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A B S T R A C T   

Objectives: To explore the differences between low kiloelectron volt (keV) virtual monoenergetic 
images (VMIs) using IQon spectral CT and conventional CT (120 kVp) in the diagnosis of 
osteoporosis. 
Methods: This retrospective study included 317 patients who underwent IQon spectral CT and 
dual-energy X-ray absorptiometry (DXA) examination. Commercial deep learning–based software 
was used for the fully automated extraction of the CT values of the first to fourth lumbar vertebrae 
(L1–L4) from two different low-keV levels (including 40/70 keV) VMIs and conventional 120 kVp 
images. The DXA examination results served as the standard of reference (normal [T-score ≥ − 1], 
osteopenia [-2.5 < T-score < − 1], and osteoporosis [T-score < − 2.5]). Osteoporosis diagnosis 
models were constructed using machine learning classifiers (logistic regression, support vector 
machine, random forest, XGBoost, and multilayer perceptron) based on the average CT values of 
L1–L4. The area under the receiver operating characteristic curve (AUC) and DeLong test were 
performed to compare differences in the performance of the osteoporosis diagnosis model be
tween virtual low-keV VMIs and standard 120 kVp images. 
Results: Random forest-based prediction model obtained good overall performance among all 
classifiers, and macro/micro average AUC values of 0.820/840, 0.834/853, and 0.831/852 were 
obtained based on 40/70 keV and 120 kVp images, respectively. The model presented no sig
nificant difference between low-keV VMIs and standard 120 kVp images for the diagnosis of 
osteoporosis (p > 0.05). 
Conclusions: The performance of the osteoporosis diagnosis model using IQon spectral CT simu
lating the low tube voltage scanning condition (less than 120 kVp) was also satisfactory. Bone 
density screening evaluation can be performed with a combination of low-dose lung scanning CT, 
greatly reducing the radiation dose without affecting the diagnosis.   
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1. Introduction 

Osteoporosis is a systemic disease characterised by decreased bone mass and density, resulting in increased bone fragility and 
susceptibility to fracture [1,2]. Although there are no obvious symptoms in the early stages of osteoporosis, it is harmful when 
osteoporosis progresses to later stages. In China, people over 60 years old account for 36 % of osteoporosis patients, and the total 
number of patients exceeds 90 million [3,4]. With the aging population becoming increasingly prevalent, osteoporosis is clinically 
called the “silent killer” of the elderly [5] and seriously endangers patients’ health. Currently, the diagnosis and treatment of osteo
porosis in China are not ideal. Osteoporosis fracture is one of the main causes of disability and death in elderly patients and is most 
commonly seen in vertebral and femoral head fractures [6]. Moreover, the quality of life of the elderly is greatly affected after a 
fracture and leads to irreversible disability, causing a heavy medical burden on families and society. However, osteoporosis can be 
prevented and treated; therefore, timely screening of abnormal bones is significant for subsequent protection and treatment [7]. 

Bone mineral density (BMD) measurements such as dual-energy X-ray absorptiometry (DXA) and quantitative computed tomog
raphy (QCT) are the main bases for diagnosis. QCT uses clinical CT scan data; therefore, QCT and CT are closely related in nature, and 
ionising radiation is receiving increasing attention with the widespread use of CT. Under the premise of achieving the best balance 
between radiation dose and image quality, the general trend for low-dose computed tomography (LDCT) inspection is to effectively 
reduce the CT radiation dose by reducing the tube voltage as much as possible, reducing the tube current, and increasing the pitch [8]. 
Therefore, in clinical practice, reducing the dose of CT scans to make the examination safer is an important issue of clinical research. 
Specifically, the IQon spectral CT is equipped with a unique two-layer detector structure to receive high- and low-energy X-ray 
photons, respectively, to distinguish between high- and low-energy mixed-level X-rays, and can obtain spectral images and conven
tional images simultaneously. Spectral images usually include: virtual monoenergetic images (VMIs), virtual scan (VNC), iodine 
density (Z Effective) images, and other 12 categories, which can be used in a variety of different clinical applications and research; 
furthermore, monoenergetic image is equivalent to single-energy X-ray imaging (including 40–200 keV, 161 single-energy) and is very 
conducive to the study of low dose synchronization between QCT and clinical CT scan. 

