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Abstract: Multi Jet Fusion (MJF) is a recently developed polymeric powder bed fusion (PBF) additive
manufacturing technique that has received considerable attention in the industrial and scientific
community due to its ability to fabricate functional and complex polymeric parts efficiently. In this
work, a systematic characterization of the physicochemical properties of MJF-certified polyamide
11 (PA11) and thermoplastic polyurethane (TPU) powder was conducted. The mechanical perfor-
mance and print quality of the specimens printed using both powders were then evaluated. Both
PA11 and TPU powders showed irregular morphology with sharp features and had broad particle
size distribution, but such features did not impair their printability significantly. According to the
DSC scans, the PA11 specimen exhibited two endothermic peaks, while the TPU specimen exhibited
a broad endothermic peak (116–150 ◦C). The PA11 specimens possessed the highest tensile strength
in the Z orientation, as opposed to the TPU specimens which possessed the lowest tensile strength
along the same orientation. The flexural properties of the PA11 and TPU specimens displayed a
similar anisotropy where the flexural strength was highest in the Z orientation and lowest in the X
orientation. The porosity values of both the PA11 and the TPU specimens were observed to be the
lowest in the Z orientation and highest in the X orientation, which was the opposite of the trend
observed for the flexural strength of the specimens. The PA11 specimen possessed a low coefficient
of friction (COF) of 0.13 and wear rate of 8.68 × 10−5 mm3/Nm as compared to the TPU specimen,
which had a COF of 0.55 and wear rate of 0.012 mm3/Nm. The PA11 specimens generally had
lower roughness values on their surfaces (Ra < 25 µm), while the TPU specimens had much rougher
surfaces (Ra > 40 µm). This investigation aims to uncover and explain phenomena that are unique to
the MJF process of PA11 and TPU while also serving as a benchmark against similar polymeric parts
printed using other PBF processes.

Keywords: powder bed fusion; Multi Jet Fusion; Polyamide 11; thermoplastic polyurethane;
mechanical properties

1. Introduction

Additive manufacturing (AM) is a family of near-net-shape manufacturing processes
that creates objects using computer-aided designs through a layer-by-layer accumulation
of material feedstock [1]. The powder bed fusion (PBF) process, which is classified as
one of the seven main categories of AM by ASTM, has garnered substantial interest from
industries and the scientific community due to its ability to fabricate geometrically complex
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parts using any fusible powder-form materials theoretically without any need for support
structures [2,3].

Multi Jet Fusion (MJF) is a recently developed polymeric PBF process patented by HP
Inc. in 2014 and commercialized in 2016. During the MJF process, functional polymeric
parts can be produced by heating and fusing selected areas in the polymer powder bed
through the combination of ink agents and infrared (IR) lamps. Two different ink agents,
i.e., fusing and detailing agents, are jetted into the designated areas in the powder bed
through thermal inkjet printheads with a voxel resolution. The proprietary fusing agent
consists of black radiation-absorbing material and can enhance the optical-to-thermal
energy conversion to melt the powder particles where the fusing agent is jetted on. The
detailing agent, which mainly comprises of a non-radiation absorbing water-based material,
is simultaneously jetted around the boundaries of parts to decrease the local temperature
of the contours to avoid the fusion of powder particles surrounding the contours. The
powder bed is then heated by moving overhead IR lamps across the powder bed, and the
powder bed regions jetted with the fusing agent will be fused to form object parts, while
the fusion of powder surrounding the boundary of parts is inhibited by the detailing agent.
The combination of these two ink agents allows the fabrication of dense functional parts
with superior edge definition and surface finish. The utilization of a planar fusion mode
contributes to the printing speed of MJF being significantly faster than other polymeric
PBF processes, such as selective laser sintering (SLS), which adopts a point-by-point laser
scanning mode. Xu et al. [4] reported that these differences in processing principles resulted
in the printing speed of MJF to be almost ten times faster than that of SLS.

Polyamide 12 (PA12) has been the most commonly used polymer powder in polymeric
PBF processes such as MJF and SLS [5,6]. A systematic benchmark study on the comparison
between SLS and MJF manufacturing techniques of PA12 has been revealed in our previous
publication [7]. Besides PA12, HP Inc. has also developed and commercialized two other
promising polymer powders, HP 3D HR PA11 and BASF Ultrasint TPU01, to broaden the
industrial applications of MJF.

