pre-pandemic symptoms.

In addition to considering amygdala–sgACC connectivity as
a correlate of functioning both before and during the
pandemic, it is important to examine whether variation in the
development of this neural connection is related to a history of
environmental risk for psychopathology. Holz et al. (21) pro-
posed that the amygdala and ventral regions of the ACC are
neural convergence sites for social risk and resilience factors.
One such social-environmental factor that has been implicated
in adolescent depressive symptoms is parenting practices
(22,23), which has also recently been linked to adolescent
neurodevelopment (24–26). Specifically, positive parenting
behaviors, including expressions of affection, supportiveness,
and sensitivity, have been found to be negatively associated
with adolescents’ development of depressed mood (27) and
positively associated with adolescents’ effective coping with
stress (28). Positive parenting may help contribute to adoles-
cents’ mental health via its influence on neurodevelopment
important for emotion regulation (29).

Amygdala–sgACC FC undergoes significant changes during
adolescence (30,31) and, therefore, could be sensitive to
environmental input such as parenting. A growing body of
research is investigating how parenting practices are related to
the development and functioning of the amygdala and sgACC.
In adolescents with a history of anxiety, parental warmth has
been prospectively associated with reduced amygdala and
sgACC activation during an emotion processing task and has
been linked indirectly with less severe internalizing symptoms
via reductions in sgACC activation (32). In other research,
adolescents with mothers who directed more negative affect
toward them showed blunted amygdala and sgACC response
to a social reward (33) and increased resting-state FC between
the amygdala and insula, superior temporal gyrus, and tem-
poral cortical regions (34). Thus, although previous studies
have reported evidence that parenting is related to amygdala
292 Biological Psychiatry: Global Open Science December 2021; 1:29
and sgACC activation and FC of the amygdala, researchers
have not yet examined parenting practices specifically in
relation to amygdala–sgACC FC, despite their broader link with
adolescent well-being. In addition, most studies have used
cross-sectional samples or longitudinal designs with a single
neuroimaging assessment [but see (35) for an exception].
Conducting multiple neuroimaging assessments is critical for
examining the effects of parenting on the development of
amygdala–sgACC FC during adolescence. Recent work sug-
gests that typical development is characterized by reduced
amygdala–sgACC FC in adolescence compared with child-
hood and adulthood (30). Less positive parenting may impede
amygdala–sgACC FC development or, from a functional
perspective [e.g., (36)], may influence this connection in a way
that is adaptive in a specific context, but that is also devel-
opmentally atypical and increases vulnerability to psychopa-
thology (i.e., stronger amygdala–sgACC FC).

The current longitudinal study examined whether
amygdala–sgACC resting-state FC in adolescents 1) is related
to parental warmth and supportiveness (i.e., positive parenting)
earlier in adolescence and 2) is related to depressive symp-
toms both concurrently (i.e., pre-pandemic) and prospectively
during the early phase of the pandemic. We hypothesized that
less positive parenting would be linked to patterns of
amygdala–sgACC FC that heighten risk for adolescent
depressive symptoms and that potentially reflect aberrant
development of this neural connection. Thus, we expected that
less positive parenting earlier in adolescence would be asso-
ciated both concurrently and prospectively with stronger
amygdala–sgACC connectivity which, in turn, would be asso-
ciated with heightened depressive symptoms, both before and
during the pandemic. Finally, we expected that the prospective
association between positive parenting and amygdala–sgACC
connectivity would be independent of the effect of earlier
amygdala–sgACC connectivity on later connectivity, and that
the prospective association between amygdala–sgACC con-
nectivity and depressive symptoms during the pandemic
would be independent of the effect of pre-pandemic depres-
sive symptoms.
METHODS AND MATERIALS

