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Abstract
Aims/hypothesis We examined whether the non-HLA susceptibility locus ERBB3/IKZF4 influences progression of type 1
diabetes stage specifically according to sex.
Methods SNPs of ERBB3 (rs2292239 T/G) and IKZF4 (rs1701704 G/T) were screened by allelic discrimination quantitative
PCR assay in first-degree relatives of type 1 diabetes patients who had developed at least one circulating autoantibody. The effect
of ERBB3/IKZF4 genotypes and sex, on the progression of single autoantibody positivity to multiple autoantibody positivity and
from multiple autoantibody positivity to diabetes, was studied by Kaplan–Meier analysis and multivariate Cox regression.
Results In the cohort of autoantibody-positive first-degree relatives, the risk allele frequencies for ERBB3 rs2292239 (T) and
IKZF4 rs1701704 (G) were increased. There was a significant male excess at the stage of multiple autoantibody positivity (p =
0.021). In Kaplan–Meier survival analysis, progression from single to multiple antibody positivity was delayed in female
participants with genotype ERBB3 GG (p = 0.018, vs ERBB3 TG+TT) or IKZF4 TT (p = 0.023, vs IKZF4 GT+GG), but not
in male participants. In multivariate Cox regression models, the interaction effects between female sex and ERBB3 GG (p =
0.012; HR = 0.305 [95% CI 0.120, 0.773]) or between female sex and IKZF4 TT (p = 0.011; HR = 0.329 [95% CI 0.140, 0.777])
emerged as potential determinants of delayed progression to multiple autoantibodies. The progression from multiple autoanti-
body positivity to type 1 diabetes appeared not to be influenced by ERBB3/IKZF4.
Conclusions/interpretation In siblings and offspring of type 1 diabetes patients, polymorphism in region ERBB3/IKZF4 may
affect disease progression at the level of epitope spreading in female individuals. Our findings suggest that interaction between
sex and ERBB3/IKZF4 may contribute to the post-pubertal male excess in type 1 diabetes.
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Abbreviations
autoAb Autoantibody
autoAb+ Autoantibody-positive
BDR Belgian Diabetes Registry
FDR First-degree relative
IAA Insulin autoantibodies
IA-2A Insulinoma-associated antigen-2 autoantibodies
ZnT8A Zinc transporter 8 autoantibodies

Introduction

Type 1 diabetes is characterised by an immune-mediated destruc-
tion of pancreatic beta cells leading to insulin deficiency. Unlike
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other autoimmune diseases, it exhibits a strong male bias for
diagnosis after age 15 years due to a steep post-pubertal drop
in incidence in female individuals only [1, 2]. This is also
reflected in a higher prevalence of islet autoantibodies
(autoAbs) in male than in female first-degree relatives (FDRs),
especially after age 10 years [3]. It has been suggested that this
male excess may relate to positive direct and indirect effects of
17betaOH-oestradiol (E2) and oestrogen receptors on beta cell
formation, function and survival [4, 5].

In children at genetic or familial risk followed frombirth,male
sex was reported to confer a higher risk of developing islet auto-
immunity by age 6 years [6], but to date there are no indications
of more rapid disease progression in autoantibody-positive
(autoAb+) male individuals. If anything, multiple autoAb+ girls
were reported to develop clinical onset more rapidly than boys
[7]. However, the striking age-dependent disease heterogeneity
[8] also warrants investigations in older risk groups which gener-
ate the majority of individuals eligible for prevention trials, as
well as the majority of new-onset patients [1].

In our cohort of persistently autoAb+ FDRs sex was not an
independent determinant of progression from single to multiple
autoAb positivity, or from multiple positivity to clinical onset, in
multivariate analysis [9, 10]. However, non-HLA polymor-
phisms may exert a stage-specific impact on disease progression
in at-risk (sub)groups in time-to-event analysis [11–13]. We

wondered whether confirmed non-HLA susceptibility genes
encoding proteins expressed in beta cells and implicated in cell
survival and proliferation may contribute to sexual dimorphism
in progression of subclinical islet autoimmunity. In this context
ERBB3 (which encodes erb-B2 receptor tyrosine kinase 3
[ERBB3]) emerged as a prime candidate to be investigated, as
ERBB3 is expressed in various cell types including beta cells
[14], and can modulate expression and transcriptional activity of
oestrogen receptors [15]. Genetic variation in the ERBB3/IKZF4
region was repeatedly associated with type 1 diabetes [14] and
used to improve prediction of islet autoimmunity and disease
progression [11, 13]. We hypothesised that ERBB3, or nearby
genes, may exert stage-related and/or sex-related effects on the
progression of asymptomatic disease in a population at increased
familial risk.We selected SNPs rs2292239 and rs1701704, locat-
ed near ERBB3/IKZF4, to investigate this in a cohort of autoAb+

FDRs followed by the Belgian Diabetes Registry (BDR) [9, 10].