Artificial intelligence (AI) ‘s rapid development has made it widely used in various fields. Although its application in the treatment 
of osteoporosis has just begun, it shows good prospects [9]. Specifically, Fang et al. [10] developed a fully automatic method based on a 
deep convolutional neural network (DCNN) for vertebral body segmentation and bone BMD calculation in CT images; the average 
BMDs calculated showed high correlation (r > 0.98) and agreement with those derived from QCT. Yasaka et al. [11] used DXA as the 
gold standard to predict lumbar BMD in unenhanced abdominal CT images based on the deep learning method, and the final effective 
AUC reached 0.965, indicating that the AI method can be used to predict BMDs in CT images. Furthermore, Yao et al. [12]developed a 
radiomics nomogram incorporating radiomics features and clinical factors based on fat-water imaging of dual-energy spectral CT, 
which may serve as an efficient tool for distinguishing abnormally low BMD from normal BMD. 

In this study, using a combination of machine learning technology and CT image features, we used machine learning to develop an 
osteoporosis diagnosis model and explored whether there was a statistically significant difference in the performance of the model 
between the vertebral CT value of low-keV VMIs and that of standard 120 kVp images. 

2. Materials and methods 

The relevant institutional review board approved this retrospective study and waived the requirement for study-specific informed 
consent. 

2.1. Patients and data collection 

We retrospectively analysed patients treated at our institution between January 2021 and December 2022. The inclusion criteria 
were as follows: (1) the same sample was scanned by lumbar CT and lumbar DXA with IQon Spectral CT and Hologic Discovery, and the 
interval between the two examinations was less than 24 h; (2) the sample data selected should include CT images of the L1–L4 
vertebrae in the lumbar spine, and each sample data should contain 40/70 keV and 120 kVp images. The exclusion criteria were 
incomplete image data and artefacts in the image that could not be marked or excluded. A total of 320 cases were collected during this 
period, including three cases whose data were incomplete and excluded. Finally, 317 patients were included in this study (166 males 
and 151 females), whose ages ranged from 27 to 83 years, with an average age of 51.26 years old. 

2.2. IQon spectral CT 

In the real world, lumbar CT examinations of the same subject cannot be performed in the same time period under different 
scanning conditions, and conventional equipment cannot guarantee the unity of simultaneous homology of images. Therefore, we used 
IQon spectral CT to obtain the virtual monoenergetic 40/70 keV parameters simultaneously. For the SBI parameters of spectral CT, 
monoenergetic 40/70 KeV images were selected to simulate scanning conditions of less than 120 kVp. Notably, kVp is the maximum 
voltage applied to the entire X-ray tube, which is called 120 kV (120 kVp) in traditional CT. Moreover, keV (virtual monoenergetic 
image) can reduce the negative image effects of mixed energy, such as reducing noise and hardening beam artefacts, and enhancing 
tissue contrast. 

Research shows that when kVp decreases, the CT value increases, which increases the contrast of the image; however, the radiation 
dose can be significantly decreased [13,14]. The CT value of the 65–75 keV single-energy image was almost the same as that of the 
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traditional image generated at conventional 120 kVp, see Figure (1A-1B), while the CT value of the low-kVp scan image was larger 
than that of the 120 kVp image (Fig. 1C). Therefore, monoenergetic 40/70 keV single-energy images can be simulated to be equivalent 
to images generated at voltages less than the conventional 120 kVp. 

The equipment was characterised using IQon Spectral CT. The imaging parameters were as follows: voltage, 120 kVp; current, 182 
mA; thickness, 1 mm; interval increment, 1 mm; pitch, 0.984; rotation time = 0.75 s/turn. scan time = 7.1 s, recon mode iDose4 level 
= 3, filter standard = B, field of view = 250 mm, rebuild matrix = 512 × 512. 

2.3. DXA examinations 

All patients underwent routine DXA using a scanner (Hologic Discovery, APEX Process 3.3.01). The parameters were as follows: 
voltage, 140/100 kVp; current, = 2.5 mA, frequency 50 Hz; line spacing, 0.1008 cm; point resolution, 0.0901 cm; and lumbar spine 
scanning sites. 