Participants and Procedures

Participants were adolescents from the San Francisco Bay
Area from an ongoing longitudinal study of the effects of early-
life stress on neurodevelopment during puberty (N = 214; 121
females; mean age at baseline = 11.40, SD = 1.0; 10.3%
Asian, 20.1% biracial, 8.4% Black, 8.4% Hispanic/Lat-
inx, 6.5% Other, 44.4% White, 1.9% did not report; median
family income = $100K–$125K, range #$5K–$$150K). Fam-
ilies were recruited from the community using flyers, media,
and online advertisements. Study exclusion criteria at baseline
included inability to undergo magnetic resonance imaging
(MRI) (e.g., had metal implants, braces), a history of neuro-
logical disorder or major medical illness, cognitive or physical
challenges that might interfere with the ability to understand or
complete procedures, nonfluent English speakers, and, for
females, the onset of menses. Males and females were
matched on self-reported pubertal stage at the baseline
1–299 www.sobp.org/GOS
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assessment; thus, females were, on average, younger than
males in our sample (see the Supplement). The current analysis
included adolescents who completed up to three assessments
that were, on average, 2 years apart (N = 214; interval between
assessments = 124 years) (see the Supplement for additional
information about attrition and study design). At time 1 (T1) (n =
208; 117 females; mean age = 12.02 years, SD = 1.45, range =
9.17215.82), adolescents reported on parenting behaviors of
their primary caregiver, their own depressive symptoms, and
completed a resting-state functional MRI scan from which we
measured FC between the amygdala and sgACC. At T2 (n =
144; 78 females; mean age = 14.29 years, SD = 1.59, range =
11.08217.91), adolescents again completed a resting-state
functional MRI scan and assessment of their own depressive
symptoms. At T3 (n = 109; 65 females; mean age = 16.30
years, SD = 1.45, range = 12.82–19.98), approximately 3 weeks
after shelter-in-place was implemented in the Bay Area (April
2020), adolescents reported on their depressive symptoms
over the preceding 1 week using a measure administered on-
line (see the Supplement for details about the state of the
pandemic during our assessment and some of the effects on
our sample). The current analyses included participants who
had usable data on any variable of interest at any study time
point. All families signed assent and consent forms and were
compensated for their participation. The study protocol was
approved by the Stanford University Institutional Review
Board.

Positive Parenting at T1

At T1, adolescents reported on positive parenting using the
11-item warmth and supportiveness subscale of the Parenting
Styles and Dimensions Questionnaire (e.g., “my parent gives
comfort and understanding when I am upset,” “my parent
gives me praise when I am good”) (37). Adolescents rated
items on a 5-point scale ranging from 1 (“almost never”) to 5
(“very often”). We averaged responses to yield a total score for
parental warmth at T1 (a = 0.89).

Resting-State Functional MRI at T1 and T2

At T1 and T2 (1.28–3.85 years after the T1 assessment; mean
interval = 2.03 years, SD = 0.34), neuroimaging data were
acquired using a GE Discovery MR750 3T scanner (GE Medical
Biological Psychiatry: Global Op
Systems) with a 32-channel head coil (Nova Medical). Detailed
scan parameters, described previously (38), as well as our
approach to preprocessing and motion correction, are pre-
sented in the Supplement.

As described in Miller et al. (39), we focused on two major
subdivisions of the amygdala: the basolateral amygdala (BLA)
and centromedial amygdala (CMA). The BLA is involved in
associative learning and evaluation of affective significance of
environmental stimuli (15). The CMA is involved in allocation
of attentional resources and increasing arousal via regulation
of autonomic, endocrine, and behavioral responses to evoca-
tive stimuli (40). We defined BLA and CMA subdivisions as
region of interest (see Figure 1A) using the Juelich anatomic
atlas of probabilistic cytoarchitectonic maps provided in FSL
(41,42). We defined the sgACC as Brodmann area 25 in the
Mackey atlas of probabilistic cytoarchitectonic maps provided
in AFNI (see Figure 1B) (43).
Adolescent Depressive Symptoms at T1, T2, and T3
(During the Pandemic)

At T1 and T2, adolescents reported on their depressive
symptoms over the preceding 2 weeks using the 10-item
version of the Children’s Depression Inventory (CDI) (44). For
each item, adolescents endorsed one of three statements
reflecting graded severity of symptoms. We summed re-
sponses to yield a total score for pre-pandemic depressive
symptoms at T1 (a = 0.78) and T2 (a = 0.90).

