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Simple Summary: One-third of adult acute myeloid leukemia (AML) harbors NPM1 mutations. A
deep knowledge of the distribution of selected antigens on the surface of NPM1-mutated AML cells
may help optimizing new therapies for this frequent AML subtype. CD123 is known to be expressed
on leukemic cells but also on healthy hematopoietic and endothelial cells, although at lower levels.
Differences in antigen densities between AML and healthy cells may enlighten therapeutic windows,
where targeting CD123 could be effective without triggering “on-target off-tumor” toxicities. Here,
we perform a thorough analysis of CD123 expression demonstrating high expression of this antigen
on both NPM1-mutated bulk leukemic cells and CD34+CD38− cells.

Abstract: NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly
diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype,
about 50% of NPM1mut AML patients treated with conventional treatment die due to disease
progression. CD123 has been identified as potential target for immunotherapy in AML, and several
anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies.
As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep
flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples,
examining the whole blastic population, as well as CD34+CD38− leukemic cells. We demonstrate
that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed
by CD34+CD38− leukemic cells. Additionally, CD123 expression was further enhanced by FLT3
mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and
particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123
targeted therapies.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive cancer of hematopoietic stem and
progenitor cells (HSPCs) [1], affecting almost 20,000 individuals every year in Europe [2].
Despite AML prognosis has significantly improved in recent years, 60% to 70% of patients
diagnosed with AML eventually die of leukemia [1]. Such poor prognosis is mainly due to
the high incidence of AML relapse after conventional treatment [3].

A significant fraction of AML relapses is thought to be secondary to the persistence of
residual leukemic cells, able to re-establish the full tumor bulk [4]. In this regard, previous
works suggest that leukemic cells with a stem-like phenotype (leukemic stem cells; LSCs)
tend to survive chemotherapy, playing a major role in AML relapse [5,6]. Indeed, larger
LSC pools at diagnosis are predictive of chemoresistance and worse prognosis [7].

Novel approaches aimed to eradicate residual disease in AML are under develop-
ment [8,9]. Particularly, novel immunotherapeutic strategies targeting surface antigens are
under investigation [10], with the hope to replicate the remarkable results of anti-CD19
bispecific antibodies and CAR-T cells in B-acute lymphoblastic leukemia (B-ALL) [11,12].
However, a major challenge for the clinical applicability of immunotherapy in AML is
target selection, as no antigen that is selectively expressed on AML cells has been identified
so far [13].

CD123, the alfa-subunit of the interleukin-3 (IL-3) receptor, is an attractive target,
which has been reported to be expressed by the majority of AML patients, both on bulk
leukemic cells and CD34+CD38− putative LSCs [14,15]. However, CD123 expression on
normal HSPCs and endothelial cells still represents a potential threat for “on-target off-
tumor” effects, including myelosuppression and vascular toxicities, especially for powerful
antigen-sensitive strategies such as Chimeric Antigen Receptor T (CAR-T) cells [16,17]. We
believe that identifying AML subgroups with the highest CD123 expression on AML cells
and putative LSCs may open therapeutic windows where anti-CD123 immunotherapy
could be effective without causing major toxicities on CD123-positive vital tissues.

In the past years, several groups have investigated the landscape of CD123 expression
in AML. However, the majority of studies have evaluated CD123 expression only on bulk
and CD34+ cells [18,19], while CD34+CD38− cells have been analyzed only in a relatively
small number of patients [20–22]. Moreover, whether CD123 expression is higher on
CD34+CD38− than bulk AML cells and whether it correlates with specific risk categories is
still controversial [15,20].

About one-third of adult AML patients harbor NPM1 mutations [23]. Specific clin-
ical and pathologic features granted NPM1-mutated AML the designation as a distinct
entity of the World Health Organization classification of hematopoietic tumors [24]. Al-
though large clinical studies have demonstrated that NPM1-mutated AML has a relatively
favorable prognosis, about 50% of patients eventually die due to relapse and disease pro-
gression [25,26]. The prognosis is even poorer when FLT3 internal tandem duplications
(FLT3-ITD) coexist [27]. Interestingly, a previous work from our group suggested that
NPM1mut putative LSC express CD123 [28]. Although several studies have described
CD123 expression in large cohorts that included NPM1mut patients, no study had been
designed to specifically analyze this AML subgroup or to compare CD123 fluorescence
intensities between bulk AML cells and the CD34+CD38− population [13,15,19].

