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Special considerations in prognostic research in
cancer involving genetic polymorphisms
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Abstract

Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological
basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic
studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance
patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the
specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such
as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population
substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research
due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information
obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and
other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer.
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Introduction
Genetic prognostic research
Prognostic research aims to identify the factors that
can predict the course of a disease in cohorts of patients
[1]. Traditionally, various patient and disease-related
and measurable variables, such as the demographic
characteristics (for example, sex and age), pathological
characteristics (for example, stage), molecular char-
acteristics (for example, preoperative serum levels of
carcinoembryonic antigen), and somatic mutations (for
example, KRAS mutations) have been extensively investi-
gated as prognostic markers in human cancers. While
several of these variables, such as the disease stage, have
been used in predicting the prognosis and outcomes in
cancer patients, there is nevertheless a considerable
amount of variability in clinical outcomes of patients
carrying similar baseline clinicopathological characteris-
tics. Identification of additional variables, such as genetic
variations, and their inclusion into prognostic prediction
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models may provide better prognostic predictions and
help improve treatment decisions and clinical outcomes
in cancer patients [1].
In this article, we provide a review of the promises and

special considerations arising from the unique features
of genetic polymorphisms in prognostic research, par-
ticularly in relation to methodological and statistical ap-
plications, with an emphasis in cancer research.
Genetic polymorphisms
The human genome contains millions of sequence and
structural variations. Among the most common varia-
tions are the single nucleotide polymorphisms (SNPs: es-
timated number >10 million), small insertions and
deletions (indels), and copy number variations (CNVs;
variable number of DNA segments longer than 1 kb)
[2,3]. Biological consequences of genetic and genomic
variations contribute to a wide range of phenotypes,
such as high-penetrant mutations observed in Mendel-
ian diseases and low penetrant variations (also called
polymorphisms) implicated in complex diseases. There-
fore, many genomic variations have been extensively
studied for their roles in human health and disease. In
these studies, either individual alleles or genotypes at the
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polymorphic locus or their combinations (that is, haplo-
types) at different polymorphic loci are investigated. We
should mention that genetic prognostic studies benefit
from the experience gained as a result of the genetic sus-
ceptibility studies investigating the genetic etiology of
complex human diseases. For example, it becomes in-
creasingly clear that in order to identify the low suscep-
tibility alleles, more comprehensive (for example,
including rare variants and structural variants, such as
CNVs) and detailed (for example, investigating gene-
gene and gene-environment interactions) analyses may
be required [4]. In addition, since it is possible that pa-
tient prognosis can be modified by a number of different
genetic variations and these risk alleles may not be
shared by the individuals (that is, genetic heterogeneity),
our current efforts to identify the genetic factors may be
quite limited [4,5]. Genetic prognostic studies thus can
learn from the strength, limitation, and experiences
obtained from the genetic susceptibility studies and
adapt the (emerging) concepts as relevant.
While due to the large number of variations in the hu-

man genome and their relatively poor biological
characterization, the functional consequences and med-
ical significance of a large portion of these variations are
currently unknown, nevertheless, many genetic polymor-
phisms have been evaluated as potential prognostic
markers in human diseases. In this article, for simplicity,
we will use the term polymorphism to refer to any type
of genetic variations that is commonly used in the con-
temporary research setting, regardless of their functional
and phenotypic consequences. In addition, although, we
will focus on SNPs, the concepts discussed in this manu-
script are also applicable to other genetic variations
(such as indels and CNVs).