2.4. Diagnostic criteria for osteoporosis 

DXA of the lumbar spine was performed for BMD assessment using standard techniques according to the manufacturer’s and WHO 
guidelines (Hologic Discovery dual-energy X-ray bone densitometer; Hologic Inc., Bedford, MA) [15]. According to the WHO 
guidelines, a DXA-derived T-score less than − 1.0 indicates an abnormally low BMD, which is further categorised into osteopenia 
(T-score between − 1.0 and− 2.5) and osteoporosis (T-score of − 2.5 or below), and a T-score greater than − 1.0 is normal. In our study, 
the patients were divided into three groups according to T-score: normal BMD (T-score ≥ − 1), osteopenia (− 2.5 < T-score < − 1), and 
osteoporosis (T-score < − 2.5). 

2.5. CT value measurement based on automatic AI solution 

A deep learning-based, commercially available, automatic AI solution (Quantitative CT-Assisted Diagnosis Dystem, Huiying 
Medicine Technology, China, hereafter referred to as software) was used for fully automatic vertebral segmentation and CT value 
extraction. A detailed visualisation of automatic AI solutions is shown in Fig. 2A. As illustrated in Fig. 2A, the Automatic AI solution 
contained two parts: vertebral segmentation and CT value extraction (Hounsfield units, HU). Firstly, 40/70 keV VMIs and conventional 

Fig. 1. Virtual low energy IQon CT image. The CT values of the same vertebral body in the same patient under different (A) 120 kVp, (B) 70 keV and 
(C) 40 keV conditions. CT (120 kV) = 30Hu, CT (70 keV) = 26Hu, CT (40 keV) = 54.4Hu; CT (120 kV) and CT (70 keV) values are almost the same; 
CT (40 keV) > CT (120 kV). 
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120 kVp images containing the lumbar vertebrae were inputted into the software. Based on the deep learning segmentation algorithm, 
the software could then accurately locate and segment the first lumbar vertebra into the fourth lumbar vertebra (L1–L4). The U-Net 
network was used in the AI software. Specifically, the U-Net network has a U-shaped network structure (see Fig. 2B) consisting of the 
left and right halves of the coding and decoding networks, respectively. Furthermore, feature fusion between the coding and decoding 
modules was performed using a skip connection to obtain the location information. Fig. 3 A1-C2 shows the vertebral body obtained by 
the U-Net segmentation model of different keV images of the same patient using this software. The software had stable performance 
and did not cause a significant difference in segmentation with the change in voltage level. 

After segmentation of the vertebral bodies, the CT values of the vertebral bodies were directly extracted in batches using software. 

Fig. 2. Method flow chart. (A) Automatic AI solution, (B) U-net network for vertebra segmentation, （C） DenseNet network for CT value 
extraction,（D） machine learning model building for osteoporosis screening. 
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Fig. 3. Results of AI automatic segmentation of lumbar vertebrae for 40 keV (A1, A2), 70 keV (B1, B2) and 120 kVp (C1, C2). (A1, B1, C1) The 
original image. (A2, B2, C2) AI segmentation results. 

Table 1 
Demographic characteristics of all patients in the training and test sets.   

Level Overall Training set Test set p  

(N = 317) (N = 220) (N = 97)  

age (mean (SD)) 51.48 (11.34) 51.61 (11.51) 51.20 (11.01) 0.7655 
sex (%)     1.0000  

Male 153 (48.26) 106 (48.18) 47 (48.45)   
Female 164 (51.74) 114 (51.82) 50 (51.55)  

label (%)     0.9862  
Normal 164 (51.74) 114 (51.82) 50 (51.55)   
Osteopenia 112 (35.33) 78 (35.45) 34 (35.05)   
Osteoporosis 41 (12.93) 28 (12.73) 13 (13.40)  