Here, we investigate CD123 expression in a large number of newly diagnosed AML,
focusing on the correlation between CD123 expression and NPM1 mutational status, with
the aim to explore whether NPM1mut AML could represent an entity that could particularly
benefit from anti-CD123 therapies.

2. Results
2.1. Study Population and Analysis

Between October 2010 and October 2020, 151 samples (74 bone marrows and 77 pe-
ripheral blood) from 80 female and 71 male adult patients with newly diagnosed AML
(median age at diagnosis 60, range 22–90) were studied.
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CD123 expression was studied by multiparameter flow cytometry on bulk leukemic
cells in all samples. Additionally, we also analyzed CD123 levels on CD34+CD38− putative
LCS in 115 samples containing at least 50 events in this rare subpopulation. CD123
expression levels were reported as the percent of positive cells (PPC) and as the median
fluorescence intensity (MFI). PPC was available for all 151 samples, while MFI for 123
samples (see Methods). An arbitrary cut-off of 20% PPC was set to assign CD123 positivity.
A summary of all results is presented in Table 1.

Table 1. Summary of CD123 expression in all samples. Summary of CD123 expression studied by flow cytometry in bulk
acute, myeloid leukiemia (AML) and CD34+CD38− cells. * CD123 expression was studied in immature cells gated as
CD45dimSSClow cells (see Methods). LR, low risk; IR, intermediate risk; and HR, high risk. p-values are for unpaired t-tests,
unless otherwise specified.

Subgroup
Bulk Cells CD123 PPC

Median (25–75th
Percentile), n

Bulk Cells CD123 MFI
Median (25–75th

Percentile), n

CD34posCD38neg

CD123 PPC Median
(25–75th Percentile), n

CD34posCD38neg

CD123 MFI Median
(25–75th Percentile), n

All samples 76 (48–91), 151 23.5 (13.7–46.3), 122 71 (41–95), 119 20 (9.7–66.1), 96

Female 78 (53.8–92), 80 29.1 (14.9–47.4), 68 84 (44.8–98), 60 30 (11.3–90), 52

Male 71 (46–86), 71 22.3 (13.4–38.6), 54 58 (35–91), 59 14.6 (9.6–36.6), 44

p value 0.2557 0.2883 0.0598 0.0201

LR cytogenetics 50.5 (41–61.8), 10 11.8 (11.8–25.5), 9

IR cytogenetics 80 (49.5–93), 81 23.7 (14.3–51.6), 65

HR cytogenetics 60 (27–80.3), 20 16 (10.5–35.3), 17

p value (ANOVA) 0.0286 0.0455

NPM1mut 84.5 (74.3–94), 68 39.8 (22.4–61), 54 94.5 (48.5–99), 54 47.4 (9.6–106.9), 45

NPM1wt 58 (32–79), 83 16.5 (10.7–28.4), 68 60 (36–85), 65 15 (9.9–29), 50

p value <0.0001 <0.0001 0.0066 <0.0001

FLT3mut 91.5 (75.3–95), 36 43.8 (19.7–68.4), 26 93 (58.5–98.8), 32 37.5 (9.7–103.7), 23

FLT3wt 66.5 (38.3–82.3), 86 20.7 (11.8–32.5), 67 61.1 (35.8–90.3), 62 16.9 (11–41.8), 47

p value <0.0001 <0.0001 0.013 0.0483

NPM1mut/FLT3-ITD 93 (82.5–96), 21 61 (28.9–75), 15 98 (89.5–99), 21 90.6 (44.7–169.5), 14

NPM1mut/FLT3wt 81 (67.8–89.5), 29 28.5 (16.3–47.4), 22 63.5 (39.5–99), 18 16.9 (9.7–110), 15

NPM1wt/FLT3-ITD 83 (54.5–94.5), 13 27 (15.4–55.2) 10 63 (32.8–85.5), 10 10.3 (7.6–27.6) 7

NPM1wt/FLT3wt 53 (28–77), 57 14.6 (10.3–23.5), 45 61.1 (33–84.5), 44 18.6 (8.6–29.4), 33

p value (ANOVA) <0.0001 <0.0001 0.0029 <0.0001

Healthy donors 13 (5.25–16.25), 4 * 15.5 (6–20.8), 4 * 2.5 (1.3–8.3), 4 4.4 (1.9–9.5), 4