Univariate and multivariate analyses in prognostic
research
An extensive description of the statistical tests and inter-
pretation of their results used in prognostic studies is
beyond the scope of this article. Instead, a brief, non-
mathematical prologue is provided below. Interested
readers may refer to other articles for further informa-
tion [6-10].
Initially, association of a polymorphism and clinical

outcomes is assessed through univariate analyses. Linear
regression and the t-test are commonly used to test stat-
istical association of continuous outcomes (for example,
quality of life scores). Logistic regression and χ2 tests are
frequently used to test statistical association of binary
outcomes (for example, response rate, toxicity). Log-
rank test (comparing Kaplan-Meier survival curves) and
Cox regression analysis are two commonly used statis-
tical methods to evaluate time-to-event outcomes (for
example, time to progression, cancer-specific survival or
overall survival). The result of these univariate analyses
provides a P value and/or an estimated effect size (for
example, odds ratio (OR) and hazard ratio (HR)) with
confidence intervals that estimate whether a group of
patients differs from another group of patients in terms
of their prognostic characteristics. Specifically, in genetic
prognostic research, these tests are used to determine
whether a group of patients with a particular genotype
(or genetic profiles combining multiple genotype data
together) can be distinguished from patients with other
genotypes or genetic profiles in terms of their outcomes.
If, after a univariate analysis, a significant association

of a polymorphism with outcome is detected, then, the
patients carrying a particular form of a polymorphism
(for example, a homozygous or heterozygous genotype, a
particular allele, or combination of alleles (for example,
haplotypes)) have a poorer or better outcome than the
other group of patients carrying another genotype, allele
or haplotype in that cohort. However, outcome in pa-
tients are affected by many different variables (such as
disease stage, age, comorbid conditions) and the com-
pared patient groups in analyses may differ in these po-
tentially confounding factors. Unfortunately, univariate
analyses cannot adjust for these confounding factors.
Thus, univariate analysis results are only the first step in
analysis, helping us to understand our data and perhaps
select the variables suitable for further studies, and need
to be followed by multivariate analyses.
In multivariate analyses, a number of selected variables

are analyzed together in a single statistical model, typic-
ally a regression model such as a logistic or Cox propor-
tional hazard regression model. In such analyses, several
variables are analyzed simultaneously to test their contri-
bution to the outcome independent of other variables in
the model. For example, the individual predictive value
of a genotype may be tested after adjustment for other
variables entered in the model (such as stage, age, and
other clinically important variables). Genotypes that
show statistically significant results after this adjustment
are concluded to be independent predictors of the out-
come. Another benefit of the multivariable models is
that if confounding factors are entered into the multivar-
iable analysis, then this method also helps identify the
confounding factors (though in many cases some of the
potential confounders remain unknown and thus cannot
be included into the models).
Selection, number and characteristics of the variables

entered into a multivariable model are critical in statis-
tical analyses. For instance, to ensure a proper model,
variables in the model should be kept to minimum and
have relatively common variable categories (see section
entitled The minor allele frequency of polymorphisms
and the other determinants of the study power in the
multivariable models). Several approaches are available
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to select the variables entered into the multivariable
models, with their own advantage and disadvantage [6].
One of the ways is to enter the experimental variable
(such as polymorphisms) with those variables that are
shown to be independent predictors with convincing sci-
entific evidence (such as stage in cancer). In another ap-
proach, those putative prognostic variables that have a
certain P value in the univariate analyses (such as below
0.05 or other cut point at the discretion of the investiga-
tor) are entered into the model. If the number of vari-
ables is large, an automatic selection method (such as
backward, forward, and stepwise selections) may also be
performed by statistical programs to determine the vari-
ables to be entered into the final model. In another
approach, all variables that cause the main association
(that is, OR or HR) to change greater than 10% are in-
cluded in the final model. Last but not least, all variables
may be analyzed in the multivariate analysis regardless
of their P value in the univariate analyses (that is, unse-
lected variables). Utilization of these alternative ap-
proaches in multivariate analysis thus may result in
different results.
Assuming that a multivariable model is developed, its