Polyamide 11 (PA11) is a 100% bio-based polyamide synthesized from a renewable
source (castor oil) and has a lower carbon footprint compared to the petrol-based PA12 [8,9].
It also possesses a good strength-to-weight ratio, high fatigue resistance, and excellent
chemical and aging resistance [10–12]. These advantages make it the second most widely
used polymer PBF material in aerospace, automotive, pneumatic, and electrical applica-
tions [13]. For instance, PA11 has been utilized in the additive manufacturing of more
than 2000 environmental control system air ducts by Boeing for their F/A-18 Super Hornet
program. The printed components significantly reduced the weight and cost of the roto-
molded system because the manufacturing flexibility of this technology allowed engineers
to design the components with an integral structure and optimized topology [14].

Thermoplastic polyurethane (TPU) is an elastomer with a good combination of me-
chanical strength and flexibility. TPU consists of hard segments, which are formed by
adding a chain extender to isocyanate, and soft segments, which are made up of either
polyether or polyester chains. The hard segments contribute to the strength of TPU by
functioning as both physical crosslinks and reinforcement within the elastomer, while
the soft segments contribute to the flexibility and elongation [15]. By changing the phase
composition and heating conditions, the mechanical properties of TPU can be altered. This
unique property of TPU makes it an ideal candidate for non-commodity markets such as
custom-made footwear and sporting goods [16]. For example, TPU was used to fabricate
the flexible honeycomb midsoles in the Zante Generate running shoes by New Balance
using 3D printing [17].

There have been several studies conducted on the characterization of MJF-printed
parts that uncovered specific properties that are unique to the MJF process. For example,
it was reported in several publications that MJF-printed PA12 specimens printed along
the vertical direction possessed higher tensile and flexural properties as opposed to spec-
imens printed horizontally [6,7,18,19]. It was also observed in several DSC scans that
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the MJF-printed PA12 specimens did not exhibit bimodal endothermic peaks, unlike in
SLS specimens where bimodal endothermic peaks were commonly observed [7,19–21].
However, these studies were all conducted on PA12 and works on other commercially
available MJF materials are scarce. It is therefore essential to investigate other commercially
available MJF materials to determine if these unique properties are consistent among all
MJF materials, as well as to gain a deeper understanding of the underlying mechanisms
that create these unique properties in MJF parts.

To date, there are only a few works published on the characterization of commercially
available MJF materials other than PA12. Lee et al. [22] investigated the effect of build
orientation on the part porosity and mechanical properties of MJF-printed PA11. Pande-
lidi et al. [23] studied the effect of powder refresh ratios on the thermal and mechanical
properties of MJF-printed PA11 parts. Šafka et al. [24] conducted a comprehensive char-
acterization on the mechanical properties of MJF-printed polypropylene printed along
seven major print orientations. To the authors’ knowledge, there are no publications on
MJF-printed TPU parts to date.

While there are publications on the characterization of MJF-printed PA11, the pub-
lished reports do not provide a full evaluation of the physical, chemical, thermal, mechani-
cal, and surface properties of the powder and printed parts. Therefore, this work attempts
to provide a comprehensive characterization on the physicochemical properties of both
MJF-certified PA11 and TPU powders, as well as to evaluate the mechanical properties and
surface quality of their respective printed parts. The purpose of this study is to unveil the
underlying mechanisms behind the phenomena unique to the MJF process of PA11 and
TPU parts, as well as to compare the mechanical properties of the printed parts against
similar parts printed using other PBF processes.

2. Material and Methods
2.1. Powder Materials and Printing Equipment

HP 3D High Reusability PA11 (defined as PA11 hereafter) powder was employed
for the printing of PA11 specimens using an MJF 4200 printer, and BASF Ultrasint TPU01
(defined as TPU hereafter) powder was adopted to print TPU specimens using an MJF
5200 printer. All the specimens were printed in the ‘Balanced’ print mode. The PA11 speci-
mens were printed with a virgin/used powder mix ratio of 30:70, while the TPU specimens
were printed with a virgin/used powder mix ratio of 20:80.

The specimen arrangement in the printing chamber is illustrated in Figure 1a. Ten-
sile and flexural specimens were printed in accordance with the ASTM D638-10 and
ISO178 standards, respectively. Six tensile and flexural specimens were printed in X, Y, and
Z build orientations as defined by the ISO/ASTM 52921 standard (Figure 1b) to investigate
the mechanical anisotropy of the printed specimens. Five rectangular specimens with a
designed dimension of 20 × 16 × 10 mm3 were also printed for the surface roughness eval-
uation of their top, front, and side surfaces. All the printed specimens were bead blasted
(Kompac 750, Abrasive Engineering, Singapore) with glass beads to remove adherent
powder particles.
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Figure 1. Design and fabrication of MJF-printed specimens: (a) print layout, (b) build orientation axes in accordance with
ISO/ASTM 52921, (c) tensile bars and (d) flexural bars.