2.2. CD123 MFI Is Higher on Putative CD34+CD38− AML LSCs

We first analyzed CD123 expression on bulk cells in all samples. As previously
reported by others [14,15,18,19], the vast majority of cases resulted CD123-positive (138/151,
91%). However, variable expression levels were observed among positive cases (mean
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PPCs 73 ± 22 and mean MFI 35 ± 26) (Figure 1A,B). We then looked into CD34+CD38−

cells, finding frequencies of CD123 positivity similar to those observed in bulk cells (mean
PPCs 68 ± 30 and mean MFI 48 ± 60) (Figure 1C,D). Although no statistically significant
difference was found between bulk and CD34+CD38− CD123 PPCs, CD123 MFI was higher
in CD34+CD38− than in bulk cells (p = 0.0072) (Figure 1E), indicating that LSCs tend to
have higher CD123 expression levels.
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Figure 1. CD123 is ubiquitously expressed in acute myeloid leukemia (AML). (A) CD123
percent of positive cells (PPCs) on bulk cells in all samples (n = 151). (B) CD123 mean
fluorescence intensities (MFIs) on bulk cells in all samples available (n = 122). (C) CD123
PPCs on CD34+CD38− cells in all samples available (n = 119). (D) CD123 MFIs on
CD34+CD38− cells in all samples available (n = 96). (E) CD123 MFIs on bulk cells com-
pared to CD34+CD38− cells at diagnosis in all samples available (n = 96). Paired t-test.
(F) CD123 PPCs on bulk cells sorted based on the cytogenetic risk (n = 111). Cytogenetics
characteristics of all patients are reported in Table S1. Multiple comparison test. (G) CD123
MFIs on CD34+CD38− cells in female and male patients (n = 96). Unpaired t-test. Bars
represent mean and standard error.



Cancers 2021, 13, 496 5 of 14

No statistically significant differences were found according to the cytogenetic risk
stratification [27]. However, a clear trend towards higher CD123 expression levels was
detected in the intermediate risk group (Figure 1F). Surprisingly, we also found a clear
trend towards higher CD123 expression levels (MFI p = 0.00181 and PPC p = 0.0938) in
female patients as compared to males when analyzing CD34+CD38− LSC (Figure 1G).

2.3. CD123 Expression Is Consistently High in NPM1mut AML LSCs

As previous xenograft experiments suggest that NPM1mut AML LSCs are CD123-
positive [28], we investigated CD123 expression in NPM1mut samples. NPM1 was mutated
in 68/151 patients (45%), and 97% (66/68) NPM1mut samples were CD123-positive. When
compared with NPM1wt samples, NPM1mut cases displayed significantly higher CD123
expression levels on bulk AML cells (PPC and MFI p < 0.0001) (Figure 2A,B).
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Figure 2. CD123 is highly expressed on NPM1mut AML cells. (A) CD123 PPCs on
NPM1mut and NPM1wt AML bulk cells in all samples (n = 151). Unpaired t-test. (B)
CD123 MFIs on NPM1mut and NPM1wt AML bulk cells in all samples available (n = 122).
Unpaired t-test. (C) CD123 PPCs on NPM1mut and NPM1wt CD34+CD38− cells in all
samples available (n = 119). Unpaired t-test. (D) CD123 MFIs on NPM1mut and NPM1wt
CD34+CD38− cells in all samples available (n = 96). Unpaired t-test. (E) CD123 MFIs on
NPM1mut bulk AML cells compared to CD34+CD38− cells at diagnosis in all samples
available (n = 44). Paired t-test. Bars represent mean and standard error.
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We then looked at CD123 expression in NPM1mut CD34+CD38− AML putative LSCs.
CD123 was positive in 91% of NPM1mut samples (49/54). Both PPCs and MFIs were
significantly higher in NPM1mut putative LSC compared to NPM1wt samples (PPCs p =
0.0066 and MFI p < 0.0001) (Figure 2C,D). Average CD123 MFI was higher in CD34+CD38−

putative LSC than in bulk NPM1mut AML cells (p = 0.0029), confirming that CD123 is
highly expressed on the surface of NPM1mut AML LSCs (Figure 2E).