At T3, 1.08–4.35 years after T2 (mean interval = 2.32, SD =
0.83), adolescents reported on their depressive symptoms
over the preceding week using the Center for Epidemiological
Studies Depression Scale for Children (CES-DC) (45). We used
the CES-DC at T3 because some participants at this assess-
ment were older than the validated upper age limit for the CDI.
The CES-DC has 20 items, each of which adolescents rated on
a 4-point scale ranging from 0 (not at all) to 3 (a lot). We
summed responses to yield a total score for depressive
symptoms during the pandemic (a = 0.76).

Finally, to make depressive symptom scores comparable
across the three time points, we converted CDI scores at T1
and T2 and CES-DC scores at T3 to proportion of maximum
scale scores (46).
Figure 1. Regions of interest including (left) the
basolateral amygdala (yellow) and centromedial
amygdala (red) and (right) the subgenual anterior
cingulate cortex (red), used in the examination of
amygdala–subgenual anterior cingulate cortex
resting-state functional connectivity.
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Table 1. Descriptive Statistics and Zero-Order Correlations

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12

1 Sex (Female = 1) 1

2 T1 Age 20.19a 1

3 T2 Age 20.25b 0.98a 1

4 T3 Age 20.21c 0.86a 1 1

5 T1 Positive Parenting 0.10 20.15c 20.11 20.00 1

6 T1 BLA–sgACC 0.07 20.21b 20.15 20.20c 0.13 1

7 T2 BLA–sgACC 0.00 20.03 20.00 0.02 20.20c 0.14 1

8 T1 CMA–sgACC 0.00 20.19c 20.20c 20.07 0.03 0.47a 0.03 1

9 T2 CMA–sgACC 0.01 0.10 0.11 0.08 20.12 0.12 0.44a 0.18 1

10 T1 Depressive Symptoms 0.07 0.10 0.09 0.06 20.25a 20.04 0.05 20.02 0.05 1

11 T2 Depressive Symptoms 0.18c 0.21c 0.25b 0.18 20.26a 20.07 0.19c 20.12 0.11 0.56a 1

12 T3 Depressive Symptoms
(During Pandemic)

0.33a 0.03 0.07 0.13 20.13 0.02 0.26c 0.06 0.06 0.34b 0.46a 1

n 214 210 137 180 127 170 142 170 142 208 136 101

Mean 2.37 3.88 4.03 3.87 0.38 0.37 0.22 0.24 0.12 0.13 0.35

SD 1.04 0.96 0.72 0.83 0.21 0.19 0.19 0.18 0.13 0.15 0.19

Range 1.00 to 5.00 1.00 to 5.00 1.91 to 5.00 1.27 to 5.00 20.13 to 0.82 20.15 to 0.88 20.43 to 0.76 20.20 to 0.73 0.00 to 0.65 0.00 to 0.65 0.00 to 0.85

Depressive symptoms at all time points presented as proportion of maximum scale scores. All p values are unadjusted.
BLA, basolateral amygdala; CMA, centromedial amygdala; sgACC, subgenual anterior cingulate cortex; T, time.
ap , .001.
bp , .01.
cp , .05.
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Figure 2. Path analysis model of the concurrent
and longitudinal associations among time 1 (T1)
parenting; T1 and T2 basolateral amygdala (BLA)–
subgenual anterior cingulate cortex (sgACC) con-
nectivity; and T1, T2, and T3 depressive symptoms
(during the pandemic). False discovery rate–adjusted
***p , .001, **p , .01, *p , .05, †p = .072 for path
from T1 BLA–sgACC connectivity to T2 BLA–sgACC
connectivity (unadjusted p = .055) and †p = .055 for
path from T2 BLA–sgACC connectivity to T3 Center
for Epidemiological Studies Depression Scale for
Children (CES-DC) depression (unadjusted p = .039).
CDI, Children’s Depression Inventory.
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Statistical Analyses

