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The remarkable successes of convolutional neural networks (CNNs) in modern computer vision are by now well
known, and they are increasingly being explored as computational models of the human visual system. In this
paper, we ask whether CNNs might also provide a basis for modeling higher-level cognition, focusing on the core
phenomena of similarity and categorization. The most important advance comes from the ability of CNNs to learn
high-dimensional representations of complex naturalistic images, substantially extending the scope of traditional
cognitive models that were previously only evaluated with simple artificial stimuli. In all cases, the most successful
combinations arise when CNN representations are used with cognitive models that have the capacity to transform
them to better fit human behavior. One consequence of these insights is a toolkit for the integration of cognitively
motivated constraints back into CNN training paradigms in computer vision and machine learning, and we review
cases where this leads to improved performance. A second consequence is a roadmap for how CNNs and cogni-
tive models can be more fully integrated in the future, allowing for flexible end-to-end algorithms that can learn
representations from data while still retaining the structured behavior characteristic of human cognition.
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Introduction

The first demonstration of the potential impact
of deep learning came from the field of com-
puter vision, with the unprecedented success of a
deep convolutional neural network (CNN) called
“AlexNet” on the ImageNet challenge—a large-
scale natural image classification task.1 Through
a number of scientific and engineering advances,
researchers were able to train much larger artificial
neural networks than previously, and in doing so
apply them to a broader and more difficult range
of tasks. Beyond making networks deeper, suc-
cess was found to depend on matching the right
types of architectural and functional constraints

aBoth of these authors contributed equally.

to different kinds of task—collectively known as
inductive biases, or the aspects of model design
that influence the generalization performance of a
learning algorithm beyond the data themselves.2
For computer vision tasks involving images, the
inductive bias provided by deep stacks of learn-
able convolutional filters has proved instrumen-
tal in reaching state-of-the-art performance on
a large number of computer vision benchmarks
related to cognition, such as image classification,1,3,4
image segmentation and object recognition,5,6 and
visual question answering;7–10 as well as in visual
modules for algorithms solving more integrated
tasks.11 Developments in CNN structure and appli-
cations continue at an ever increasing rate in the
computer vision and machine learning commu-
nities, to the point where it has become rare to
hear of a statistical tool or application related to
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image processing that does not include a CNN
component.
In addition to solving problems in computer

vision, there has been increasing recognition that
CNNs could also serve as models of the human
visual system.12 CNNs have repeatedly proved to
be the best predictive model of neural and voxel
responses to visual stimuli in primate electrophys-
iology and human imaging studies, with the degree
of approximation roughly improving with CNN
performance.13–22 Interestingly, the level of corti-
cal and CNN hierarchy often appears to match,
with shallow CNN layers better predicting earlier
visual areas and deeper CNN layers better predict-
ing higher visual areas.15,17,18
CNNs represent an equally interesting opportu-

nity for the study of higher-level cognition. That is,
they may allow us to extend computational mod-
els of cognition from simple artificial stimuli to
more complex naturalistic stimuli representative
of the complex visual world in which our cog-
nitive abilities arise. In particular, cognitive psy-
chology has provided a range of influential com-
putational models that examine the fundamental
cognitive phenomena of similarity and categoriza-
tion, which typically abstract over details of neu-
ral implementation, and instead focus on explain-
ing human behavior in terms of the computational
problems posed by the environment and cognitive
processes that solve it.23,24 However, well-motivated
considerations—namely, having good representa-
tions of stimuli on which to base quantitative
analysis—have limited these models to examin-
ing behavior from laboratory-based experimental
paradigms using simple artificial stimuli. The rich
representations produced by CNNs solving related
computational tasks suggest they are a good can-
didate to extend this modeling framework further,
to more naturalistic stimuli. If effective, this would
allow us to study human behavior in more ecologi-
cally relevant settings—a goal that must be an ulti-
mate aimof any research program into themind and
brain.
In this review,we examine howCNNs can be used

to extend the range of traditional models of higher-
level cognition, and, in turn, whether insights from
studies of cognition can improve the performance
of CNNs in solving related computer vision and
machine learning tasks (Fig. 1). We begin with an
introduction to CNNs, and then show how rep-

resentations from these networks can be directly
integrated into existing cognitive models of similar-
ity and categorization as tools for feature learning
over diverse ranges of naturalistic stimuli. Although
off-the-shelf CNN representations prove our best
available substrate for modeling behavior, a grow-
ing number of cognitivemodels have been proposed
that increase their correspondence to psychological
representations using simple mathematical trans-
formations. Beyond capturing human behavior bet-
ter, thesemodeling regimes give us tools to integrate
more structured, cognitive constraints into normal
CNN training paradigms, and we review a num-
ber of examples where this has led to improved per-
formance. Finally, we give an account of how deep
learning and higher-level cognitivemodeling can be
more fully integrated in the future, in order to obtain
the advantages of both frameworks and provide the
next generation of cognitive models.

Deep and convolutional neural networks

Artificial neural networks have a long connection to
cognitive neuroscience, both as models of neurons
and as a brain-compatible computing paradigm.
Interest began with the investigation of the com-
putational properties of simplified models of single
neurons in the mid-20th century,25,26 inspired by
theories about the biology of neurons.27,28 One goal
was to emulate the cognitive properties of the brain
that had remained elusive for symbolic approaches:
good performance on inductive learning tasks,
robustness to error in the input or computation,
and graceful degradation of performance with
alteration of the type of input or task. A second
wave of research was driven by learning algorithms
that allowed researchers to train the hidden weights
in multilayer networks automatically, including
the “backpropagation” algorithm.29 Learning these
hidden weights allowed networks to solve non-
linear problems, with research moving quickly
from demonstrations on “toy” logical problems like
implementing the XOR function to more cogni-
tively interesting tasks. Key to the important series
of successes in this era was the identification of
different inductive biases as instrumental to solv-
ing different kinds of problems—for example, the
need for recurrent loops in time-dependent tasks,30
certain intermediate forms in linguistics,31 and con-
volutional filters in image classification problems.32
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Figure 1. Overview. Traditional studies have used simple artificial stimuli that can be mathematically represented unambigu-
ously as the substrate for models of higher-level cognition (left pathway). CNNs can be used to supply representations for more
complex naturalistic images, which can be further modified to better reflect human judgments before being input into the same
kinds of cognitive model (middle pathways).50,64,73 End-to-end models offer the opportunity to solve both of these problems
simultaneously and learn a representation for naturalistic stimuli that satisfies the constraints inherent in higher-level cognitive
models (right pathway).136

Many other components of the modern deep learn-
ing framework arose during this period from the
collaboration of psychologists, neuroscientists, and
the computational vision community, including the
development of hierarchical feed-forward visual
models based on stacks of nonlinear feature maps
and pooling between layers.33–36