As several studies suggest that relapse frequently derives from residual LSCs after
treatment [4,5], we analyzed CD123 expression on bulk AML cells in six NPM1mut patients
at diagnosis and relapse. In all patients, CD123 expression increased at relapse, compared to
diagnosis (PPC p = 0.0068 and MFI p = 0.0195) (Figure 3A–C). As two out of six patients had
too-small numbers of CD34+CD38− cells at diagnosis (<50 events), no comparison between
diagnosis and relapse was possible in this subpopulation. Nonetheless, all six samples
showed very high CD123 expression levels on CD34+CD38− cell at relapse (average PPC 96
and average MFI 139). Altogether, these data confirm that CD123 is consistently expressed
on NPM1mut AML putative LSCs.
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Figure 3. CD123 expression increases in relapsed NPM1mut AML. (A) CD123 PPCs on
bulk NPM1mut AML cells at diagnosis and relapse (n = 6). Paired t-test. (B) CD123
MFIs on bulk NPM1mut AML cells at diagnosis and relapse (n = 6). Paired t-test. (C)
Flow cytometry dot plots showing an increase of CD123 expression at relapse (right plots)
compared to diagnosis (left plots) in a representative case of NPM1mut AML.
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2.4. CD123 Is Highly Expressed on FLT3-Mutated AML

Since AML with mutated NPM1 frequently harbors FLT3 mutations, which have
been previously reported to be associated with higher CD123 expression [29,30], we also
analyzed the FLT3 mutational status in 122 samples. FLT3 was mutated in 46% (24/52)
NPM1mut and in 19% (13/70) of NPM1wt cases. Two patients were positive for the
FLT3-D835 mutation, while all others harbored FLT3-ITD. We first compared CD123 in
FLT3-mutated (FLT3mut) and FLT3 wild-type (FLT3wt) samples. FLT3mut samples showed
significantly higher CD123 levels than FLT3wt cases. This was true for bulk cells (PPC p <
0.0001 and MFI p < 0.0001) and, though with a lesser degree of certainty, for CD34+CD38−

cells (PPC p = 0.013 and MFI p = 0.0483) (Figure 4A–D).
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(n = 94). Unpaired t-test. (D) CD123 MFIs on FLT3mut and FLT3wt CD34+CD38− cells in all samples available (n = 70).
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2.5. NPM1 and FLT3 Mutations Cooperate in Promoting CD123 Expression

We then analyzed the CD123 expression in each of four the different NPM1/FLT3-
ITD genotypes. The NPM1mut/FLT3-ITD, NPM1mut/FLT3wt, NPM1wt/FLT3-ITD, and
NPM1wt/FLT3wt genotypes accounted, respectively, for 21/120 (18%), 29/120 (24%),
13/120 (11%), and 57/120 (47%). The highest CD123 expression was detected in double-
mutated patients, while NPM1wt/FLT3wt cases displayed the lowest expression levels
(Figure 5A,B), and NPM1mut/FLT3wt and NPM1wt/FLT3-ITD patients had intermediate
CD123 (Figure 5A,B). Similar results were obtained studying either PPCs or MFIs in either
bulk cells or in CD34+CD38− subpopulations (Figure 5C,D). These results strongly suggest
that NPM1 mutations and FLT3-ITD cooperates in promoting CD123 expression.
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2.6. CD123 Expression on HSPCs Is Significantly Lower than NPM1mut/FLT3-ITD
CD34+CD38− Cells

To compare the CD123 expression on LSC to that of normal progenitors, we analyzed
the CD123 expression on bone marrow immature cells and on CD34+CD38− cells from four
healthy donors. Overall, healthy immature cells displayed very low CD123 levels (Table 1).
Specifically, CD45dim-SSClow cells showed a median value of CD123 PPCs of 12 and a
median value of MFIs of 15, while CD34+CD38− cells displayed even lower CD123 levels,
with median values of CD123 PPC and MFI, respectively, of 3 and 4. With the caveat of
the small sample size, we compared CD123 expression on CD34+CD38− cells from healthy
donors with CD34+CD38− LSCs. As anticipated, the most significant difference was found
with NPM1mut/FLT3-ITD CD34+CD38− leukemic cells (MFI p = 0.0151) (Figure 5E), further
confirming very high CD123 expression in this AML subset.