2.2. Powder and Specimen Characterization

The particle size distribution of the PA11 and TPU powders were evaluated using a
laser diffraction particle analyzer (Mastersizer 2000, Malvern Panalytical, Malvern, UK).
The morphology of the PA11 and TPU powders was observed using a JSM-5600 scan-
ning electron microscope (SEM) at an acceleration voltage of 10 kV. Differential scanning
calorimetry (DSC) tests were conducted on the PA11 and TPU powders and specimens
using a DSC-Q200 differential scanning calorimeter (TA Instruments, New Castle, DE,
America) to evaluate their thermal properties. DSC specimens of weight 10 ± 1 mg were
tested under an increasing temperature ramp from 25 ◦C to 250 ◦C at a rate of 10 ◦C/min
followed by cooling from 250 to 25 ◦C at a rate of 10 ◦C/min. DSC measurements were
carried out with a nitrogen flow rate of 40 mL/min and repeated 3 times for data reliability.
The melting enthalpy of the specimens was calculated by integrating the endothermic peak
using the TA instruments TRIOS software, and the crystallinity Xm of the PA11 specimens
can be calculated by:

Xm =
∆Hm

∆H0
m

× 100% (1)

where ∆Hm is the melting enthalpy calculated from the endothermic peak (J/g), and ∆H0
m is

the theoretical enthalpy for a 100% crystalline PA11 matrix (∆H0
m = 226.4 J/g) [25,26]. The

theoretical enthalpy for 100% crystalline TPU matrix is unknown as the phase components
and composition of the TPU powder are kept confidential. Hence, the crystallinity of the
TPU powder and the TPU specimen cannot be calculated.

X-ray diffraction (XRD) measurements (XRD-6000, Shimadzu, Kyoto, Japan) were
conducted on both the powders and the specimens to identify their phase constitutions
using Cu Kα radiation in a 2θ range of 5–35◦ at a scan speed of 2◦/min. The Fourier-
transform infrared spectra of the PA11 and TPU powders were analyzed using the IR
Prestige 21 (Shimadzu, Kyoto, Japan) for functional group identification. X-ray photoelec-
tron spectroscopy (XPS) scans were performed using a Kratos AXIS Supra, Manchester,
UK, to identify the surface chemical states of both powders and specimens. An initial wide
scan was conducted to determine the surface chemical composition of the specimens, and
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high-resolution scans were taken afterwards to observe the composition of chemical bond
types at specific regions of interest.

The porosity of the specimens printed in the X, Y, and Z build orientation was evalu-
ated using a Bruker Skyscan 1173 micro-computed tomography (micro-CT) machine. A
cuboid of dimension 10 × 4 × 4 mm3 was imaged from the middle portion of the PA11 and
TPU flexural specimens. A source voltage of 80 kV, source current of 100 µA, rotation step
of 0.2◦, exposure of 1200 ms and pixel size of 7.1 µm were used for the imaging of all the
specimens. The images were then reconstructed and analyzed using the CTAn software.
To ensure a fair comparison, similar thresholding values were utilized for the analysis
(lower = 65, upper = 255) of all specimens.

2.3. Mechanical Performance and Surface Topography

The mechanical performance of the PA11 and TPU specimens was assessed through
tensile, flexural, and tribological tests. The tensile testing was performed using a Shimadzu
AGX 10 kN universal tester at a strain speed of 10 mm/min. The fracture surfaces of
the tensile bars were then observed using SEM. The flexural tests were performed on a
universal tester (Instron 5569 50 kN, Instron, Norwood, MA, USA) at a testing speed of
2 mm/min to a maximum deflection of 20 mm, with the distance between the two supports
being 64 mm. Linear reciprocating wear tests were conducted on the top surface of both
the PA11 and TPU specimens using a UMT-Tribolab wear tester. Specimens were grinded
and polished to achieve a flatter surface prior to the wear test. Each specimen was then
secured in the sample holder, and a Si3N4 ball of radius 3.175 mm was loaded against the
specimen at a normal load of 35 N. The ball moved in a reciprocating linear motion at a
stroke length of 10 mm and a speed of 10 mm/s for 45 min. Thereafter, the wear track of
each specimen was observed using a laser confocal microscope (VK X200K, KEYENCE,
Osaka, Japan) to determine their wear volume and wear rate. From the wear morphology,
the wear scar width was determined, and the wear volume V was calculated by:

V = l
[
(r2 sin−1( w

2r
)
− w

2

(
r2 − w2

4

) 1
2
]
+ π

3

[
2r3 − 2r2

(
r2 − w2

4

) 1
2 − w2

4

(
r2 − w2

4

) 1
2
]

(2)

where w is the width of the wear scar (mm), l is the stroke length (mm), and r is the radius
of the ball (mm). The wear rate k was then calculated using the following:

k =
V

NL
(3)

where V is the wear volume (mm3), N is the normal load applied (N), and L is the total
distance travelled by the pin (m).