We used path analysis to examine hypothesized relations
among parenting at T1, amygdala–sgACC FC and depressive
symptoms at T1 and T2 (both pre-pandemic) and depressive
symptoms at T1, T2 (both pre-pandemic), and T3 (during the
pandemic). We tested separate models using bilateral average
BLA–sgACC and CMA–sgACC as the neural connection of
interest. We conducted secondary analyses testing amygdala–
sgACC FC as a mediator between positive parenting and
depressive symptoms. Model fit was assessed using c2 tests,
the comparative fit index, and the root mean square error of
Table 2. Path Model Estimates

Paths B SE

Outcome: T2 BLA–sgACC

T1 positive parenting 20.06 0.0

T1 BLA–sgACC 0.15 0.0

T1 depressive symptoms 20.01 0.1

Outcome: T2 Depressive Symptoms

Sex 0.04 0.0

T2 age 0.02 0.0

T1 positive parenting 20.01 0.0

T1 BLA–sgACC 20.02 0.0

T1 depressive symptoms 0.55 0.0

Outcome: T3 Depressive Symptoms

Sex 0.10 0.0

T3 age 0.02 0.0

T2 BLA–sgACC 0.20 0.0

T2 depressive symptoms 0.41 0.1

Outcome: T2 Age

T1 age 1.04 0.0

Outcome: T3 Age

T2 age 0.74 0.0

Covariances cov SE

T1 Positive Parenting 4 T1 Depressive Symptoms 20.02 0.0

T1 BLA–sgACC 4 T1 Age 20.06 0.0

T2 BLA–sgACC 4 T2 Depressive Symptoms 0.004 0.0

BLA, basolateral amygdala; cov, covariance; FDR p, false discovery rate–

Biological Psychiatry: Global Op
approximation with a 90% confidence interval (47). Good fit
was indicated by nonsignificant c2 values, comparative fit in-
dex values $ 0.95, and root mean square error of approxi-
mation values # 0.05. Full information maximum likelihood
estimation was used to produce model parameter estimates
and to account for missing data. Little’s test suggested that
data were missing completely at random (c2

177 = 197.32, p =
.141). All models were tested using the lavaan package in R
software (48). We used false discovery rate–adjusted p values
to correct for multiple tests (i.e., all modeled paths and co-
variances) within each model.
95% CI b p FDR p

2 20.10 to 20.01 20.22 .015 .028

8 20.00 to 0.31 0.17 .055 .072

2 20.26 to 0.23 20.01 .934 .934

2 0.00 to 0.08 0.16 .029 .044

1 0.01 to 0.03 0.23 .001 .003

2 20.04 to 0.02 20.06 .472 .535

5 20.12 to 0.08 20.03 .706 .750

8 0.39 to 0.70 0.50 ,.001 ,.001

4 0.04 to 0.17 0.27 .003 .008

1 20.01 to 0.05 0.14 .127 .154

9 0.01 to 0.38 0.19 .039 .055

3 0.15 to 0.67 0.31 .002 .005

2 1.00 to 1.07 0.98 ,.001 ,.001

5 0.65 to 0.83 0.86 ,.001 ,.001

95% CI r p FDR p

1 20.04 to 20.01 20.25 .001 .003

2 20.11 to 20.01 20.20 .010 .022

01 0.000 to 0.007 0.21 .017 .029

adjusted p value; sgACC, subgenual anterior cingulate cortex; T, time.
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RESULTS

Descriptive statistics and zero-order correlations are pre-
sented in Table 1. Adolescents reported higher levels of
depressive symptoms during the pandemic (T3) than before
the pandemic (T2) (mean difference = 0.21, SD = 0.18, p ,

.001). During the pandemic, 62% of adolescents reported
depressive symptoms in the clinically significant range (CES-
DC proportion of maximum score .0.25). Depressive symp-
toms were not significantly different across T1 and T2 (before
the pandemic) (mean difference = 0.01, SD = 0.13, p = .334).
BLA–sgACC connectivity was significantly stronger than
CMA–sgACC connectivity at both time points (all ps , .001).