L1_CTvalue_120 kVp(mean (SD)) 187.57 (58.29) 186.34 (57.96) 190.37 (59.22) 0.5716 
L2_CTvalue_120 kVp(mean (SD)) 177.98 (58.79) 176.21 (56.48) 182.01 (63.86) 0.4191 
L3_CTvalue_120 kVp(mean (SD)) 165.51 (57.35) 165.90 (56.36) 164.61 (59.81) 0.8530 
L4_CTvalue_120 kVp(mean (SD)) 169.59 (59.88) 170.22 (59.07) 168.16 (61.95) 0.7780 
L1_CTvalue_40 keV (mean (SD)) 425.18 (129.56) 425.09 (130.72) 425.39 (127.56) 0.9848 
L2_CTvalue_40 keV (mean (SD)) 412.56 (129.95) 409.72 (127.83) 419.01 (135.07) 0.5583 
L3_CTvalue_40 keV (mean (SD)) 396.73 (129.47) 396.31 (130.35) 397.70 (128.11) 0.9297 
L4_CTvalue_40 keV (mean (SD)) 407.85 (135.47) 406.63 (136.46) 410.62 (133.87) 0.8096 
L1_CTvalue_70 keV (mean (SD)) 194.38 (60.02) 193.50 (60.19) 196.36 (59.91) 0.6965 
L2_CTvalue_70 keV (mean (SD)) 186.82 (61.05) 185.14 (59.77) 190.63 (64.01) 0.4617 
L3_CTvalue_70 keV (mean (SD)) 176.75 (61.45) 176.28 (61.58) 177.84 (61.47) 0.8351 
L4_CTvalue_70 keV (mean (SD)) 182.01 (64.13) 181.56 (64.30) 183.04 (64.05) 0.8505  
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The regression algorithm adopted by the AI system in this study was the deep learning Densenet121 model. First, a CNN structure is 
used as the backbone to extract image features, and the basic units in DenseNet are dense blocks (DB). The DB module comprises 
convolution layers (Conv), batch normalisation layers (BN), and ReLU activation function layers (Conv-BN-ReLU). The connect (FC) 
part was added as the regression detection head to the output results, and the output value was the CT value predicted by the model. 
Fig. 2C shows a schematic of image prediction using DenseNet. Furthermore, all patient images were input into the AI system, and CT 
values of the L1-L4 vertebra of each patient were obtained in batches, which were recorded to construct the machine learning model 
for osteoporosis screening. According to the images at different keV (40/70 keV and 120 kVp), the CT values of L1, L2, L3, and L4 for 
each patient were extracted, with a total of 12 values. 

2.6. Machine learning model construction for osteoporosis screening 

This study did the following work for the triple classification (normal BMD, osteopenia, and osteoporosis). The construction of the 
machine learning model is illustrated in Fig. 2D. The average CT values of L1–L4 from 40/70 keV VIMs and those of L1–L4 from 
conventional 120 kVp images were used for model construction; therefore, we performed three group experiments: Experiment 1 
(based on 40 keV data), Experiment 2 (based on 70 keV data), and Experiment 3 (based on 120 kVp data). In the different experiments, 
70 % of the data were used to develop a predictive model, and the remaining data were used to evaluate the model’s performance. 

Before data analysis, all missing values were replaced with the median of the current category. Moreover, data was standardised 
using the z-score method. The dataset was randomly divided into training and test sets at a ratio of 7:3 while ensuring the same 
distribution of categories in the grouping. Five distinct machine learning classifiers were employed to develop an osteoporosis 
diagnosis model. These classifiers encompass Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), XGBoost, 
and a Multilayer Perceptron (MLP). The hyperparameters of each classifier were meticulously tuned using gridSearch, with their 
respective configurations detailed in Table 2. 

The two most popular strategies for multiclass machine learning are the “one against one” [16], which builds one classifier for each 
pair of classes, and the “one against rest” [17], which consists of building one classifier per class and is trained to distinguish the 
samples in a single class from the samples in all remaining classes. In this study, we chose “one against rest” for classification. 

2.7. Statistical analysis 

The Shapiro-Wilk test was used to test the normality of all continuous variables. The t-test or Wilcoxon rank-sum test was used to 
compare normally or abnormally distributed continuous variables between the groups. Chi-squared or Fisher’s exact tests were used 
for qualitative data analysis. The characteristics were examined using R 4.2.1. A two-sided P < 0.05 was considered statistically 
significant. The remaining data were analysed using Scikit-learn based on Python 3.9. The performances of the models were estimated 
using receiver operating characteristic (ROC) curves, the area under the curve (AUC), overall accuracy (OA), sensitivity, and speci
ficity. DeLong tests were performed to compare the significant differences in performance between different machine learning clas
sifiers and those of different experiments. 