Methods

Participants The BDR identified and followed 462 persistently
autoAb+ siblings and offspring (under 40 years of age at first
positivity) of type 1 diabetes patients between March 1989 and
December 2015 among a group of 7029 FDRs enrolled after
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informed consent from the relatives or their legal representative
[9, 10]. Progression of the relatives through the different stages of
subclinical autoimmunity is visualised in Electronic supplemen-
tary material (ESM) Fig. 1 (see ESM Methods: Participants, for
further details).

Analytical methods AutoAbs against insulin (IAA), GAD65
(GADA), insulinoma-associated antigen-2 (IA-2A) and zinc
transporter 8 (ZnT8A) were previously measured by liquid-
phase radiobinding assays and HLA-DQ and HLA-A geno-
types by allele-specific oligonucleotide hybridisation [9, 10].
ERBB3 rs2292239 and IKZF4 rs1701704 were genotyped by
allelic discrimination using TaqMan SNP genotyping assays
C_15967467_10 and C_8340619_10, respectively (cat no.
4351379, Applied Biosystems, Foster City, CA, USA), on a
QuantStudio 12 K Flex Real-Time PCR System (Applied
Biosystems) (see ESM Methods: Analytical methods, for
further details).

Statistical analyses Statistical differences between groups were
analysed with the Pearson χ2 test for categorical variables and
with the Kruskal–Wallis test for continuous variables. Kaplan–
Meier survival analysis with logrank test and multivariate Cox
regression analysis were used to assess progression from single
tomultiple autoAb positivity and frommultiple autoAbpositivity
to diabetes for different SNP genotypes, according to sex. Two-
tailed statistical tests were performed and p values <0.05 were
considered significant (see ESM Methods: Statistical analyses,
for further details).

Results

ERBB3 rs2292239 and IKZF4 rs1701704 genotypes Both
SNPs had call rates >98% within our autoAb+ FDR cohort
(ESM Fig. 1). The minor and major allelic frequencies of both
SNPs differed significantly from those in the European
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Fig. 1 Sex-specific effect of ERBB3 and IKZF4 on the development of
multiple autoAbs. Kaplan–Meier survival plots for conversion from
single to multiple autoAb positivity according to presence (red line) or
absence (blue line) of at least one risk allele for ERBB3-rs2292239 (a, c)
or IKZF4-rs1701704 (b, d) in either female (a, b) or male (c, d) FDRs.

For each arm the genotype and number (events/cases) are indicated above
the graph. The numbers of individuals at risk are indicated below the x-
axis. Significant effects (p<0.05) were observed for ERBB3 and IKZF4 in
female participants, but not in male participants
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population in the 1000 Genomes Project (p < 0.01; ESM
Table 1, ESM Methods), with an increased prevalence of the
ERBB3 T and IKZF4 G risk alleles in the cohort. Genotype
distributions for both SNPs did not deviate significantly from
the Hardy–Weinberg equilibrium (p > 0.05; ESM Table 1).
General characteristics of the study population are presented
per ERBB3/IKZF4 genotype and subclinical stage (ESM
Tables 2, 3). There was a significant male excess at the stage
of multiple autoAb positivity (p = 0.021; ESM Table 3), but
not at the stage of single autoAb positivity (p = 0.38; ESM
Table 2).

ERBB3/IKZF4 SNPs and progression from single to multiple
autoAb positivity Both SNPs affected epitope spreading
according to sex in Kaplan–Meier analysis. Progression from
single to multiple autoAb positivity was slowed in female
participants without ERBB3 risk (T) alleles (p = 0.018 vs
female participants carrying ≥1 T allele; Fig. 1a), and in
female participants without IKZF4 risk (G) alleles (p = 0.023
vs presence of ≥1 G allele; Fig. 1b). No such delay was
observed in male participants (Fig. 1c,d).

The suggested interaction between female sex and ERBB3
GG or IKZF4 TT genotype for delaying epitope spreading
was further examined bymultivariate Cox regression analysis.
Stepwise conditional forward models were built separately for
ERBB3 and IKZF4 (Table 1). In both models, the absence of

IAA as first autoAb (p < 0.05), older age at first autoAb posi-
tivity (p < 0.001), absence of the HLA-DQ2/DQ8 high-risk
genotype (p < 0.001) and presence of the HLA-A*24 allele
(p < 0.02) delayed the development of multiple autoAbs
(Table 1), in line with previous findings [9, 10]. In both the
model for ERBB3 and for IKZF4, being female or carrying the
low-risk genotype (GG and TT, respectively) did not impact
progression to multiple autoAb positivity when considering
both variables separately (Table 1). However, the interaction
effect between ERBB3 GG and female sex (p = 0.012; HR =
0.305 [95% CI 0.120, 0.773]) or between IKZF4 TT and
female sex (p = 0.011; HR = 0.329 [95% CI 0.140, 0.777])
significantly delayed epitope spreading (Table 1). No interac-
tion between ERBB3 or IKZF4 and the previously reported
independent determinants of epitope spreading [10] reached
significance in multivariate analysis (Table 1).