3. Discussion

Immunotherapy targeting antigens expressed on AML cells represents a promising
approach with the potential to reproduce the outstanding results achieved in B-ALL [31].
Despite several preclinical studies demonstrating the powerful antileukemic effects of
bispecific antibodies and CAR-T cells targeting single AML antigens [32–34], only a few
clinical trials are currently underway in AML patients [35]. Such a slow translation into
clinical success is mainly due to the absence of targets with optimal expression profiles
(i.e., highly expressed on neoplastic cells with low or no expression on vital healthy
tissues) [10,13].

CD123 shows several features that prioritize this antigen among all promising po-
tential target in AML. Previous studies have shown that the majority of AML patients
express CD123 [13,15,18–20,22] and that higher CD123 expression seems to be associated
with poorer prognosis [36–38]. Consequently, targeting CD123 represents an attractive
approach to improve outcomes in AML.

However, CD123 expression on HSPCs and endothelium still represents a major
obstacle [32]. Although CD123 expression on endothelial cells is very low [39], high levels
of interferon-γ and tumor necrosis factor-α induced by cytokine release syndrome may
facilitate CD123 expression and trigger capillary leak syndrome (CLS) [40]. This mechanism
could explain why CLS occurred in two patients enrolled in a phase 1 first-in-human trial
(NCT03203369 and NCT03190278) exploring the safety of a “universal” anti-CD123 CAR-T
cell [41].

CD123 expression density is higher on AML cells than normal tissues. An important
challenge is to find an optimal strategy where anti-CD123 CAR-T cells can still efficiently
recognize leukemic cells while avoiding capillary leak syndrome and prolonged myelo-
suppression. Stevens et al. recently showed, by epitope density analysis, that anti-CD123
CAR-T cells could be able to eliminate tumor cells with higher CD123 antigen density, while
sparing normal hematopoietic stem cells with lower antigen densities [42]. Arcangeli et al.
confirmed the importance of CD123 antigen density and CAR affinity to fine-tune the level
of anti-CD123 reactivity, merging efficacy with safety. In their study, the CAR-binding
affinity was lowered in order to reduce the cytotoxicity against CD123low endothelial cell
lines while holding high activity against CD123high AML cells lines [43]. In this context,
identifying AML subsets with the highest CD123 expression levels seems relevant for the
design of future clinical studies.

In this study, we demonstrate that CD123 is highly expressed on NPM1mut AML cells.
CD123 expression on NPM1mut cells was already reported by our group while characterizing
NPM1mut CD34+CD38− leukemia-initiating cells in xenograft experiments [28]. Here, we
show consistently high CD123 levels on putative NPM1mut CD34+CD38− cells in patients,
suggesting that anti-CD123 immunotherapies could be particularly effective in NPM1mut
AML. The molecular mechanisms behind the higher CD123 expression and NPM1 mutations
in AML are unclear. However, NPM1 seems to play an important role in the differentiation of
myeloid progenitors into mature myeloid cells through the IL-3/CD123/JAK2/STAT5 path-
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way [44–46]. Therefore, the interplay between NPM1 mutation and high CD123 expression
warrants further investigations.

CD123 expression was found to be particularly high in NPM1mut/FLT3-ITD samples.
This was observed both on bulk cells, as well as in CD34+CD38− cells. As NPM1mut/FLT3-
ITD AML patients have relatively poor outcomes due to high relapse rates [26], we envision
that anti-CD123 immunotherapy could be of particular benefit for this specific subset
of patients.

We also found consistently higher CD123 levels at relapse when comparing CD123
expression in NPM1mut AML at diagnosis and relapse. We therefore hypothesize that
CD123 plays a major role in the maintenance of this AML entity, given the importance
of the IL-3 receptor for stem cell biology. This hypothesis is in line with several studies
demonstrating the engraftment failure of CD123-negative AML-LSCs [20,47,48]. These
results also suggest that CD123 may be a useful surface marker for measurable residual
disease (MRD) monitoring by multiparameter flow cytometry. In this regard, the European
LeukemiaNet recommends including CD123 while assessing MRD to identify early progen-
itors and LCSs [49]. Future studies will address the impact of CD123 in MRD monitoring
of NPM1mut AML.