The third wave of research into artificial neural
networks, now known as the “deep learning revolu-
tion,” was heralded in 2012 by the unprecedented
performance of a CNN with several hidden lay-
ers, “AlexNet,” on a difficult task of natural image
classification.1 Not only did the large improve-
ment in classification accuracy between AlexNet
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and previous state-of-the-art classifiers signal inter-
est, but also the rapid subsequent improvements in
performance seemed to announce that human-level
performance on human-relevant tasks might be in
sight. Althoughmost of the components of AlexNet
came from the first two waves of interest in artifi-
cial neural networks, it took a number of engineer-
ing and scientific advances to render performance
at this scale achievable. First, these successes came
hand-in-handwith exponentially increased compu-
tational power and the release of very large datasets
(e.g., ImageNet).1,3 Having more data and the com-
putational power to approximate more complex
functions meant the range of tasks that deep neural
networks could learn to perform was significantly
extended. But this belies the second, major influ-
ence, which is the scientific and societal side of the
revolution. Initial successes drew the attention of a
large community versed in statistics and computa-
tion, and the sheer breadth of architectures, learn-
ing rules, objective functions, and datasets tested by
the community became an important factor in itself.
Focus is now leveled not at laboratory problems, but
at real-world problem-solving environments, such
as the prediction and generation of text,37 perfor-
mance on video games,11 and large-scale categoriza-
tion of natural images.1,3
The deep neural networks that have provided the

closest correspondence with brain and behavioral
data using visual stimuli have been trained in the
context of classification by supervised learning,12,38
which refers to training a learning algorithm to
improve its predictions by comparing them to the
known correct answer—a form of teaching, or
“supervision.” This comparison is given explicit
form using an objective function, and the algorithm
must use the error signal it returns to maximize
its performance. In classification tasks, the input is
usually some naturalistic stimulus, such as an image
or text, encoded as a matrix or vector of activa-
tion values, and the output most commonly a cat-
egory label. Deep neural networks solve this prob-
lem by successively transforming activations using a
sequential stack of feed-forward layers, ending with
a category label (Fig. 2).
The basic computing element is a single unit, or

“neuron,” which computes a weighted sum of its
inputs and then passes this sum through a nonlinear
activation function—most commonly the rectified
linear unit, or, “ReLU,” which outputs all negative

input as zero, and all positive input without trans-
formation. These outputs are then treated as activa-
tions for the next layer of neurons. All mathemat-
ical operations are differentiable, and the weights
between computing units are model parameters.
This means that networks can be trained to make
better predictions using stochastic gradient descent,
in which the derivative of each weight can be cal-
culated with respect to the output error, and its
value updated accordingly over a number of itera-
tions. For a more detailed review of the elements of
supervised learning and deep neural networks, see
Ref. 38.
These principles form the basis of the deep learn-

ing paradigm. However, they leave unspecified
the exact connectivity and arrangement of layers
of computing units. Discovering the connectivity,
architecture, and objective function of a network
that provides the right inductive biases to allow net-
works to perform well is a key part of deep learning
research. The special operation that gives CNNs
their name, convolution, is one such inductive bias.
Typically, the lower layers of CNNs comprise many
local feature detectors, each of which is repeated
many times across the two-dimensional input.
Mathematically, this corresponds to convolution:
sliding a candidate visual pattern across a set of
activations from the layer below, outputting a “fea-
ture map” that shows how strongly the pattern was
detected recorded at each location (Fig. 2). The
pattern might correspond to an oriented Gabor
filter, a surface, or even a face.17,39,40 In a typical
CNN, many convolutional filters would be passed
across activation values at each layer, outputting
a stack of feature maps. The key to solving the
classification problem is to learn the weights of
these convolutional filters—that is, the patterns
that the filters are detecting—from the training
data.
There are a number of other important layer types

in modern CNNs. For classification, the exact loca-
tion of features (or combinations of features) is often
less important than their presence—a property
termed “local translation invariance.” This allows
a spatial down-sampling that is partially achieved
by another special layer known as a “pooling layer,”
which contains neurons that simply output the aver-
age ormaximum of a patch of input values. Another
major concern when training learning algorithms
with many weights is the problem of overfitting: the
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Figure 2. Abasic CNNarchitecture used for image classification. (A andB)Convolutional filters aremoved across the activations
of layers below, outputting feature maps. (C) A typical CNN architecture, based on AlexNet.1 From a 32× 32 RGB image, the first
convolutional block learns weights for 32 feature maps, followed by two max pooling layers. The output is a vector of category
probabilities; the category with the maximum of these values is taken as the output label. For computer vision tasks, the filters
that are learned in the first few layers typically correspond to more general, low-level image features, such as oriented Gabors and
colored blobs. The deeper layers tend to correspond to more task-specific, high-level features, such as faces or human or animal
figures.17,39,40

algorithm learns a solution that will not generalize
well because it is too specific to the training set at
hand. In machine learning, the statistical technique
of “regularization” is used to protect against this
phenomenon, by either including a term in the over-
all loss function that penalizes very large weights,
and therefore extreme solutions, or by including
regularization layers within the network. “Dropout”
layers, which probabilistically drop the output of
some units during training,41,42 are often used for
this purpose, meaning the network is forced not
to rely on very specific coactivation patterns, but
instead seek representations that are tolerant to
noise and better distributed across nodes.
In the last few layers of the network, fully con-

nected feedforward layers are often implemented.
This gives extra capacity for representational flex-
ibility and cross-class comparison. Finally, the clas-
sification layers consist of a linear decision rule for
each category, converted into a probability through

the softmax function:

p
(
Category i|x) = exp{x · wi}∑

i′ exp{x · wi′ } ,

where x is the input representation from the final
layer and wi is the weight vector for category i.
During training, these output probabilities are com-
pared to the known output label, typically using the
cross-entropy loss function, and the network back-
propagates the error between these as the super-
vised learning signal. The description we have
presented here characterizes the prototypical or per-
haps archetypal CNN, and over the last decade,
there have been many successful modifications of
this architectural framework and training regime—
for example, allowing lower layers to directly con-
nect to higher ones.43 For reviews of more recent
developments, see Refs. 38, 44, and 45.
Viewed altogether, the effect of passing an image

signal through a CNN is to learn the nonlinear
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transformation of the input that supports the best
linear separation between classes, with the aim of
learning a mapping that will generalize well to
other, related stimuli. The feedforward connections
between stacks of layersmean that at each successive
layer, increasingly abstract stimulus representations
are formed. As we shall see below, all of these fea-
turesmakeCNNs a promising candidate for extend-
ing cognitive models of similarity and categoriza-
tions to new stimulus domains.

Integrating CNN representations into models
of higher cognition
One success from the study of higher-level cog-
nition has been the development of a range of
high-precision mathematical models for various
aspects of human behavior,46 and in particular a
well-explored set of these models exists for the
fundamental cognitive phenomena of similarity
and categorization.47–49 Although these modeling
frameworks have driven an impressive range of
theoretical and empirical developments, they have
been most successful in a narrow range of cog-
nitive settings—namely, human behavior in highly
controlled experimental paradigms involving sim-
ple artificial stimuli.50,51 This focus has been moti-
vated by sensible aims. First, using simple and
user-defined stimuli facilitates the general scientific
method of isolating well-defined aspects of behav-
ior and physiology, in order to evaluate theories and
computational models at both the mechanistic and
functional levels. Second, most models of higher-
level cognition require as input stimulus represen-
tations that must “stand in” for inaccessible mental
ones, and simple artificial stimuli can often be rep-
resented in a straightforward manner. Using CNN
representations to extend these models to naturalis-
tic stimulimore representative of the complex visual
world is, then, an obvious and attractive target.
The classic technique for deriving representa-

tions used in cognitive models is multidimensional
scaling (MDS), which seeks a spatial representation
such that the distance between stimuli is inversely
related to pairwise stimulus comparisons, such as
similarity judgments.52,53 The recovered dimen-
sions are often found to be highly intuitive, and rep-
resentations of stimuli, therefore, psychologically
meaningful. However,MDShas two key limitations.
The first is that it requires similarity judgments
between pairs of stimuli, meaning data collection

rapidly becomes unachievable as the desired stim-
ulus set grows. The second is that there is no mech-
anism to generalize the inferred representation to
novel items, which usually come without an accom-
panying set of similarity judgments with what we
have already observed. Partially as a means of cir-
cumventing these limitations, studies using larger
stimulus sets have designed simple artificial stimuli
that can be directly represented using a low num-
ber of obvious perceptual dimensions of variation.54
On one hand, these approaches result in straightfor-
ward stimulus representation and precise manipu-
lation of participants’ knowledge of stimuli—both
of which allow experimental design and analysis to
be focused on probing the difference between can-
didate modeling strategies. On the other hand, this
means that the stimuli that have been used are typ-
ically far removed from the types that are used for
reasoning about using our natural cognitive abili-
ties and that most stimulate our desire to model the
mind (Fig. 3).
The hierarchy of representations learned by