results can pinpoint those variables that are able to pre-
dict the outcome in a study cohort independent of other
prognostic variables. Once such independent predictors
of outcome are identified in a study, however, validation
in additional studies is required to avoid false-positive
statistical results. Several approaches, such as internal
and external validations, may be used in validation stud-
ies [11]. Usually, though, a model developed on a patient
cohort may not work in another patient cohort with dif-
ferent characteristics. This is a natural anticipation as
the prognosis in cancer patients is affected by many fac-
tors (such as disease and tumor characteristics, comor-
bid conditions, medical care, lifestyle factors, and patient
ethnicity) and the distribution of such variables may dif-
fer from one cohort to other leading to different results
in different cohorts. Therefore, factors that independ-
ently predict outcome regardless of this inter-patient
variability are currently the ‘holy grail’ of prognostic re-
search and whether we need a single prognostic model
applicable to all patients or different models selected
based on patient and disease characteristics is an on-
going debate.
In addition to validation in other patient cohorts,

meta-analyses can also be useful in identifying independ-
ent prognostic markers. Incorporation of independent
prognostic markers in the clinical management of pa-
tients then requires clinical utility testing, followed by
consensus guidelines for clinical adaption. Although
there is a tremendous amount of research performed in
this field, currently the number of genetic markers used
in the clinic management of patients is surprisingly
small, indicating the need to design better studies and
the time required to validate prognostic models in a
clinically meaningful way [11-13].

Other statistical approaches in prognostic studies
In addition to the univariate and multivariate analyses
that are commonly used in prognostic studies, we should
also mention other statistical approaches that are rele-
vant to genetic prognostic studies. For example, classifi-
cation and regression tree (CART) analysis is a data
partitioning method that can explore the relationship
between the variables and the outcome in patient co-
horts [14,15]. While multivariable models concern
with predicting the risk of hazard for each covariate,
CART analyses are rather focused on risk stratifying (or
subgrouping the patients) based on clinical and prognos-
tic characteristics [16]. In this regard, CART analysis is
useful in identifying not only the patients with similar
characteristics but also the predictive capacity of covari-
ates. Another advantage of the CART analysis is its abil-
ity to detect the interactions between the covariates
included in the analysis. For example, interactions be-
tween genetic polymorphisms or between genetic poly-
morphisms and environmental factors may be explored
using this method [17,18]. Thus, CART analysis can be
useful in genetic prognostic studies as well and is sug-
gested to be complementary to the multivariable ana-
lyses [16,19].

Special considerations and analyses in genetic prognostic
research involving genetic polymorphisms in cancer
In many ways, genetic polymorphisms differ from other
potential or established prognostic markers used in
prognostic studies. While some of these characteristics
ease our research and thus are advantageous, others still
are challenging and may need to be debated within the
scientific community to develop or establish ways to ad-
dress them. In the following session, we discuss these
characteristics and summarize the current challenges
and solutions to some of these issues (Table 1).

Linkage disequilibrium among genetic polymorphisms
provides unique advantages in genetic prognostic research
The results of the HapMap project indicated that parts
of the human genome are inherited as blocks (called
linkage disequilibrium (LD) blocks); the polymorphisms
located within these LD blocks are also inherited to-
gether with higher probability [20] (Figure 1). Usually,
the genotypes of genetic variations in a LD block are
also correlated with each other. In prognostic studies,
these highly correlated genetic variations create a redun-
dancy problem if investigated at the same time, which
may distort the results of the statistical analysis. In order
to prevent this problem, a practical alternative is to



Table 1 A summary of special considerations in genetic prognostic studies

Characteristics/challenge Possible solutions Potential benefits of the solution in genetic
prognostic studies

Correlation among genetic
polymorphisms

(i) Utilization of the linkage disequilibrium (LD)
information and investigating the tagging single
nucleotide polymorphisms (tagSNPs) instead can
prevent this issue [23]

(i) reduces the redundancy among variables and
simplify the analysis while also reducing the
genotyping cost and efforts [23]

(ii) Once an association is found with a genetic
polymorphism, this genomic region (usually within
the same LD block) may be investigated in detail to
identify the nearby ‘true’ prognostic factor that
modifies the prognosis in patients

(ii) may identify the prognostic factor biologically
linked to variable prognosis in patients

Genetic polymorphisms as
confounders

Some of the genetic polymorphisms confounding the
relationship between the prognostic factor and the
outcome are likely to be in close vicinity and can be
identified by investigating the genomic region in
detail