The surface morphology and topography of the PA11 and TPU specimens were
measured using the laser confocal scanning microscope (VK X200, KEYENCE, Osaka,
Japan). Laser and optical scans were performed on a 4.3 × 3.2 mm2 area in the middle
portion of each specimen surface to measure the surface roughness value Ra. The surface
roughness calculations of each surface were repeated and averaged across 4 specimens to
ensure data reliability.

3. Results and Discussion
3.1. Material Feedstock Characterization

The granulometric distribution and morphology of both PA11 and TPU powders are
shown in Figure 2. Both powders consisted of irregularly shaped particles with sharp
edges, which suggested that both powders were prepared using cryogenic milling [27].
The observed powder morphology of both the PA11 and TPU powders were in line with
publications [16,28], where the PA11 and TPU powders were cryogenically milled. Com-
pared to the PA11 and TPU powders, the HP 3D HR PA12 powder presented fascinating
near-spherical particles with smooth edges, which suggested that it was produced using
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the dissolution-precipitation method, a powder preparation process that produces powder
particles of similar morphology [28]. The TPU powder cannot be prepared through the
dissolution-precipitation method because there is currently no suitable solvent that can
dissolve the TPU particles efficiently. While the PA11 powder can be prepared through
dissolution-precipitation, this process is less cost-effective as compared to cryogenic milling.
The PA11 powder had particle sizes ranging from 30–110 µm with a Dv(50) of 57.6 µm,
while the TPU powder showed a broader particle size range of 20–250 µm with a Dv(50) of
85.2 µm.
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3.2. Thermal and Chemical Analysis

From the DSC curves, various thermal properties such as the onset melting temper-
ature Tom, the peak melting temperature Tpm, the onset crystallization temperature Toc,
and the peak crystallization temperature Tpc were extracted and summarized in Table 1.
The DSC curve of the PA11 powder (Figure 3a) presented a distinct endothermic peak and
exothermic peak at 202.9 ◦C and 162.7 ◦C, respectively. The large difference between Tom
and Toc signified a large supercooling region, which is a desirable property for material
feedstock in PBF processes as it can significantly reduce crystallization of the polymer
melt during the fabrication process. The reduced crystallization of printed polymeric
parts during the printing process helped to decrease the shrinkage of the printed parts,
hence relieving the accumulation of internal stresses within the parts and guaranteeing the
processability of the polymeric material.

Table 1. Thermal properties of PA11 and TPU specimens.

Tom (◦C) Tpm (◦C) Toc (◦C) Tpc (◦C) ∆Hm (W/g) Xm (%)

PA11 powder 189.2 202.9 168.3 162.7 88.3 39.0
PA11 specimen 178.7 192.0 169.6 163.9 59.3 26.2

TPU powder 122.2 144.4 123.9 113.2 23.9 -
TPU specimen 116.0 144.2 123.6 113.6 11.9 -
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The DSC curve of the PA11 specimen showed two endothermic peaks, a main en-
dothermic peak at 192.0 ◦C, and a smaller shoulder endothermic peak at 201.8 ◦C. The
presence of a shoulder peak is a common phenomenon in SLS-printed PA12, but not in
MJF-printed PA12 [7,20,21]. It has been confirmed that the shoulder peak was a result of the
partial un-melting of powder particles. This indicated that a portion of the PA11 powder
particles, particularly the larger particles, could not melt completely due to insufficient
heat energy received during the MJF fusing process, which resulted in the presence of
un-melted powder particle cores in the polymer parts [29]. This conclusion was further af-
firmed by the similarities between the shoulder peak (201.8 ◦C) and the Tpm of the powder
(202.9 ◦C). The crystallinity of the PA11 specimen was calculated to be 26.2%, which was
higher than that of the SLS-printed PA11 (19.8%) [30]. The increased crystallinity in the
MJF-printed PA11 specimens could stem from the carbon black that was deposited into the
specimens through the fusing agent. These carbon blacks acted as nucleation sites, thereby
accelerating the crystallization process.