In conclusion, this work demonstrates that CD123 is highly expressed on the surface
of NPM1mut AML cells both at diagnosis and relapse, with the highest levels detected
in NPM1mut/FLT3-ITD samples. This study establishes NPM1mut AML as an attractive
candidate for CD123-targeted therapeutic strategies laying the groundwork for the design
of clinical trials in this specific AML subset.

4. Materials and Methods
4.1. Samples from AML Patients and Healthy Donors

BMs and PBs were collected in seven different Italian centers and subsequently ana-
lyzed in our laboratory within 24 h from sampling. In 6 cases, paired BM or PB samples
were collected at both diagnosis and relapse. To compare CD123 expression in normal and
pathologic samples, we also studied 4 bone marrows from healthy donors. All patients and
donors gave their written informed consent before either BM aspiration or PB collection.

Routine morphologic, immunohistochemistry, cytogenetic, and molecular studies to
assess NPM1 and FLT3 mutational status were performed as previously described [28].
NPM1 mutations were also confirmed by Western blot analysis [50]. NPM1 and FLT3
mutational status was available, respectively, for 151/151 and 122/151 samples. In 111
cases, a successful karyotype analysis was obtained through standard G-banding [51]. Cy-
togenetic risk was defined according to the European LeukemiaNet 2017 recommendations,
as previously reported [27]. Cytogenetics characteristics are reported in Supplementary
Table S1.

4.2. Flow Cytometric Immunophenotyping

Heparinized peripheral blood or bone marrow samples were lysed for erythrocytes
and stained with predefined optimal concentrations of 4 antibodies: CD34-FITC, CD123-PE,
CD45-PerCP, and CD38-APC (Becton Dickinson, San Diego, CA, USA). Blasts were gated
as CD45dim-side scatter (SSC)low cells in samples with no- or early myeloid differentiation
(see, also, Figure 3C) and as CD45dim-pos-SSClow-int in cases with myelomonocytic or
monocytic differentiation. CD123 expression analysis was analyzed on bulk leukemic cells
and CD34+CD38− precursors.

To set the cut-off point to distinguish between CD123 negative and positive cells,
we used the “Fluorescence Minus One” technique, as described by Perfetto et al. [52]. A
single case was arbitrarily judged CD123-positive when the percentage of positive bulk
cells was higher than 20%. In healthy controls, immature cells were selected as CD45dim-
SSClow and CD123 analysis was performed on both whole immature cell population and
CD34posCD38neg precursors. Data were reported as both CD123 percentage of positive
cells (PPC) and median fluorescence intensity (MFI).
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In all specimens, cell doublets and debris were excluded from analysis by forward
scatter (FSC) vs. SSC dot-plot examination. Analysis was performed on either a FACSCal-
ibur or FACSCanto II flow cytometers using the CellQuest Pro 6.0 or FACS Diva 7.0 analysis
software (BD Biosciences, Franklin Lakes, NJ, USA). PPC was determined on all samples
(analyzed on FACSCalibur or FACSCanto II). MFI was also studied in all samples; however,
only those samples acquired on FACSCalibur were reported (i.e., the vast majority), as MFI
values are not comparable between these two machines (four decades vs. five decades).

4.3. Statistical Analysis

Statistical analysis was carried out using GraphPad Prism 7 (GraphPad Software,
San Diego, CA, USA). Differences between two groups were determined using paired or
unpaired two-tailed t-test, depending on the experiment performed (see figure legends
for each individual experiment). Differences among three or more groups were compared
with an unpaired ANOVA test performing post-hoc multiple comparison tests. In all tests,
p-values were considered statistically significant if <0.05.

5. Conclusions

Our results suggest that NPM1mut AML could be particularly sensitive to anti-CD123
target therapies, for the differences in CD123 antigen densities between NPM1mut AML
and healthy cells expressing low levels of CD123 (such as endothelial cells and HSCs)
could reveal a therapeutic window where immunotherapeutic strategies could effectively
eliminate NPM1mut LSCs (Figure 6) while avoiding capillary leak syndrome and prolonged
pancytopenia. In conclusion, we believe that anti-CD123 immunotherapy holds promise
for success in NPM1mut AML.
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