The model that included bilateral T2 BLA–sgACC as the
connection of interest is presented in Figure 2. To increase
model parsimony, we excluded covariances among T1 vari-
ables that were unrelated based on zero-order correlations, as
well as paths from sex and age at T2 to BLA–sgACC con-
nectivity at T2 (both bs , 20.05, unadjusted ps . .554).
Excluding these covariances and paths did not diminish model
fit (c2

5 = 2.63, p = .757). We retained other paths and co-
variances involving sex and age in the final model but have
omitted them from Figure 2 to focus on the primary variables of
interest. The estimates for all modeled paths and covariances
are presented in Table 2.

Our final model that included bilateral T2 BLA–sgACC as
the connection of interest showed acceptable fit with the data
(c2

28 = 56.54, p = .001, comparative fit index = 0.96, root mean
square error of approximation = 0.07 [90% CI, 0.04–0.10]).
Less positive parenting at T1 was associated concurrently
with more severe depressive symptoms (r = 20.25, p = .003).
This pattern of parenting at T1 was also associated pro-
spectively with stronger BLA–sgACC connectivity at T2
(b = 20.22, p = .028) over and above the longitudinal effect of
BLA–sgACC connectivity at T1 (b = 0.17, p = .072). Stronger
BLA–sgACC connectivity at T2, in turn, was associated
concurrently with more severe depressive symptoms (r = 0.21,
p = .029) and prospectively with more severe depressive
symptoms during the pandemic (although this effect was not
statistically significant after false discovery rate (FDR) adjust-
ment; b = 0.19, p = .055). This longitudinal association was
independent of the effect of pre-pandemic (T2) depressive
symptoms on depressive symptoms during the pandemic (T3)
(b = 0.31, p = .005).

In the Supplement, we present an analysis showing that
BLA–sgACC connectivity did not mediate parenting effects on
depressive symptoms during the COVID-19 pandemic. The
Supplement also includes a multiple-group comparison of our
model in males and females, models that focused on either
right or left BLA–sgACC connectivity, a model adjusting for
motion, and a model adjusting for pubertal stage at T1 and T2
instead of for age. These analyses yielded similar results to our
primary model. Finally, the Supplement includes analyses
showing that BLA–sgACC connectivity at T2 did not moderate
the association between COVID-19-related stress and
depressive symptoms during the pandemic.

We also fit a model that included bilateral CMA–sgACC
instead of BLA–sgACC as the connection of interest. CMA–
sgACC connectivity at T1 and at T2 were not significantly
associated with parenting or depressive symptoms at any
296 Biological Psychiatry: Global Open Science December 2021; 1:29
assessment (all unadjusted ps . .147). The longitudinal stability
path of CMA–sgACC connectivity at T1 to CMA–sgACC con-
nectivity at T2 was not statistically significant after FDR
adjustment (b = 0.19, p = .070). Finally, to test the specificity of
our findings to BLA–sgACC connectivity, we measured FC
between the BLA and perigenual ACC (pgACC), defined as
Brodmann area 32 in the Mackey atlas (43). Positive parenting at
T1 was positively associated with BLA–perigenual ACC con-
nectivity at T1 (r = 0.20, p = .026). No other path linking BLA–
perigenual ACC connectivity to parenting or depressive symp-
toms was statistically significant (all unadjusted ps . .131).