CNNs for complex naturalistic inputs can help to
close this gap. These representations are the outputs
of intermediate functions in a composition (i.e., hid-
den layers), and thus constitute models of represen-
tation learning—although often only implicitly in
service of the training objective such as classifica-
tion, and not necessarily designed to mimic human
perception. Further, because these networks are able
to learn from millions of data points, and because
they are validated on held out data, they generalize
broadly, and can be used to characterize the con-
tent of diverse images. For example, CNNs trained
exclusively to classify naturalistic, uncurated digital
photographs of objects constitute impressive expla-
nations of human shape sensitivity for novel, artifi-
cial shape stimuli that are devoid of context.55 Taken
together, these properties provide a compelling a
priori argument that training such networks to solve
human-relevant tasks over large datasets of natural-
istic stimulimay produce general purpose represen-
tations, not unlike human ones, that can be used as
a basis for cognitive modeling. However, just how
similar these representations are to human psycho-
logical representations, and the nature of their dis-
crepancies, is only recently coming into focus.
A first empirical indication that CNN represen-

tations might be of cognitive interest in this context
came from a study by Lake et al., who examined how
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Figure 3. Representative stimuli from seminal psychological studies of categorization. Top row: typical artificial stimuli repre-
sentative of those used in traditional studies of cognition. Bottom row: the mathematical representation of these stimuli that are
input into cognitive models. Reproduced from Ref. 50.

well CNN activations at different layers predicted
human category typicality ratings on novel images
from eight ImageNet categories.56 They tested three
CNNs pretrained on ImageNet against the state-
of-the-art classifier from computer vision prior to
CNNs (scale-invariant feature transform, “SIFT”
features57 derived from ImageNet, followed by sup-
port vector machine, “SVM,” classifiers).58 The best
predictive performance came from the final clas-
sification layer, where the average category acti-
vations from CNNs correlated very highly with
human typicality ratings. The SIFT+SVM base-
line, by contrast, scored poorly. Furthermore, for
the categories where the CNNs performed poorly,
there was some indication that this was due to the
training image distribution from ImageNet being
particularly skewed, and not as representative of
the real world. Finally, the predictive ability of
CNNs decreased monotonically with distance from
this final layer, with the shallowest layers uncorre-
lated to the human judgments, indicating that, like
human learners,59 CNNs learn to use complex and
category-specific features for natural stimuli as the
basis of category typicality judgments.
In the remainder of this section, we summarize

more recent results evaluating CNN representations
in models of similarity and categorization. In gen-
eral, we find that while CNN representations per-

form surprisingly well in capturing human behavior
when used in conjunction with traditional cogni-
tive models, they can always be made better by sim-
ple mathematical transformations. When related to
each other, these methods constitute the beginnings
of a modern toolkit for representing more natural-
istic stimuli, based on data and theory from the cog-
nitive sciences, statistics, and computer science.

Similarity

Judgments of stimulus similarity have long been
of interest to psychologists, given both their intu-
itive importance to numerous cognitive processes60
and their apparent correspondence to law-like
human generalization behavior.61 However, their
most enduring influence in the field comes from
their utility in revealing the structure of psycholog-
ical representations—the comparatively high-level
internal representations of external stimuli that are
initially processed as raw sensory data. The pre-
cise structure of these representations is impor-
tant to understand, because it shapes the down-
stream inferences that they support. For example,
representing animals as a function of their rela-
tive size and color may lead to considerably dif-
ferent generalizations than representing them via
their muscle mass and position on the food chain.
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Similarity judgments provide strong clues as to
which representations people might be employing,
which are otherwise not directly observable. More-
over, compared to measurements of neural activity
in visual brain areas, human similarity judgments
exhibit additional structure and comparably little
measurement noise.62 Previous work often makes
the assumption that similarity is a relatively sim-
ple metric that operates over pairs of stimuli in the
representational structure (e.g., Euclidean distance
between points in a metric space or Hamming dis-
tance for nodes in a hierarchy). Holding a given
metric fixed, algorithms, such as multidimensional
scaling, agglomerative clustering, and additive clus-
tering, allow researchers to infer continuous and
discrete feature representations that best explain
patterns of observed human similarity judgments.63
Applying these methods has been highly produc-
tive, often revealing crucial latent mental structure
in sets of stimuli, and providing relatively unbi-
ased candidates for stimulus representations that
help explain downstream cognitive processes. Since
these methods infer representations directly, they
do not require a model of representation learn-
ing (i.e., an explanation of how the representations
came to be, or why). The advantage of this approach
is that it allows researchers to immediately begin
to further study the processes that operate over
these representations; but it is also a disadvantage,
because it lacks exactly that level of explanation.
To begin to evaluate the precise correspondence

between representations from CNNs and humans,
Peterson et al. compared similarity scores (inner
products) for pairs of images in the hidden-layer
feature space of a CNN to average pairwise simi-
larity ratings from people.64 Across six sets of 120
images (720 in total) and over more than 400,000
total judgments, CNN representations were found
to give a much better account of human behav-
ior than traditional computer vision methods, cap-
turing approximately half of the explainable vari-
ance in similarity ratings for five out of six image
sets.While giving a reasonably good off-the-shelf fit,
what seemed to be missing in the CNN representa-
tions was the taxonomic structure humans employ
(e.g., making a pronounced distinction between
primates and nonprimates in the case of images
of animals), as revealed by hierarchical clustering
(Fig. 4). Next, Peterson et al. showed that learn-
ing a set of dimensional weights that are applied to

the inner product calculation in the CNN feature
space produced similarities that captured nearly all
of the remaining explainable variance in human
judgments in most cases.64 This formulation fol-
lows one long tradition in cognitive psychology of
modeling similarity as the result of a comparison of
objects in terms of a set of features,65–67 expressed
in matrix-vector notation as follows:

S
(
x, y

) = xT Wy,

where x and y are vectors of features associated with
two stimuli, x and y, andW is a diagonal matrix that
serves to weight each dimension in the comparison.
Learning these weight parameters can be thought
of as improving the similarity metric that oper-
ates over these representations in a way that bet-
ter mimics human judgments—in particular, apply-
ing attentional weights to each feature. When these
weights are constrained to be non-negative, it can
also be thought of as a fixed linear transformation
(axis-aligned scaling) of the original feature space,
producing a modestly altered representation. The
more human-like similarities obtained through this
method also largely reproduced the latent hierar-
chical structure that was not previously observed in
the CNN representation (Fig. 4). Since this method
was validated on out-of-sample image pairs, it pro-
vides one of the first generalizable formulas for
automatically producing human-like psychological
representations for arbitrary naturalistic images:
correct the CNN representation once, then apply
the learned transformation to all future images that
are input to the network.
Several subsequent studies have extended this

method to a wider range of mathematical trans-
formations, and in each case shown that doing so
allows CNN representations to afford better and
more interpretable models of human behavior.
Attarian et al. showed the fit to human judg-
ments can be improved further by allowing the
transformation matrix, W, to take increasingly
unconstrained forms.68 They applied these trans-
formations to a dataset of similarity judgments over
natural images of birds69 that take a slightly dif-
ferent form from the absolute ratings described in
the studies above: given a query image, participants
must answer which of two (or more) reference
images is most similar. Using the nonexponentiated
Luce–Shepard choice rule,52,70 the probability of
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Figure 4. Transforming CNN representations using similarity judgments. (A) Representations of images derived from human
similarity judgments using MDS exhibit meaningful variation and segregation (left panel). Using MDS to examine the similarity
structure of raw CNN representations shows they fail to capture these relationships (center panel). Improving the fit of CNN
representations to human similarity judgments recovers this structure (right panel). (B) Dendrograms of image representations
also display meaningful hierarchical categorical structure (top panel) that is not present in raw CNN representations (middle
panel) but that is recovered by modifying them using the learned similarity transformation (bottom panel). Reproduced from
Ref. 64.

any single judgment becomes as follows:

p
(
y ismore similar to x|x, y, z) = S

(
x, y

)

S
(
x, y

) + S(x, z)
.

Attarian et al. modeled each similarity compari-
son as follows:

S
(
x, y

) = f(x)T W f
(
y
)
,

where x and y are CNN representations of images
x and y, and f (·) is a linear function that acts to
reduce their dimensionality. The authors use prin-
cipal components analysis (PCA) for this compres-

sion, such that the transformationmatrix acts on the
compressed space of k dimensions (i.e.,W ∈ Rk×k).

By choosing different constraints on W, Attar-
ian et al. allowed a range of linear transforma-
tions on the compressed CNN representations.68
They compare the untransformed but compressed
CNN representations (W = I), a dilation of com-
pressed representations encoded in non-negative
diagonal matrix characterized by a vector of diago-
nal components,w, with and without regularization
(W = diag(|w|)), a symmetric matrix (Wij = Wji),
and a full, unconstrained matrix. In general, they
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Figure 5. Increasing the flexibility of the linear transforma-
tion of CNN representations improves fit to human similar-
ity judgments. As the constraints on the transformationmatrix
are relaxed (see legend, bottom to top), the accuracy of model
predictions increases. Increasing the number of principal com-
ponents used to represent the compressed CNN representa-
tions also improves performance and widens the gaps between
model subtypes. Error bars represent ± 1 SEM over five cross-
validation folds. Reproduced from Ref. 68.

find that each of these successive relaxations allows
for a closer fit to the human judgments (Fig. 5),
replicating and extending the findings in Ref. 64.
Within these data are two other findings of note.
The first is that regularization did not significantly
improve the performance of the dilation, and the
more complex models performed well on held-out
triples. This indicates these transformations do not
lead to overfitting despite large ratios of parameters
to judgments—perhaps because of the functional
restrictions to linear transformations. The second is
that allowing similarity judgments to be asymmet-
ric significantly improves the model. This is in line
with the same finding from classical debates about
the similarity in the psychological literature.65
Jha et al. proposed a model that jointly reduces

the dimensionality of CNN representations and
allows for more complicated linear transforma-
tions by using a bottleneck layer.71 This lower-
dimensional, fully connected linear layer is added
on top of the final representational layer of a pre-
trained CNN. It serves to learn a projection of
images into a lower dimensional space such that
the similarity between two images is given by the
inner product of these lower dimensional and trans-
formed representations. As every component is dif-
ferentiable, it can be trained by backpropagation
using similarity judgments themselves, allowing the

dimensionality reduction to preserve information
strictly relevant to similarity comparisons. This is
in contrast to PCA, which aims to capture the vari-
ance of the original data in an unsupervised man-
ner. In the context of the similarity transformation
above, we can think of this as transforming and
reducing the CNN representation space according
to some k×d dimensional matrix, V, where d is the
dimensionality of the raw CNN representation (i.e.,
V ∈ Rk×d).

Using the datasets originally given in Ref. 64, Jha
et al. found that surprisingly few bottleneck dimen-
sions are needed to offer a good approximation
of human similarity judgments.71 As the number
of bottleneck dimensions increases, performance
approaches that given by the full transformation
over the 212-dimensional space of the original CNN
representation. However, this increase is not lin-
ear, and an elbow to performance benefits is seen at
around 24–26 dimensions (Fig. 6, top left). The PCA
projections almost always perform worse than the
bottleneck approach, corroborating the idea that the
information relevant to similarity judgments is an
important but not exclusive component of higher-
level CNN representations (Fig. 6, top right).
Varying the size of the bottleneck layer offers the

opportunity to explore what information from the
CNN representations is used to model similarity
judgments at different levels of granularity (Fig. 6,
middle). Jha et al. found the principal components
of the bottleneck representations reflected intuitive
dimensions of variation in each original dataset,
for example, separating images based on broad
and continuous categorical distinctions, such as
the animacy of objects, or the number of wheels.71
Dendrograms constructed from bottleneck repre-
sentations revealed that increasing the size of the
bottleneck introduces finer levels of distinction
(Fig. 6, bottom), mirroring the hierarchical aspect
of clustering observed in human cognition and that
found by parallel methods for the interpretation of
CNN representations.72

One way to view the methods detailed above is
as conducting fine tuning and transfer learning.39
CNNs are first trained on large naturalistic image
datasets, in order to ensure they learn relevant
and general image features and do not overfit,
and then these features are modified using sim-
ilarity judgments to better highlight or extract
the statistical information humans rely on when
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Figure 6. Exploring the effect of dimensionality reduction onmodeling similarity judgments. Top row: CNN representations for
a number of image datasets were reduced by using similarity judgments (left) or PCA (right). Performance using all representa-
tions and a simple dimensional reweighting are shown as a dashed line for each dataset. Middle row: fixing a small bottleneck size
and projecting bottleneck representations using PCA allows interpretation of the information being encoded by the network and
extracted for the similarity comparison. Bottom row: dendrograms for the animal dataset based on representations from bottle-
neck sizes of two and six show the CNN representation, and reduction captures similarity information according in a hierarchical
manner. H, herps; B, birds; P, primates; R, rodents; WC, wild cats; G, grazers; E, dogs, bears, and large animals. Reproduced from
Ref. 71.
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making the same types of comparison. A second
set of methods for refining CNNs in this man-
ner has adapted pretrained CNNs to model MDS
coordinates for images, derived from similarity
judgments.73–75 If the CNN is able to learn a faith-
ful and psychologically meaningful MDS embed-
ding, it can then be used to generate approxi-
mate coordinates for potentially infinite numbers
of novel stimuli, overcoming the inherent lack of
generalization from traditional MDS. In two stud-
ies, Sanders and Nosofsky73,75 examined similarity
judgments on a dataset comprising 360 images of
subtypes of igneous, metamorphic, and sedimen-
tary rocks.76 First, they pretrained models on Ima-
geNet to derive broadly generalizable base features
and prevent overfitting to their own smaller dataset.
Then, they generated a set of MDS coordinates for
a subset of geological images, replaced the upper-
most layers of CNNs with unlearned weights, and
restarted training using the MDS co-ordinates as
output targets for each image. If only the new lay-
ers are trained, this is known as “transfer learn-
ing”; if all layers are trained with a small learn-
ing rate, “fine-tuning.”39 After training, their CNNs
produced approximate MDS coordinates, and in
both cases, the authors find a reasonably high corre-
lation between the CNN- and human-derivedMDS
coordinates for a held out set of images. In the
second study, Sanders and Nosofsky assessed the
generalizability of the raw MDS space and found
that the majority of MDS dimensions had a high
degree of subjective and objective correspondence
with a second MDS space for a novel set of images
from the same geological categories.75 The remain-
ing dimensions, however, were less easy to relate and
exhibited lower correlation scores. The CNN-MDS
approximations also showed reasonably high corre-
lations with the “true” MDS coordinates over the
four dimensions that were best preserved between
original and novel image sets. The approximations
were, however, quite poor for the remaining four.
The methods outlined above have been able to