The DSC curves of the TPU powder and the TPU specimen (Figure 3b) exhibited
broad endothermic peaks, which are commonly observed in TPU materials because of
their complex morphology [15]. The Tom of the TPU powder was observed to be higher
than that of the TPU specimen. The lower Tom of the TPU specimen could be caused by
the disordering of the hard segment crystallites with short-range order that were formed
during the cooling and annealing process [15]. The Tom (122.2 ◦C) of the TPU powder
was close to its Toc (123.9 ◦C), which could be detrimental to the printing process as the
preheating temperature should be higher than the Toc to prevent any part warpage from
residual stresses. However, there was no part warpage or shrinkage observed in the TPU
specimens. This observation was also shared by Verbelen et al. [16] who observed no
visible warpage in TPU samples printed using SLS. This could be due to the minimal
shrinkage experienced by the hard segments during recrystallization, which in turn caused
minimal part distortion. This implied that the absence of a sintering window will not
have a significantly adverse effect on the TPU processability for the MJF process as the
recrystallization of TPU parts during the printing process does not warp the printed
parts severely.

The XRD patterns of the PA11 powder and PA11 specimen are shown in Figure 4a.
Both diffraction patterns reflected similar diffraction peaks at 7.4◦, 20.0◦, and 23.3◦, which
corresponded to the triclinic α-form (001), (200), and (010)/(210) planes, respectively [30,31].
However, the diffraction pattern of the PA11 specimen showed a smaller gap and a less
prominent separation between the main diffraction peaks as compared to the PA11 powder.
This diffraction pattern corresponded to the triclinic α’ phase, which was formed upon
cooling the polymer melt (pseudohexagonal δ phase) below the Brill transition temperature
after the MJF process [32]. In contrast to the α phase, which remains stable up to its
melting temperature, the α’ crystals will transform into δ crystals above the Brill transition
temperature. However, as the melting temperature of the α’ crystals are lower than that of
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the δ crystals, a portion of the α’ crystals melt before it can transform to δ phase [31]. This
phenomenon could be seen in the DSC curve of PA11 (Figure 3a), where the Tom of the
PA11 specimen was much lower than that of the PA11 powder. The diffraction patterns of
both the TPU powder and TPU specimen are shown in Figure 4b. Both the TPU powder
and TPU specimen possessed characteristic peaks at 2θ angles of 19.5◦, 21.0◦, and 24.0◦,
indicating that no chemical reactions occurred during the printing process. The diffraction
peaks at 21.0◦ and 24.0◦ were assigned to the (110) and (020) planes of the monoclinic
α-form of poly(ethylene adipate) [33].
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Figure 4. XRD analyses of powder and specimen: (a) PA11 and (b) TPU.

The infrared spectra of both powders and their respective peak assignments are
summarized in Figure 5 and Table 2. The infrared spectra of the PA11 powder exhibited the
typical characteristic peaks of PA11 and were similar to the PA11 powders manufactured
by Rilsan [25,34]. The infrared spectra of the TPU powder displayed peaks that matched
the characteristic absorption bands of polyurethane corresponding to N–H (3325 cm−1),
C–H (2800–3000 cm−1 and 1464 cm−1), and the vibration of amide groups (1464 cm−1) [35].
The peaks at 1138 cm−1 and 1258 cm−1 corresponding to the polyether components were
also reflected in the spectra of the TPU powder.
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Table 2. Functional group assignments for both powders.

Material FT-IR Peak (cm−1) Assignment

PA11 3306 N–H stretching
2920 CH2 asymmetric stretching
2849 CH2 symmetric stretching
1634 C=O stretching (amide I)
1537 C–N stretching and C=O in plane bending
1470 C=O and N-vicinal CH2 bending
1223 C–N stretching
683 CONH out-of-plane deformation (amide V)

TPU 3325 N–H stretching
2930 CH2 asymmetric stretching
2857 CH2 symmetric stretching
1730 C=O stretching (amide I)
1684 C=O stretching (secondary amide)
1537 N–H bending (amide II)
1464 C=O and N-vicinal CH2 bending
1258 C–O stretching (alkyl aryl ether)
1138 C–O stretching (aliphatic ether)
1072 C–N stretching

The XPS spectra of both PA11 and TPU powders and their respective specimens are
illustrated in Figure 6a,b respectively. The spectra of both materials reflected three distinct
peaks at 530 eV, 398 eV, and 283 eV, which corresponded to the S-shell orbital chemical
shift of oxygen, nitrogen, and carbon, respectively. Several minor peaks that were assigned
to Si chemical bonds were also observed. The presence of these elements stemmed from
the inorganic powdered additives that were added to improve the powder flowability
and oxidation resistance of the PA11 and TPU powders [36]. The chemical state of carbon
and oxygen in the PA11 and TPU powders and their respective specimens were identified
using a high-resolution scan (Figure 6c–f). The composition of the chemical bonds for the
PA11 and TPU powders and specimens are summarized in Table 3.