Genetic confounders can be identified

Hardy-Weinberg equilibrium (HWE)
testing in case-only cohorts

Whether appropriate or not remains to be established

Estimating the correct genetic
model

Visual inspection of Kaplan-Meier curves for the
codominant genetic model may reveal the best
suitable genetic model for investigation of each
polymorphism in multivariable models

Provides a logical and comprehensive solution while
also reduces the number of tests to be performed

Minor allele frequency (MAF) of
genetic polymorphisms

Excluding the rare polymorphisms (for example, MAF
<5%) from the analysis is a common practice

Prevents unstable model construction and by
reducing the multiple testing burden and increasing
the events/variables ratio also improves the study
power

Population stratification due to
variable frequencies of genetic
polymorphisms in different
ethnicities

Detecting and controlling for the population
substructure in the cohort eliminates this problem (for
example, outlier samples may be eliminated from the
analysis or ethnicity can be used as a covariate in the
analysis)

Prevents biased estimations and increases the study
power

Multiple testing issue due to the
investigation of large numbers of
polymorphisms

Correction for multiple testing using a variety of
methods such as Bonferroni or false discovery rate
(FDR) methods [42]

Reduces the false-positive rate (however, ironically
may also increase the false-negative rate)

Use of genomic material extracted
from archived specimen

Use of new technologies with high rates of successful
genotyping [48,49]

Reduces bias and increases study power by allowing
the construction of models with a higher number of
patients

Use of tumor versus non-tumor DNA
in the same study

Using one type (either tumor or non-tumor)
depending on the objectives of the study in the
cohort or checking the correlation of genotype data
obtained from both tumor and non-tumor DNA
samples in a set of patients to see whether they are
comparable with each other (for example, the tumor
DNA may not be a good surrogate for non-tumor
DNA all the time)

Prevents bias in study results created by alterations in
tumor tissue DNA (that is, different genotypes in
tumor DNA compared to non-tumor DNA)

The main characteristics of genetic polymorphisms that require additional considerations in genetic prognostic research are summarized. The majority of the
solutions are already applied in susceptibility studies, which can be or have been extended to the prognostic studies.
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select a subset of genetic variation that captures the gen-
etic information of correlated variations. This approach
involves ‘tagging SNPs (tagSNPs)’, which can be identi-
fied for particular genomic regions for example, through
the HapMap website [21] or by using specific software,
such as Haploview [22].
In addition to reducing the redundancy among the

study variables, analysis of tagSNPs alone may simplify
the genotyping efforts and reduce the cost and resources
required for genetic prognostic studies [23]. This ap-
proach also (by reducing the number of genetic varia-
tions to be analyzed) reduces the correction for multiple
testing burden (see section entitled The multiple testing
issues). Due to these advantages, tagSNPs are increas-
ingly used in genetic prognostic studies [24].
The LD among genetic polymorphisms in close prox-

imity to each other also offers an additional advantage.
For instance, once an association between an outcome
and a polymorphism is detected and validated, this poly-
morphism may be considered as a prognostic marker.
However, such a genetic marker may not be the direct
biological modifier of the prognosis, but rather act as a
proxy or surrogate for a nearby ‘true’ prognostic factor
(that biologically modifies the risk of outcome).



Figure 1 A partial linkage disequilibrium (LD) map of the human CASR (calcium-sensing receptor) gene. Rs numbers for polymorphisms
in this gene are shown at the top. The triangle points to the predicted LD block. The rectangles indicate the correlation coefficient (r2) values
between the different polymorphisms; the darker the color, the higher the r2 values. This figure was obtained using Haploview [22] with the
genotype data for Caucasian samples posted at the HapMap database [20,21].
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Therefore, after this initial step, the genomic region
around the validated polymorphisms should be investi-
gated in detail to identify this prognostic factor. This
critical information may then help elucidate the bio-
logical basis of variable prognosis in patients, but is un-
fortunately currently missing in the majority of the
genetic prognostic studies. Therefore, future studies
may also focus on this missing part of the genetic prog-
nostic research.