use behavioral data related to similarity to fine-
tune CNN representations such that they better
reflect human similarity structure. Peterson et al.
investigated whether CNNs could be fine-tuned in
this manner simply by using more general category
labels.77 The ImageNet labels that CNNs are nor-
mally trained on correspond to Rosch’s “subordi-
nate” level.78,79 These are relatively specific, com-

prising, for example, breeds of dog (e.g., “dalma-
tian”). Peterson et al. trained CNNs on a subset
of these labels for which the super-class label was
also provided,80 labels that corresponded to Rosch’s
“basic” level (e.g., “dog”).77 Forcing the CNN to
learn a transformation that grouped stimuli accord-
ing to both levels of this hierarchy was enough to
lead to representations that both captured human
similarity judgments better and exhibited much
more structured and human-like taxonomic hierar-
chies. The authors also found that CNNs that were
trained or supplemented with basic-level super-
vision provided a stronger match to the “basic-
level bias” described in human generalization, so
called because given a new label and an associ-
ated image, people will tend to generalize this label
to other images at this level of description.59,79 As
with recovering the shape bias described in Ref. 55,
ensuring that CNNs reproduce such biases is yet
another avenue for assessing and improving their
correspondence with humans.
The above studies provide evidence that, beyond

comparable task performance, CNNs themselves
may provide a useful source of image features that
can be used to capture aspects of human psycho-
logical representations of naturalistic images. They
also demonstrate that cognitively motivated strate-
gies for modifying these representations can lead
to better accounts of human behavior. Developing
these strategies and integrating them more directly
with the feature learning stage are important next
steps for these frameworks, as well as examining
important failure cases, in which the abstract cor-
respondences between stimuli that humans identify
are not well captured by CNNs.81,82

Categorization

A promising second candidate for the direct
integration of CNN representations is the study
of categorization—perhaps the most fundamental
cognitive phenomenon following from similarity.
The problem of categorization can be formulated as
deciding how to assign a novel stimulus to a new
or existing category, and it makes intuitive sense
that this is in turn related its similarity with pre-
viously encountered category members. Although
it seems like something has been lost—now only
a subset of stimuli is being considered for any
given comparison—categories add structure that
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allows us to model within- and between-category
interactions, and therefore a richer and more pre-
cise range of generalizations. Categories form the
basis of most cognitive frameworks for understand-
ing the brain and mind, and virtually all computa-
tional paradigms begin with a definition or expla-
nation of them.83

Theories of categorization began with Plato and
Aristotle, who posited that categories were best
represented by a single ideal form or all previ-
ously encountered members, respectively.84,85 More
recently, the study of categorization has tracked the
development of the cognitive sciences in general,
beginning with the idea that people use rules or
definitions to categorize stimuli.86,87 However intu-
itive this idea seems, it was challenged in the 1970s
by the work of Eleanor Rosch and colleagues, who
showed that natural categories often lack central,
defining features and exhibit graded category struc-
ture better characterized by a relation of family
resemblance.88–90 Strong evidence in support of this
view came from a number of empirical findings, in
which a stimulus could bemore or less “typical,”59,79
unseen prototypical stimuli were preferred to other
unseen stimuli from the category during recogni-
tion tasks,91 and that some levels of label (e.g., the
“subordinate” level) worked better than others in
explaining category judgments.78

Up until recently, the role of cognitive model-
ing has been to propose how the similarity between
a stimulus and category should be computed in
order to capture these behavioral effects, both in
terms of the representation of existing category
members and the formulation of the comparison
itself. Two influential modeling strategies have been
developed in this context. The first, known as a
prototype model, assumes that categories are repre-
sented by their average or central tendency.92 The
second, known as an exemplarmodel, assumes that
categories are represented by all of their known
members.93,94 These strategies can be unified by
identifying the computational task of categorization
as probability density estimation,48 and in particular
as inferring the probability a participant will choose
a particular category label given an image. This
more precise framing led to the fine-grained explo-
ration of model predictions in laboratory settings,
using sets of artificial stimuli that were designed
to differentiate model performance, with exemplar
models often winning out.92–105 Since then, extrap-

olating the full probabilistic reframing of catego-
rization has resulted in a number of other statis-
tical strategies that can account for human behav-
ior in a wider range of settings, such as learning
mixture density estimators composed of a number
of (sub)prototypes,106,107 sharing exemplars across
categories,49 and allowing the categorization strat-
egy to adapt flexibly to the number of stimuli
observed.24,49
Battleday et al.50 investigatedwhether thesemod-

els could be extended to more naturalistic settings
by using CNN representations to examine their pre-
dictions over a wide range of natural images. They
first collected over 500,000 human categorizations
on 1000 images from each of the 10 categories in
the test subset of CIFAR-10,108 a behavioral dataset
they call CIFAR-10H. For each image, they gener-
ated a range of machine learning representations
(Fig. 7), including raw pixel representations, fea-
tures derived from computer vision and engineer-
ing (histograms of oriented gradients; HOG), the
activations of the latent layer of a generative adver-
sarial network that uses convolutions (BiGAN), and
the upper-layer activations of twoCNNs—AlexNet1
and DenseNet.43 Finally, they generated predictions
from a range of prototype and exemplar models
using the machine learning representations. These
strategies draw on a second influential tradition
in modeling similarity: this time as an exponen-
tially decreasing function of distance in some psy-
chological space.61 Prototype and exemplar models
specify this similarity calculation mathematically,
and convert it into a probability by relating it to
the inverse distance to the category prototype or
summed inverse distances to all category members,
respectively:

S
(
y, C

)
Prototype = exp−d

(
y, μc

)
,

S
(
y, C

)
Exemplar =

∑

x∈C
exp−βd

(
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)
,

where C is a category, y is a stimulus, y is the mul-
tidimensional representation of that stimulus, and
S(·, ·) is our similarity function. This representation
is compared with the category mean for prototype
models or all known category members for exem-
plar models. The similarity function, S, is additive:
if a category is represented by a vector of stimuli
(as in the exemplar model), S computes the sum of
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Figure 7. The feature basis used formodeling categorizations of natural stimuli affects overallmodel performancemore than cate-
gorization strategy. Top row: two-dimensional linear discriminant analysis projections of the representations from each computer
visionmethod. The feature bases across the x-axis roughly track the development of computer vision: raw pixels, hand-engineered
features (HOG), the latent space of a generative network that uses convolutions (BiGAN), and abasic (AlexNet) andmore advanced
(DenseNet) CNN. Bottom row: categorization models using different prototype and exemplar strategies were trained on each of
these feature bases, withmodel flexibility beingmore obviously related to overall model performance than categorization strategy
(i.e., prototype or exemplar). Baselineswere provided by taking the softmax probabilities from the final CNN layer as the similarity
measurement. Reproduced from Ref. 50.