Table 3. Chemical composition of chemical bonds for both powders and specimens.

C1s (%) O1s (%)

C–C C–N C=O O–C=O C=O C–O Si–O

PA11 powder 80.1 11.1 8.8 - 27.0 61.5 11.5
PA11 specimen 82.4 9.2 4.7 3.7 37.5 49.3 13.2

TPU powder 81.5 10.5 5.0 3.0 29.7 47.9 22.4
TPU specimen 73.4 15.7 3.9 7.0 15.9 53.9 30.2

3.3. Porosity Evaluation

Micro-CT scans were conducted on the PA11 and TPU flexural specimens of each build
orientation to determine the effect of build orientation on part porosity. The respective
porosity content of the specimens is summarized in Table 4. Figure 7 illustrates the 2D
images acquired from the CT scans of the flexural specimens printed along the X, Y, and Z
orientation for the PA11 and TPU specimens. The porosity of the PA11 specimens (~1%)
was relatively lower than that of the TPU specimens, which ranged from 2.45 to 5.45%.
The PA11 specimens mainly consisted of very fine micro-sized pores, while much larger
irregular pores were observed in the TPU specimens. The porosity content of both the
PA11 and TPU specimens observed a similar trend whereby the specimen porosity was
lowest in the Z orientation and highest in the X orientation.
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Table 4. Porosity content of flexural specimens calculated from micro-CT scans.

Material
Porosity of Build Orientation (%)

X Y Z

PA11 1.24 ± 0.21 0.99 ± 0.19 0.86 ± 0.19
TPU 5.45 ± 0.30 3.53 ± 0.32 2.45 ± 0.68
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3.4. Mechanical Performance

The tensile and flexural tests were conducted on the PA11 and TPU specimens in
the different build orientations to assess their mechanical performance and anisotropy.
Figure 8 shows a tensile property comparison of the PA11 and TPU specimens with respect
to the build orientations. The specimens printed along the X, Y, and Z build orienta-
tion are defined as the X, Y, and Z specimens hereafter. Table 5 summarizes the tensile
properties of the PA11 and TPU specimens. Obvious anisotropy in the tensile strength of
the PA11 specimens was observed. The X and Y specimens displayed almost identical
ultimate tensile strength (UTS) and elongation at break (εab). The Z specimens exhibited
a significant increase in UTS (50.9 MPa) and elastic modulus (1319.8 MPa), but with a
decrease in εab (32.1%). These results were consistent with several publications [18,19,22],
and the enhanced tensile strength of the Z specimens could be attributed to the increased
material density caused by the weight of the fused powder compressing on the preceding
layers in the vertical direction. Moreover, the Z specimens also received a higher IR ex-
posure from the increased number of the overhead IR lamp sweeps due to the increased
number of layers sliced for the Z specimens [22]. The higher IR exposure, coupled with the
continuous heat conduction from the carbon black in the fusing agent, enabled a deeper
depth of energy penetration that led to the re-melting of the previous layers, hence achiev-
ing better interfacial bonding [7]. The observation of fracture surfaces was in line with these
analyses. Numerous large pores were present on the fracture surface of the X specimen but
were not observed in the Z specimen fracture surface (Figure 9a,b).
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Table 5. Tensile properties of the PA11 and TPU specimens.

Material Orientation UTS (MPa) εab (%) Elastic Modulus (MPa)