ERBB3/IKZF4 SNPs and progression from multiple autoAb
positivity to clinical onset Cox regression models built for
ERBB3 or IKZF4 confirmed previously reported indepen-
dent risk factors (HLA-A*24, IA-2A+ or ZnT8A+, younger
age) for accelerated progression from multiple autoAb
positivity to clinical onset [9, 10]. However, progression
was not influenced by ERBB3 or IKZF4 genotype, be it
alone or in interaction with sex or established predictors
(ESM Table 4).

Table 1 Cox regression analysis
of progression from single
autoAb positivity to multiple
autoAb positivity in FDRs

Variable Model ERBB3 Model IKZF4

p HR (95% CI) p HR (95% CI)

Age first autoAb+ <0.001 0.913 (0.881, 0.947) <0.001 0.914 (0.882, 0.947)

Non-IAA (0/1a) 0.037 0.576 (0.343, 0.967) 0.043 0.585 (0.348, 0.983)

Sex (0/1b) NM NM

HLA-A*24 (0/1a) 0.017 0.405 (0.193, 0.851) 0.011 0.381 (0.181, 0.802)

Non-(HLA-DQ2/DQ8) (0/1a) <0.001 0.332 (0.193, 0.570) <0.001 0.349 (0.203, 0.600)

ERBB3-GG (0/1a) NM –

ERBB3-GG × age first autoAb+ NM –

ERBB3-GG × non-IAA NM –

ERBB3-GG × sex 0.012 0.305 (0.120, 0.773) –

ERBB3-GG × HLA-A*24 NM –

ERBB3-GG × non-(HLA-DQ2/DQ8) NM –

IKZF4-TT (0/1a) – NM

IKZF4-TT × age first autoAb+ – NM

IKZF4-TT × non-IAA – NM

IKZF4-TT × sex – 0.011 0.329 (0.140, 0.777)

IKZF4-TT × HLA-A*24 – NM

IKZF4-TT × non-(HLA-DQ2/DQ8) – NM

Models built by multivariate analysis included either ERBB3 or IKZF4
a 0/1: no/yes
b 0/1: male/female

NM, not retained in stepwise conditional forward model (p>0.050); –, not used as variable in model construction
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Discussion

Our main finding is that the GG genotype of rs2292239 in the
ERBB3 gene slows progression of subclinical islet autoimmu-
nity in FDRs, but that this effect is restricted to female indi-
viduals and to the phase of epitope spreading. Similar results
were obtained for the closely linked TT genotype of
rs1701704 located near IKZF4. This sexual dimorphism in
protective action is independent from already known variables
associated with slower epitope spreading (older age, presence
ofHLA-A*24, absence of IAA and/orHLA-DQ2/DQ8) [10]. It
appears specific for the ERBB3/IKZF4 region as it was not
observed for established predictors of progression. The
increased prevalence of ERBB3/IKZF4 risk alleles in our
autoAb+ FDR population further suggests that these alleles
contribute to the disease risk. The data are also in agreement
with the reported male excess in autoAb+ individuals [3] and
suggest that ERBB3/IKZF4may contribute to the male excess
observed in FDRs with multiple autoAbs (ESM Table 3).
However, these findings require confirmation in independent
cohorts.

To date, most studies in autoAb+ individuals have been
following young children, often from birth after preselection
for HLA class II-inferred risk and/or prior islet cell antibody
(ICA) testing [11–13]. Our approach, to include also autoAb+

adolescents and young adults, is deemed a strength in the
context of the present report because autoAbs can appear at
any age while most patients develop clinical symptoms in
adulthood with a strong post-pubertal male bias [1, 9].

Oestrogens and oestrogen receptors are known to impact
beta cell function and formation, as well as immune cell
responses, in a sex-dependent way [4, 5]. Since ERBB3 has
been shown to control oestrogen receptor expression and
function [15], one may speculate functional interactions
between ERBB3 and oestrogen receptors in beta and/or
immune cells to underlie the sex-specific effect of ERBB3/
IKZF4. It has previously been reported that ERBB3/IKZF4
polymorphisms associate with higher risk of developing
(multiple) autoAbs, and with accelerated progression to clin-
ical onset after seroconversion to single autoAb positivity
[12]. Our results suggest that this reported acceleration may
rather be interpreted as a selective delay in epitope spreading
in ERBB3 GG/IKZF4 TT female individuals. Together with
the reported lower proneness to autoAb positivity in female vs
male individuals [6], this delay may contribute to the selective
post-pubertal drop in incidence in female individuals [1], but
requires confirmation in multiple autoAb+ individuals identi-
fied in the general population. Given the low number of FDRs
followed from the stage of first autoAb positivity to clinical
onset, the impact of the ERBB3 genotype on overall time to
clinical onset could not be accurately determined in this study.

In conclusion, we report that interaction of ERBB3/IKZF4
and female sex appears to delay the progression from 1 to ≥2

autoAbs and may possibly contribute to lower disease inci-
dence in female individuals, which needs confirmation in
independent cohorts of at-risk individuals.

Supplementary Information The online version of this article (https://doi.
org/10.1007/s00125-021-05546-9) contains peer-reviewed but unedited
supplementary material.
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