similarities between y and the representation, x, for
each stimulus in C. Finally, the exemplar model
contains a “specificity” parameter, β, that scales
all distance calculations by the same amount prior
to exponentiation. This acts to sharpen or lessen
the influence of exemplars on subsequent category
judgments, and therefore allow the model to con-
trols for overall stimulus discriminability in the rel-
evant psychological space.94
Battleday et al.50 found that CNNs provided

the best representational basis for modeling the
human categorization judgments, outperforming
deep unsupervised and traditional computer vision
methods. Indeed, the choice of stimulus representa-
tion affected overall performance to a much greater
extent than the choice of categorizationmodel. This
is particularly interesting given the main focus in
categorizationmodeling has been the categorization
strategy, whereas the unambiguous nature of sim-
ple artificial stimuli has allowed their representation
to remain fixed. The loss of such neat factor-
ization when analyzing naturalistic stimuli estab-
lishes a need—at least initially—to focus on the less
well-integrated question of perceptual representa-

tion. When restricting analysis to the CNN rep-
resentations, categorization models with more free
parameters—and thereforemore flexibility to trans-
form CNN representations—performed the best,
and better than competitive baselines. This indi-
cates that the CNN representations also naturally
contain latent information relevant to the kinds of
features humans use to make category judgments,
which can be further refined using simple linear and
quadratic transformations. Another unexpected
finding was that prototype and exemplar models
performed roughly the same across a varied range of
image representations, contrasting with what might
be expected based on previous laboratory work in
which exemplar models are needed to capture arti-
ficial categories with more complex structure.
There are known cases in which prototype

and exemplar models make similar predictions,
for example, if category representations are well-
captured by simple Gaussians, but how these situ-
ations relate to high-dimensional representations of
complex stimuli remains unclear. Battleday et al.50
conducted a simulation study that investigated how
the number of dimensions and training samples
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affected the different modeling strategies. They
found that while indeed in low-dimensional spaces
exemplar models outperform prototype models, no
such difference exists in high-dimensional repre-
sentational spaces after training with very large
numbers of stimuli. This is the regime in which
CNN-based representations of naturalistic images
allowus to operate. Further theoretical investigation
is needed to frame the import of these depen-
dencies, as well as to make precise the relation-
ship between the size and nature of representational
space.
A number of the studies investigating CNNs

in the context of similarity outlined above have
used categorization as a downstream application
to test the utility of the representational spaces
their methods derive. For example, Peterson et al.
noted that people also found it much easier to
learn novel categories of natural images when
these were constructed based on the similarity
between CNN representations rather than simi-
larity between HOG/SIFT computer vision engi-
neering features.64 When these CNN representa-
tions had been transformed to better align with
human similarity data, categories were even eas-
ier to learn. Second, Sanders and Nosofsky exam-
ined categorizations for a held-out set of data taken
over 120 novel images of geological samples, taken
from the same 30 categories that they used to
train CNNs to approximate MDS coordinates (see
above).73 When a low-parameter exemplar model
was supplied with the CNN-MDS representations,
it was able to model these human categorizations
very well. In a further study, Sanders and Nosofsky
also tested an exemplar model on this categoriza-
tion data, but this time compared its performance
using a number of CNN representations, including
a setmodified to better reflect human (dis)similarity
judgements.75 They found the CNN-derived MDS-
approximations allowed much better performance
than the simple, off-the-shelf CNN image represen-
tations, and could be further improved by train-
ing the CNN to also predict “missing” dimensions,
appended to the normal MDS co-ordinates.76
A convergent set of findings comes from the

closely related field of object recognition. Annis
et al.109 showed that CNNs pretrained on Ima-
geNet generated intuitive, correctly clustered, and
robust representations of entirely novel experimen-
tal objects, including Greebles,110 Ziggerins,111 and

Sheinbugs.112 These more complex artificial stimuli
exhibit naturalistic qualities and are difficult to rep-
resent by a few obvious dimensions orMDS, and yet
ensure participants have no prior experience with
the object category. Annis et al. then used these
CNN representations to model a set of data113 in
which participants had to decide whether a second
object, possibly rotated or scaled, was the same as a
first, separated by a delay.109 The similarity between
the first and secondobjectswas used as the input to a
hierarchical Bayesian evidence accumulationmodel
in order to model participants judgments and reac-
tion times. As with the categorization studies above,
Annis et al. found that using CNN representations
together with the cognitive model outperformed a
number of baselines, that the choice of CNN rep-
resentation was the major determinant of perfor-
mance, and that the best-performing model could
be improved bymodifying theCNNrepresentations
to also be robust to rotations. They also explored a
range of methods for finding transformation, com-
plementing the analysis conducted by Refs. 64 and
68 for similarity. See also Ref. 114, for another suc-
cessful application of CNNs and evidence accumu-
lation models, this time in modeling the decisions
and reaction times of novices and experts in medi-
cal image classification.
There are a number of other studies that inves-

tigate aspects of the relationship between image
categorization, cognitive models, and CNNs. As
with category typicality judgments,56 the predictive
benefit of CNN representations for modeling cat-
egorizations was found to increase with increas-
ing depth.115 On the other hand, representations
from shallower CNN layers provided the best basis
for capturing visual biases observed in in particu-
lar pigeons classifying cardiograms,116 suggesting a
role for CNNs in comparative studies of visual cate-
gorization across other types of visual system.
Along with typicality and similarity, CNNs

appear our best available source of representations
for modeling behavior over naturalistic stimuli
in another fundamental cognitive domain—
categorization. In general, studies have found two
approaches successful in improving these represen-
tations further: adapting them to better fit similarity
judgments before applying categorization models,
or by designing flexible categorization models that
transform CNN representations further during
parameter fitting. More generally, it appears the
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role of stimulus feature learning can no longer be
withheld from formal accounts of categorization
overmore complex types of stimuli and considering
both together will be necessary for characterizing
human category judgments. This echoes a long-
accepted perspective in the machine learning
literature and has been called for previously in the
cognitive sciences.117

Improving deep neural networks using
concepts from cognitive modeling
In the studies above, CNNs have been primarily
used to provide representations of stimuli to which
traditional models of higher cognition can then be
applied. We have also seen that it has always been
possible to make these representations better by
transforming them to fit held-out behavioral data.
In applying andmodifyingCNN representations for
this new set of problems, a number of insights and
models have been developed that are also valid to
the machine learning and computer vision contexts
in which CNNs were originally developed. In this
section, we discuss how this knowledge can be inte-
grated back into normal CNN training paradigms
in order tomake them better cognitivemodels, with
the simple aim of improving their performance.
A central goal of the transformations above was

to better emulate the similarity structure and graded
category membership assumed by cognitive models
and exhibited in human categorization data. This
type of structure has been a central and organiz-
ing feature of categorization theory in general and
has been found to widely apply to natural categories
in general, including the types of stimuli CNNs are
typically applied to.59,79,88,89 In the field of natural
image classification, however, emulating such struc-
ture is not normally viewed as a priority. Rather,
the “top-one” accuracy of a classifier is prioritized,
achieved through associating a “ground-truth” or
“hard” label with each image that assigns it to a sin-
gle category with no room for uncertainty; the CNN
must learn a feature space that supports such n-
ary discrimination. This modeling choice has until
now been understandable—until recently, the chal-
lenge for classifiers was simply getting the most
likely image label right. It is only now, when CNN
accuracy is beginning to asymptote at near-human
performance, that secondary features of CNN per-
formance are beginning to come under scrutiny—
for example, their poor generalization to out-of-