PA11 X 46.0 ± 0.9 50.5 ± 6.4 932.4 ± 106.6
Y 47.6 ± 0.5 49.9 ± 2.9 1116.5 ± 84.8
Z 50.9 ± 0.4 32.1 ± 6.2 1319.8 ± 116.1

TPU X 7.7 ± 0.6 222.3 ± 19.3 65.9 ± 5.8
Y 8.8 ± 0.5 281.4 ± 35.8 75.6 ± 7.2
Z 6.9 ± 0.2 133.8 ± 15.6 76.6 ± 3.5

SLS-printed PA11 [29] X 48.6 ± 0.2 34.0 ± 2.0 1520.0 ± 70.0

Noticeable anisotropy was observed for the TPU specimens, where the Z specimens
exhibited the lowest UTS and εab. This phenomenon was the opposite of other MJF-printed
materials such as PA11 and PA12, which exhibited the highest UTS in the Z specimens.
Fibrillar structures were observed on the fracture surface of the X specimen (Figure 9c,d),
which signified the occurrence of strain hardening that was formed through the stretching
and alignment of soft and hard segments parallel to the strain direction. In contrast, the
absence of fibrillar structures on the fracture surface of the Z specimen indicated that there
was limited strain hardening, which could be further confirmed from the tensile curve. The
reduction in elongation and strain hardening resulted in a lower tensile strength for the
Z specimens. As the preheating temperature of the printing process (106 ◦C) was lower
than the Toc of the TPU powder, the molten TPU began to crystallize before the end of
the printing process. This resulted in poorer mixing between layers and weaker interlayer
bonding, thereby causing a reduction in the εab and limiting the strain hardening of the
Z specimens.
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Table 6 summarizes the flexural properties of the PA11 and TPU specimens. Figure 10
shows the flexural property comparison of the PA11 and TPU specimens with respect to
build orientation. The flexural performance of the PA11 and TPU specimens followed a
similar trend where the flexural strength and modulus of the specimens was highest in the
Z orientation and lowest in the X orientation. This trend was also in line with published
reports on MJF-printed PA12 specimens [6,37]. Significant variance was observed in the
flexural properties of the specimens printed along the different build orientations, where
the X specimens exhibited considerably poorer flexural properties as compared to the Y
and Z specimens.

Table 6. Flexural properties of the PA11 and TPU specimens.

Material Build Orientation Flexural Strength (MPa) Flexural Modulus (MPa)

PA11 X 45.8 ± 1.7 961.2 ± 64.7
Y 54.2 ± 3.7 1320.7 ± 142.9
Z 58.0 ± 2.1 1444.2 ± 102.9

TPU X 4.0 ± 0.1 66.1 ± 1.2
Y 4.7 ± 0.1 77.8 ± 2.9
Z 4.7 ± 0.2 76.3 ± 4.1

SLS-printed PA11 [10] X 58.0 ± 2.0 1000.0 ± 100.0
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The significant variance in flexural properties could be the result of the varying
porosity of specimens printed along different build orientations. The trend observed for
the increase in flexural strength was the opposite of the trend observed for the increase
in porosity, which implied that the drop in flexural strength was affected by higher part
porosity. This result was in line with the work of O’Connor and Dowling [37], who reported
that the flexural strength of MJF-printed PA12 and glass bead reinforced PA12 specimens
decreased with the increase in their porosity, signifying that the porosity of the parts
had a larger impact on the flexural properties of the printed specimens as opposed to its
tensile properties.

The coefficient of friction (COF) and wear profile of the PA11 and TPU specimens are
shown in Figure 11, and the wear volume and wear rate of the PA11 and TPU specimens
are compiled in Table 7. The PA11 specimen possessed an average COF of 0.125 and
experienced little material loss with a wear rate of 8.68 × 10−5 mm3/Nm, which indicated
that it was highly resistant to sliding abrasion. Initially, the COF of the PA11 specimen
was observed to gradually increase until it reached a maximum value before decreasing
into a steady value. This transient state observed in the initial stage was characteristic
of the running-in period, where the asperities and irregularities of both mating surfaces
were removed under the moving load [38]. The PA11 molecules removed under the sliding
load were transferred onto the Si3N4 ball, forming a smooth and thin low-shear transfer
film. This film reduced the friction between the mating surfaces, thereby resulting in a
subsequent drop in COF to a steady-state value [39].

Polymers 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

which stemmed from the stick-slip phenomenon that occurred as the sliding direction of 

the Si3N4 ball changed [35]. 

 

Figure 11. Coefficient of friction and wear morphology of specimens: (a) PA11 and (b) TPU. 

Table 7. Tribological properties of the PA11 and TPU specimens. 

Material COF Wear Volume (mm3) Volume Loss (%) 
Wear Rate 

(mm3/Nm) 

PA11 0.13 0.082 0.002 8.68 × 10−5 

TPU 0.55 11.74 0.30 0.012 

SLS-printed PA12 [40] 0.18 - - 6.61 × 10−3 

3.5. Surface Topology 

The surface roughness values and the surface profiles for the top, front, and side 

surfaces of the PA11 and TPU specimens are shown in Figure 12. The front and side 

surfaces of the PA11 specimen were notably rougher than the top surface of the specimen. 