3. Result 

3.1. Patients characteristics 

Table 1 summarises the demographic characteristics of patients. A total of 317 patients were divided into training (n = 220) and 
test sets (n = 97) in a ratio of 7:3. The average age for all patients was 51.48 ± 11.34 years, with 153 males and 164 females. The 
patients were classified into three groups according to DXA guidelines: normal (n = 164), osteopenia (n = 112), and osteoporosis (n =
41). There were no statistically significant differences in demographic characteristics between the training and test sets (all p > 0.05). 

3.2. Diagnostic performance 

Table 3 displays the macro/micro average AUC (Ma-auc and Mi-auc), accuracy (Acc), sensitivity (Sen), and specificity (Spec) for 
various classifiers across distinct experiments. Notably, the RF model exhibited robust macro-/micro-average AUC in the training 
cohort, and this consistent performance carried over to the test sets in Experiment 1, Experiment 2, and Experiment 3. Across these 
experiments, the RF-based three-class prediction model consistently showcased strong overall performance, yielding Ma-aucs/Mi-auc 

Table 2 
The classifier’s hyperparameter settings.  

Classifier Settings 

LR penalty = ’l2′,class_weight = ’unbalanced’, C = 1 
SVM C = 10, kernel = ’linear’, probability = True, class_weight = ’unbalanced’ 
RF n_estimators = 60, max_depth = 2, max_features = ’auto’, random_state = 101 
XGBoost max_depth = 3, learning_rate = 0.1, n_estimators = 10 
MLP solver = ’adam’, alpha = 1e-4, hidden_layer_sizes=(5, 2), random_state = 101  
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values of 0.820/840, 0.834/853, and 0.831/852, respectively, based on 40 keV, 70 keV, and 120 kVp images. It is important to 
highlight that there were no statistically significant differences in classifier performance across different categories (p > 0.05), as 
outlined in Table 4. 

Fig. 4 A-F presents the three-class (one-vs.-rest) ROC curves for the random forest model in various experiments. In the test sets of 
experiments 1, 2, and 3, the discrimination AUC values were 0.846/851/0.864 for the normal group, 0.740/770/710 for osteopenia, 
and 0.853/0.867/0.895 for the osteoporosis group, respectively. The RF model consistently demonstrated its efficacy in distinguishing 
normal from abnormal bone mineral density (BMD) and identifying osteoporosis cases. 

Additionally, Fig. 5 A-B comprehensively compares the RF model’s performance across different experiments. It is evident that the 
RF model excelled in specificity compared to its overall accuracy. The DeLong test results between low-energy images and 120 kVp 
images, as detailed in Table 5, revealed that spectral CT images at simulated low tube voltage conditions (40 keV and 70 keV) did not 
exhibit significant differences in qualitative osteoporosis analysis when compared to standard 120 kVp images (p > 0.05). 

4. Discussion 

At present, in the risk prediction and curative effect evaluation of osteoporosis, some studies have shown similar diagnostic ac
curacy of QCT and DXA for diagnosing osteoporosis [18]. In this study, we used DXA examination results as the reference standard and 
trained and tested a machine-learning model that could differentiate changes in the average CT values of the L1–L4 vertebrae. More 
importantly, Li et al. found that osteoporosis screening could be accurately performed using either QCT or spectral CT, which had a 
smaller bias than QCT [19]. Current diagnostic criteria for DXA are based on 120 kVp measurement results, and a low-dose technique is 
recommended [20]. In this study, we used spectral CT to simulate a low-dose voltage situation, and multiple sets of images of different 
conditions were acquired simultaneously. Furthermore, we chose 40/70 keV and 120 kVp images to extract the CT values of the L1–L4 
vertebrae. 

To the best of our knowledge, this is one of the few studies investigating the effect of different tube voltages on the performance of 
osteoporosis models based on spectral CT. We trained multiple machine learning models for triple classification tasks based on CT 
values using 40/70 keV and 120 kVp data and assessed whether the results were statistically significantly different. We found that 
different machine learning models performed better on both the training and test sets, with the model constructed using the random 
forest method performing the best. In terms of comparing model significance using the Delong test, there were no statistically sig
nificant differences in model performance between the categories (p > 0.05), except for the individual methods. The spectral image 
data from the two simulated low tube voltage conditions, 40kev or 70kev, presented no significant difference in the qualitative analysis 

Table 3 
Performance comparison of different machine learning classifiers based on different experiments.   