DISCUSSION

Depressive symptoms in adolescents have increased during
the COVID-19 pandemic (6). We previously described in this
sample that adolescents reported experiencing more internal-
izing symptoms during the pandemic than they did in the 3
months before the pandemic (10). In the current analysis, we
found that adolescents reported significantly more depressive
symptoms during the early phase of the pandemic than they
did in years before the pandemic. In fact, during the pandemic,
the majority of adolescents in our sample reported experi-
encing depressive symptoms in the clinically significant range
(45), a higher rate than what has been reported in adolescents
before the pandemic (49–51). Taken together, we believe that
the elevated depressive symptoms documented at our T3
assessment were related, at least in part, to the pandemic. Not
surprisingly, however, the pandemic has been more conse-
quential for some adolescents than for others (6,7,52). In the
current study, we examined whether amygdala–sgACC
resting-state FC assessed 1–4 years before the pandemic
indicated risk for depressive symptoms in adolescents both
before and during the pandemic. Further, we tested whether
connections between the sgACC and specific subcomponents
of the amygdala were related to positive parenting and
depressive symptoms. We found that increased BLA–sgACC
resting-state connectivity at T2, but not earlier, was associ-
ated concurrently with higher levels of pre-pandemic depres-
sive symptoms and prospectively with higher levels of
depressive symptoms during the pandemic (although this
relationship was reduced to a trend after FDR adjustment). The
prospective association was independent of the longitudinal
stability of individual differences in depressive symptoms. Our
findings build on previous studies linking stronger BLA–sgACC
connectivity with stress and depression (13,14,17,19,20) by
demonstrating that this neurophenotype is associated with
depressive symptoms both before and during the pandemic.
To our knowledge, this study is among the first to report on the
utility of resting-state FC as a longitudinal predictor of mental
health in adolescents during the COVID-19 pandemic (10).

We found that the development of BLA–sgACC resting-state
FC was related to positive parenting. Specifically, higher posi-
tive parenting earlier in adolescence was associated prospec-
tively with the development of weaker BLA–sgACC connectivity;
furthermore, this was independent of the longitudinal stability of
BLA–sgACC connectivity. Prior research suggests that BLA–
sgACC connectivity is weaker during adolescence than during
childhood and adulthood (30). Thus, our findings suggest that
positive parenting is associated with the development of a
1–299 www.sobp.org/GOS
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neurophenotype that may be normative during adolescence and
that may confer reduced risk for depressive symptoms. Prior
research suggests that the amygdala and the ventral regions of
the ACC are sensitive to social-environmental protective and
risk factors (21). Positive versus aversive parenting practices
have been identified as social-environmental factors that are
related to resilience and risk for depressive symptoms related to
adversity and development in adolescents (22,23,27,53,54);
these types of parenting practices have also been associated
with neurophenotypes implicated in risk for depressive symp-
toms, including altered amygdala and sgACC functioning (32–
34). Our study extends this literature by examining longitudi-
nally the link between positive parenting and intrinsic connec-
tivity between the amygdala and sgACC. It is noteworthy,
however, that the indirect effect of positive parenting on
depressive symptoms during the pandemic through pre-
pandemic BLA–sgACC connectivity did not reach statistical
significance; we may have needed more statistical power to
adequately test this indirect path (55). It is also possible that
other neural connections act as a more robust link between
parenting and the development of increased versus decreased
risk for experiencing depressive symptoms during the
pandemic. For example, aversive parenting has been associ-
ated with positive connectivity between the amygdala and
medial prefrontal cortex during socioemotional processing in
adolescents (56), a pattern that has been linked to internalizing
symptoms (57,58). It is also noteworthy that in a model con-
trolling for pubertal status, the concurrent association between
BLA–sgACC connectivity and pre-pandemic symptoms was
reduced to a trend after FDR adjustment; furthermore, in our
primary model, the prospective association between BLA–
sgACC connectivity and depressive symptoms during the
pandemic was reduced to a trend after FDR adjustment. The
relations between BLA–sgACC connectivity and symptoms
appear to be modest in size. Thus, greater statistical power may
have been necessary to detect effects that were robust to an-
alyses that adjusted for advanced pubertal stage and for mul-
tiple tests. Longitudinal studies with larger samples are needed
to test these possibilities.