training-distribution images, and their fragility in
the face of adversarial attacks.118–122 There has been
broad appreciation that to tackle these challenges
image classification models must be better able to
deal with noise, and one means of achieving this
is by endowing them with better perceptual mod-
els of the world. Indeed, there is some evidence that
when human participants are trained to label stim-
uli with single categories based on stimulus features,
as opposed to making predictive inferences about
features or building a generative model of the data,
they are less likely to learn the kinds of category
abstraction that are thought to underlie graded typ-
icality judgments.56,123,124
A primemotive for trying to integrate cognitively

motivated category structure back into CNN learn-
ing paradigms is, then, that it may help provide a
solution to this new frontier of problems. Peterson
et al.125 attempted to do so indirectly by training
a range of CNNs to predict the human categoriza-
tion judgments (“human” or “soft” labels) from the
CIFAR-10H dataset. They found that these CNNs
performed significantly better on a number of out-
of-sample natural image sets than CNNs trained
on CIFAR-10, while scoring the same on the hard-
label validation set (Fig. 8, left and center). As test
imageswere drawn from increasingly out-of-sample
datasets (i.e., decreasingly similar), the benefit from
using human labels increased, indicating these net-
works were learning more perceptually relevant
category distributions. This was also reflected in
their higher second-best accuracy scores: whether
their second-best guess for an image corresponded
to humans (Fig. 8, right). The authors also sub-
jected these networks to various forms of adver-
sarial attack and found that CNNs trained with
human labels were muchmore resilient. It appeared
as though training with human labels endowed
networks with more tolerance to noise and more
graceful degradation: exactly the current aims of
the computer vision community, and those prop-
erties originally sought by early artificial intelli-
gence researchers. Finally, Peterson et al.125 showed
that CNNs trained with human labels invariably
performed better than alternative strategies, which
either incorporate random label noise or train on
convex combinations of image-label pairs.126 This
shows that the structure contained in human labels
is helpful for classification beyond the regulariza-
tion effects of adding training noise.

70 Ann. N.Y. Acad. Sci. 1505 (2021) 55–78 © 2021 New York Academy of Sciences.



Battleday et al. Convolutional networks and higher-level cognition

Figure 8. Improving the generalization abilities of CNNs using human uncertainty. As test images come from increasingly out-
of-training-sample distributions, CNNs trained on soft labels derived from human uncertainty increasingly outperform their
traditional hard-label counterparts (in terms of accuracy and loss). The difference in distributional benefits to using hard labels
is reflected in the consistent benefits regarding second-best accuracy scores. Reproduced from Ref. 125.

A second area where cognitive models have
inspired successful computer visionmodels is in the
context of few-shot, zero-shot, and semisupervised
learning—all variants of image classification tasks in
which CNNs are trained with a much smaller sub-
set of the data than normal. These reductions in the
size and coverage of the training set means stronger
or more suitable inductive biases must be built into
CNNs in order to prevent overfitting and make
successful generalizations from fewer data. Here,
the strategies that have been successful directly
incorporate graded category structure into their
training paradigm by using probabilistic constraints
on a CNN’s classification function, many of which
comedirectly from the range of categorizationmod-
els reviewed above.
In each episode of a few-shot learning task, a

classifier must identify the label of a query image
given a support set of image-label pairs. Within
the support set, there are a fixed number of exam-
ples from a subset of possible categories, and the
classification algorithm must construct categorical
knowledge from this small number of examples in
order to identify which category the query image
belongs to. The number of “shots” refers to the
number of training examples per category, and the
“way” refers to the number of categories: for exam-
ple, “one-shot five-way” means identifying which
of five possible category labels best applies to the
query image based on one labeled example from
each category.127,128 By training over many of these
episodes, a successful classification algorithm learns
how to use the examples in the support sets to gen-
eralize categorical knowledge to the query exam-
ple over many different combinations of images and
categories.

In the prototypical networks (PNs) of Snell et al.,
isotropicGaussian category distributionswith iden-
tity covariance matrices are used over final layer
representations of CNNs in order to classify novel
stimuli.129 By representing categories in this man-
ner, PNs reduce classification to the calculation of
(Euclidean) distances between category prototypes,
drawing on an equivalence between prototypemod-
els and Gaussian classifiers first described in Ref.
48. PNs use a standard CNN to transform images
into deep representations in the regular manner,
such that the CNN weights are shared across sup-
port set members and episodes. The category pro-
totype for each episode is the empirical average of
labeled category in the support set, and the role
of the CNN during training is to learn the best
transformation to support prototype construction.
Simply adapting the final-layer comparison in this
way led to state-of-the-art performance on few-shot
classification over the Omniglot character recogni-
tion task,127 mini-ImageNet,128 and even for zero-
shot learning—in which only a vector of metadata
is given about categories, with no examples—on the
Caltech UCSD bird dataset.130
Following the development of cognitive catego-

rization models as increasingly complex strategies
for probability density estimation, Scott et al. were
able to improve on PNs by using a wider range
of distributions to model category structure, an
approach they call stochastic prototype embeddings
(SPE).131 Each image was still used to generate a
deep CNN representation that would be combined
to model a prototype over each of the categories in
the support set. However, Scott et al. also learned
an additional output representation for each image
to model category variance, allowing for more
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flexible categories that followed axis-aligned ellip-
soidal Gaussian distributions. They also altered
the prototype embedding function to be stochas-
tic, using a probabilistic model that incorporates
a global noise distribution over latent prototypes.
These two modifications allowed the CNN to learn
embeddings that supported more accurate and
robust distributions more likely to handle uncer-
tainty arising from, for example, out-of-distribution
inputs due to measurement noise and label uncer-
tainty due to overlapping classes. For one-shot
classification tasks in low-dimensional embedding
spaces on Omniglot, the SPE model outperformed
the deterministic PN and achieved state-of-the-art
results. On the other hand, when five training exam-
ples were used in each episode instead, or in higher
dimensions, the uncertainty over prototypes proved
less important, and the models performed simi-
larly. Their most impressive finding was in the con-
text of data corruption. On an N -digit version of
MNIST,132 the SPE consistently performed better
than a number of baselines, including PNs, when
input images were randomly corrupted, validating
the idea that SPEs learn categorical structures that
are more robust to perceptual noise.
Allen et al. allowed for even more complex cat-

egory structure with infinite mixture prototypes
(IMP), which model each category as a (possibly
infinite) mixture of Gaussian distributions.133 The
authors built this model based on two key insights
from cognitive models of categorization: first, the
idea that complex categories might be best rep-
resented by more than one cluster—an interpola-
tion toward exemplar models had been previously
explored in cognitive science;106,107 and second, the
idea that the number of category clusters should
be free to grow as needed and the nonparametric
Bayesian machinery to support it.24,49 Combining
these insights led to a differentiable model for gen-
erating an arbitrary number of subprototypes for a
given category, which could then be used for subse-
quent learning and classification tasks. For few-shot
character classification tasks in Omniglot, the IMP
performed similarly to PNs and nearest neighbors.
The equivalence between thesemethods is unsur-

prising, as distributions over characters are likely to
take some unimodal form well captured by a sin-
gle prototype. However, as the classes being mod-
eled became more complex, the IMP performed
much better. On five-shot five-way tasks frommini-