Experiment 
Classifier Training set Test set 

Ma-auc Mi-auc Acc Sen Spec Ma-auc Mi-auc Acc Sen Spec 

40 keV LR 0.782 0.797 0.595 0.595 0.798 0.811 0.822 0.619 0.619 0.809 
SVM 0.806 0.834 0.605 0.605 0.802 0.820 0.839 0.608 0.608 0.804 
RF 0.836 0.861 0.677 0.677 0.839 0.820 0.840 0.670 0.670 0.835 
XGBoost 0.871 0.887 0.736 0.736 0.868 0.810 0.834 0.629 0.629 0.814 
MLP 0.832 0.857 0.650 0.650 0.825 0.815 0.840 0.660 0.660 0.830 

70 keV LR 0.791 0.804 0.609 0.609 0.805 0.816 0.827 0.619 0.619 0.809 
SVM 0.807 0.835 0.605 0.605 0.802 0.822 0.838 0.680 0.680 0.840 
RF 0.922 0.928 0.795 0.795 0.898 0.834 0.853 0.680 0.680 0.840 
XGBoost 0.870 0.890 0.727 0.727 0.864 0.818 0.842 0.660 0.660 0.830 
MLP 0.824 0.851 0.668 0.668 0.834 0.828 0.843 0.660 0.660 0.830 

120 kVp LR 0.819 0.839 0.682 0.682 0.841 0.809 0.828 0.649 0.649 0.825 
SVM 0.827 0.850 0.623 0.623 0.811 0.808 0.833 0.619 0.619 0.809 
RF 0.886 0.897 0.736 0.736 0.868 0.831 0.852 0.660 0.660 0.830 
XGBoost 0.894 0.905 0.723 0.723 0.861 0.817 0.846 0.660 0.660 0.830 
MLP 0.829 0.856 0.677 0.677 0.839 0.821 0.846 0.680 0.680 0.840  

Table 4 
DeLong test results between RF and other machine learning classifiers based on test set.  

Experiment Class LR SVM XGBoost MLP 

40 keV Normal 0.938 0.525 0.612 0.837 
Osteopenia 0.530 0.762 0.425 0.855 
Osteoporosis 0.569 0.423 0.211 0.502 

70 keV Normal 0.930 0.780 0.885 0.694 
Osteopenia 0.302 0.428 0.414 0.631 
Osteoporosis 0.263 0.465 0.312 0.398 

120 kVp Normal 0.433 0.117 0.353 0.255 
Osteopenia 0.422 0.818 0.754 0.533 
Osteoporosis 0.367 0.261 0.530 0.608  
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of osteoporosis when compared with the standard 120 kVp images. Spectral-detector CT virtual low-energy imaging has very high 
sensitivity and specificity for osteoporosis monitoring [21]. 

Several limitations are associated with this study. Firstly, the extraction of CT values relied on vertebral body segmentation per
formed by artificial intelligence software. Notably, not all segmented vertebral body masks were manually corrected, possibly leading 
to biases in the CT values for certain patients. Secondly, the scope of the dataset was limited, and a multi-centre experiment was not 
conducted. This restricted the data’s diversity and the findings’ potential applicability to broader populations. Lastly, the study did not 
encompass the validation of the model’s generalizability under higher tube voltages. Future investigations are planned to address these 
limitations and provide insights into the model’s performance across these dimensions. 

In conclusion, the performance of the osteoporosis diagnosis model using IQon spectral CT simulating the low tube voltage 
scanning condition (less than 120 kVp) was also satisfactory. Bone density screening evaluation can be performed with a combination 
of LDCT data without increasing the radiation dose and scanning time so that the subject receives one radiation examination and 

Fig. 4. Three-class (one-vs-rest) ROC curves of random forest model for different experiments. Result base on based on 40 keV data in training (A) 
and test (B) sets; result base on based on 70 keV data in training (C) and test (D) sets; result base on based on 120 kVp data in training (E) and test (F) 
sets. The two dashed lines respectively show the ROC curves of micro-average and macro-average, indicating the overall distinguishing ability of the 
three-class classification. 
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obtains multiple results to achieve multi-disease co-examination. This model has wide application prospects in physical examinations 
[22]. 
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