The rougher front and side surfaces originated from the adhesion of surrounding powder 

to the specimen. The surface roughness on all surfaces of the PA11 specimens was lower 

than MJF-printed PA12 specimens [7]. 

The Ra value on each surface of the TPU specimen appeared to be relatively similar, 

with no part curvature or distortion observed. However, the surface roughness of each 

surface of the TPU specimen was high with an average Ra value of 42. The preheating 

temperature set for the printing process (106 °C) was nearing the onset melting 

temperature of the TPU powder. The passing of the fusing lamps, combined with the heat 

diffusion from the molten part, could cause the portion of the surrounding powder 

particles to be sintered onto the specimen during the print. 

Figure 11. Coefficient of friction and wear morphology of specimens: (a) PA11 and (b) TPU.



Polymers 2021, 13, 2139 15 of 17

Table 7. Tribological properties of the PA11 and TPU specimens.

Material COF Wear Volume (mm3) Volume Loss (%) Wear Rate (mm3/Nm)

PA11 0.13 0.082 0.002 8.68 × 10−5

TPU 0.55 11.74 0.30 0.012
SLS-printed PA12 [40] 0.18 - - 6.61 × 10−3

In contrast, the TPU specimen had an average COF of 0.55 and experienced significant
material loss with a wear rate of 0.012 mm3/Nm. The high wear rate of TPU is a common
trait that is shared among elastomers due to the presence of high adhesive forces between
contacts in addition to abrasive forces from asperities. The running-in period of the TPU
specimen was significantly shorter compared to that of the PA11 specimen. As TPU has
a much higher wear rate than PA11, the irregularities on the TPU surface were removed
very quickly under the same load of 35 N, thereby shortening the running-in stage. There
was also significant fluctuation in the COF of the TPU specimen, which stemmed from the
stick-slip phenomenon that occurred as the sliding direction of the Si3N4 ball changed [35].

3.5. Surface Topology

The surface roughness values and the surface profiles for the top, front, and side
surfaces of the PA11 and TPU specimens are shown in Figure 12. The front and side
surfaces of the PA11 specimen were notably rougher than the top surface of the specimen.
The rougher front and side surfaces originated from the adhesion of surrounding powder
to the specimen. The surface roughness on all surfaces of the PA11 specimens was lower
than MJF-printed PA12 specimens [7].
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Figure 12. Surface roughness profiles of specimens: (a) PA11 and (b) TPU.

The Ra value on each surface of the TPU specimen appeared to be relatively similar,
with no part curvature or distortion observed. However, the surface roughness of each
surface of the TPU specimen was high with an average Ra value of 42. The preheating
temperature set for the printing process (106 ◦C) was nearing the onset melting temperature
of the TPU powder. The passing of the fusing lamps, combined with the heat diffusion
from the molten part, could cause the portion of the surrounding powder particles to be
sintered onto the specimen during the print.

4. Conclusions

The results obtained from this characterization study provided insight on the underly-
ing mechanisms behind certain phenomena unique to the MJF process and can be used
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as a benchmark for comparisons with similar materials fabricated using other processes.
Moreover, this study identified the key process parameters that can be further optimized
to improve the mechanical performance of existing parts. From this study, the following
conclusions can be drawn.

Both PA11 and TPU powders showed irregular morphology with sharp features and
had broad particle size distribution. XPS scans indicated the addition of inorganic additives
used to improve the flowability of both powders. Unlike the MJF-printed PA12 parts, the
DSC curve of the PA11 specimen exhibited two endothermic peaks, which was the result
of larger un-melted powder particle cores that remained in the part due to insufficient
heating. The DSC curve of the TPU specimen showed a broad endothermic peak, which
was characteristic of elastomeric materials due to their complex phase morphology.

There was a strong correlation between the part porosity and the mechanical properties
of the specimens (with higher mechanical performance observed at lower part porosity).
However, the TPU Z specimens possessed the lowest tensile strength despite having the
lowest porosity. This was attributed to the limited strain hardening of the material before
failure, as observed from the fracture surface.

The PA11 specimen possessed excellent wear resistance with an average COF of
0.125 and a wear rate of 8.68 × 10−5 mm3/Nm. The TPU specimen had a much higher
COF of 0.55 and wear rate of 0.012 mm3/Nm due to the large adhesive forces between the
contact bodies. The PA11 specimen had front and side surfaces that were much rougher
than its top surface, which was caused by the adherence of surrounding powder particles
onto the sides of the specimen. The TPU specimen had high average surface roughness for
all surfaces, which was the result of the process preheating temperature (106 ◦C) being too
close to the Tom of the TPU powder.
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