ImageNet, which is based on natural image cate-
gories that are likely to have more complex and
multimodal structure, the IMP achieved state-of-
the-art results. The IMP also performed extremely
well on ten-way ten-shot alphabet recognition on
Omniglot, around 25% better than PNs. This is
again because alphabets of individual characters
likely constitute complex distributions, with mul-
tiple modes corresponding to clusters of charac-
ter types and styles. Allen et al. demonstrated that
learning these more complex distributions was also
beneficial for transfer learning.133 They showed that
when the IMP is trained on alphabet recognition
tasks and tested on character recognition tasks from
Omniglot, it outperforms a PN trained just on char-
acter recognition tasks. This is a significant result,
because it implies something extra about individ-
ual characters has been learned by modeling their
distribution within a specific alphabet, and that
the inference model can be responsible for cap-
turing this—in this case by maintaining flexibility
over clusters that can vary with the task instance
at hand. Even more impressively, when particular
characters are held out from training at the alphabet
level, the IMP successfully generalized its knowl-
edge to recognize them as part of the alphabet
at test time, to a much greater extent than PNs.
These positive transfer learning results were also
found to hold for a tiered version of ImageNet,134
where fine-grained and multimodal structure cap-
tured by the IMP from image distributions at the
level of complex classes (i.e., when using super-
category labels) transferred well to image distri-
butions under from lower-level category labels. In
both cases, the PN trained on superclasses and
tested on subclasses performs much worse. Because
it uses a soft-clustering scheme that allows unla-
beled examples to act as supports, Allen et al. were
able to apply the IMP to semisupervised versions of
Omniglot andmini-ImageNet, in which only a sub-
set of support images come with training labels, and
in learning the unsupervised regime inferred clus-
ters of Omniglot. In the semisupervised tasks, the
IMP achieved state-of-the-art performance, and in
the unsupervised task, it provided meaningful clus-
ters of characters.
The above studies are an encouraging sign that

integrating extra information from learners with
pressures to learn generative and predictive visual
categories into CNNs through training objectives
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and datasets is a promising route to strengthen-
ing their generalizability and robustness.When data
are plentiful, in the context of normal image clas-
sification, adding this information indirectly—for
example, in the form of augmented image labels—
is likely to be the most valuable strategy, in order to
best exploit the extremely flexible learning capacity
of CNNs. When data are scarce, however, stronger
inductive biases that can be directly incorporated
into the classification function used by CNNs have
led to better performance. Indeed, learning and
making robust inferences from limited information
is a hallmark of human cognition,135 and so these
are natural settings to consider integrating human-
like constraints.

End-to-end cognitive models

So far, we have seen CNN representations extend
traditional models of higher-level cognition to
more ecologically valid stimuli, and cognitive con-
siderations and constraints modify CNN training
paradigms such that they become better perform-
ers. The remaining challenge is to bring these frame-
works even closer together, and fully leverage the
benefits of both approaches to build the next gen-
eration of cognitive models.
Amain clue about how to do this comes from the

investigations already outlined above. In these stud-
ies, the primary advantage of CNNs was their abil-
ity to learn rich representations of a diverse range
of visual stimuli. This ability arises from their flex-
ible, gradient-based training regimes, as well as the
special functions of each layer, and these properties
were not modified at all during their use in cog-
nitive models or reapplication to computer vision
tasks. Instead, there was a search over CNN rep-
resentations to find the best support for a behav-
ioral dataset, followed by investigating which of a
range of cognitive models were able to best fit the
data. From a cognitive perspective, this amounts to
taking a two-step search, identifying the best com-
bination for the representation of stimuli and the
representation of higher-level cognitive structures
such as categories. But, there is no reason to separate
this process. Provided our cognitive models can be
made differentiable, the same training regime can
be applied to both CNN and cognitive parameters
instead, allowing the CNN and cognitive compo-
nents to jointly learn which features of images are

Figure 9. Deep categorization models learn category-specific
stimulus embeddings. Top and middle rows: t-distributed
stochastic neighbor embeddings138 of representations from a
deep prototype (top) and deep GMM with 25 centers (bot-
tom), with locations of prototypes and subprototypes marked,
respectively. Bottom row: performance in the GMM increases
with the number of centers until around 10−25, then asymp-
totes. Reproduced from Ref. 136.

necessary to support the best application of a cog-
nitive model to human behavioral data.
A first attempt in this direction was made by

Singh et al., for a range of the categorization mod-
els reviewed above.136 Fortunately, the functional
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forms of prototype, Gaussian-mixture (GMM), and
exemplar categorization models can be made dif-
ferentiable with only slight modifications, and are
similar enough to normal CNN classifiers that they
can simply replace them as the top layer of an
otherwise normal CNN. In this setup, the loca-
tion of the prototypes, subprototypes, and exem-
plars, respectively, are free parameters, which the
models must learn from some training subset of
labeled images. As usual, the role of the lower
CNN layers is to learn the best feature represen-
tation to support these kinds of category compari-
son. Singh et al. trained a prototype model, GMMs
with 2−2500 centers, and an exemplarmodel across
two CNN architectures.136 Their input data were
the training subset of CIFAR-10: 50,000 image-label
pairs, subdivided into 10 categories (i.e., image-
hard-label pairs). They tested model generalization
to the CIFAR-10 validation set: 10,000 image-hard-
label pairs, as well as the CIFAR-10Hdataset: 10,000
image-soft-label pairs (i.e., distributions derived
from human categorizations). The first finding was
that, again, choice of CNN architecture was the
major determinant of performance and generaliza-
tion. The second was that despite performing simi-
larly on the hard label validation data, the cognitive
models performedmuch better in predicting human
categorizations than their CNN baselines. Varying
the number of centers in the GMM revealed that
the optimal number of centers—subprototypes—
was around 25, which overall provided the best per-
formance on human data (Fig. 9). Beyond model-
ing the human data well, the fact that these end-to-
endmodels were able to outperformCNN baselines
on human data even when trained exclusively with
hard labels is an important validation of the func-
tional forms arrived at by the cognitive psychology
literature, as well as the development of categoriza-
tion models beyond prototypes and exemplars to
mixture models and beyond. It remains to be seen
what further improvements arise when suchmodels
are trained on human behavioral data, in addition to
being tested on it.

Conclusion

A major success from traditional studies of higher-
level cognition was the development of a range
of computational models that make high-precision
predictions about fundamental human behaviors.
To apply these models, it was necessary to develop

statistical techniques to represent stimuli in a psy-
chologicallymeaningfulmanner, which in turn lim-
ited their application to simple artificial stimuli. In
this review, we have shown that we can use CNNs as
the basis for a new set of statistical techniques that
allow the representation of more naturalistic and
varied stimuli. Indeed, these methods differ from
techniques like MDS in a quantitative, rather than
qualitative way. Both sets use a differentiable objec-
tive function to iteratively optimize the statistical
fit of a multidimensional vector to a set of human
decisions, as well as some degree of hyperparame-
ter search (e.g., the number of dimensions in MDS
versus layer size in a CNN). The main difference is,
then, the sheer number of parameters involved in
learning a representation that can be generalized to
an arbitrary number of naturalistic stimuli. It makes
sense that this process be constrained both by infor-
mation about the distribution of these stimuli in the
natural world and the structure of human knowl-
edge regarding them, and we have highlighted how
the CNN and cognitive components of more inte-
gratedmodels can be used to bring these sets of con-
straints closer together. Alongwith the fundamental
scientific interest in extending analysis of behavior
to amore complex and ecologically valid domain, as
well as the general aim of increasing the precision of
our efforts tomodel higher-level cognition, this new
set of models has the added benefit of being directly
applicable to the wealth of psychologically relevant
data now available online.137
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