Notably, our findings linking amygdala–sgACC FC to posi-
tive parenting and depressive symptoms were specific to the
BLA. Prior research suggests that the BLA plays a critical role
in associative learning and evaluation and regulation of
emotionally evocative stimuli (15,40), that stronger BLA–
sgACC connectivity is related to stronger encoding of
negative-emotion related information in individuals with higher
internalizing symptoms (59), and that disruptions of these
psychological processes are related to depression (60). Thus, it
may be that adolescents who exhibit stronger BLA–sgACC
resting-state connectivity engage in psychological processes
that confer vulnerability for experiencing depressive symptoms
and that are sensitive to parenting influences. It is also possible
that the BLA, compared with other amygdala subdivisions, is
involved in coordinating activity with the sgACC. Nonhuman
animal research shows that amygdala projections to the ACC,
including the sgACC region, originate primarily from the BLA
(61,62). Adolescents in our sample had significantly stronger
BLA–sgACC connectivity than CMA–sgACC connectivity.

We should note several limitations of this study. First, we
used adolescents’ reports of parenting practices. Thus, as a
Biological Psychiatry: Global Op
neurophenotype linked to depressive symptoms, BLA–
sgACC connectivity may reflect negative perceptions that
adolescents have of their parents, not necessarily parenting
behaviors per se. A few neuroimaging studies have now in-
tegrated observational measures of laboratory-based parent-
adolescent interactions (24,34,35). Similarly, researchers
have recently used ecological momentary assessment to
gain a more comprehensive understanding of daily in-
teractions, behaviors, and emotions outside of the laboratory
in relation to adolescent neurobiology (63). In this context, it
is important that investigators conduct multimethod as-
sessments to further elucidate the role of parenting and
parent-child relationships in adolescent brain development in
general and, specifically, during periods of risk. Second, our
resting-state scan was 6 minutes in duration; longer resting-
state scans improve the reliability of connectivity estimates,
which is important for biomarker research (64), although es-
timates have been found to be reliable in scans as short as 5
minutes (65). Third, our model did not include potential
mechanisms linking BLA–sgACC connectivity to earlier
parenting practices and subsequent depressive symptoms.
Thus, it is not clear precisely how parenting practices earlier
in adolescence might lead to altered BLA–sgACC connec-
tivity, or precisely how this connectivity could influence later
depressive symptoms during the pandemic in an enduring
manner. Fourth, researchers have documented health and
social inequalities in the effects of the COVID-19 pandemic
(2). While our sample may not have spanned the full range of
financial and family problems that have been implicated in
adolescent mental health during the pandemic, it is important
to note that almost one-third of our sample reported that a
family member earned less money during the early phase of
the pandemic than before the pandemic (8). Finally, we used
a different measure of depressive symptoms at T3 (CES-DC)
than at T1 and T2 (CDI), which may have contributed to some
of our findings. It is worth reiterating, however, that symp-
toms at T3 were higher than what has been reported in pre-
pandemic studies that administered the CES-DC. Thus, it is
unlikely that the higher levels of depressive symptoms at T3
can be fully explained by differences in how adolescents
respond to the two measures.

Despite these limitations, the results of the current study are
important in indicating that the development of BLA–sgACC
resting-state connectivity in adolescents is related to the
quality of parenting practices and, furthermore, is associated
with concurrent depressive symptoms and prospective risk for
experiencing depressive symptoms during the pandemic. Ad-
olescents who perceive experiencing less parental warmth and
support may develop a pattern of BLA–sgACC connectivity
that is implicated in risk for mental health difficulties broadly,
including during periods of heightened risk for depression,
such as the COVID-19 pandemic.
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