Genetic polymorphisms may be confounded by other
genetic polymorphisms
A confounder is a variable that is linked to both the vari-
able and the outcome [6]. Confounding is a common
issue in epidemiological studies and complicates the in-
terpretation of statistical analyses and identification of
independent prognostic factors. For example, an associ-
ation between a variable and an outcome in univariate
analyses may be detected due to a variety of reasons, in-
cluding chance, bias in study design, true association of
the variable with the outcome, or the effect of a
confounding factor on the variable. Luckily, the multi-
variate analyses can control confounding by means of
adjusting if the confounder and confounded variables
are included into the models. However, it is expected
that many of the confounder variables are not yet identi-
fied, collected for studies, or included into the models in
many diseases. Thus, in the absence of their inclusion
into the models, it is likely that those variables identified
as independent prognostic markers in multivariate
analyses remain as confounded by other (unknown or
unmeasured) factors.
In the case of genetic variations, it is possible that an-

other genetic variation in the same LD block (for ex-
ample, a highly correlated or linked polymorphism) may
be a confounder. Therefore, in contrast to many other
epidemiological confounders, which are difficult to iden-
tify, at least some of the genetic confounders may be
identified by examining the genomic region of interest
and the other genetic variations located in it. Therefore,
analysis of genetic variations as prognostic markers also
offers unique benefits that do not currently exist in epi-
demiological research.

Should the Hardy-Weinberg equilibrium test be applied in
genetic prognostic research?
In genetic research, as a quality control measure, the pa-
tient genotypes obtained for genetic polymorphisms are
generally checked for genotyping or sampling errors
using the Hardy-Weinberg equilibrium (HWE) [25]
prior to inclusion into analysis.
HWE states that in an (infinitely) large population

with random mating and absence of mutation, migra-
tion, or immigration, the allele and genotype frequencies
of autosomal loci remain constant over time and follow
specific genotype distributions. Therefore, any deviation
of genotype distribution from HWE may indicate a
population in flux, such as non-random mating and im-
migration. In genetic research, however, such deviations
may also be caused by random fluctuations in samples
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included into the study, bias in samples collected or in-
cluded into the research project, presence of samples
from different ethnicities (where the frequency of the al-
leles differ from each other, which is called as population
stratification; see section entitled Population substruc-
ture of the patient cohort investigated), and technical er-
rors in genotyping (such as underdetection of an allele
due to poor primer binding, errors in DNA sampling,
DNA contamination by other sources, and errors in in-
terpretation of the genotype [26,27]). In genetic research,
HWE has been mostly used to address handling, sam-
pling, and genotyping errors and thus many experts use
deviations from HWE as a flag to indicate that the geno-
typing method may need additional scrutiny.
The conventional approach, for example, in case-

control studies is to check for such genotyping errors by
applying the HWE test to genotype information in the
healthy control population. If the test results do not in-
dicate a deviation from the HWE, then the investigation
of this polymorphism in the case-control cohorts pro-
ceeds forward. Usually, however, the polymorphisms
whose genotype data do not satisfy the HWE are ex-
cluded from the analysis. Since, the deviations from
HWE may also be due to the other factors (mentioned
above), using this test to exclude some genotype data
is a conservative approach. In addition, in contrast to
the case-control association studies, prognostic re-
search relies only on cases. In our opinion, how appro-
priate the HWE test in case-only design therefore
needs to be debated.

Recessive, dominant, codominant, and additive inheritance
models: which one to investigate?
Genetic polymorphisms commonly consist of two dif-
ferent alleles (A and B). Thus, a person can carry two
copies of the same allele (for example, AA and BB
homozygous genotypes) or one of each allele (for ex-
ample, AB heterozygous genotype). While tri-allelic
(for example, AA, AB, BB, AC, and CC genotypes) and
quadri-allelic polymorphisms (AA, AB, BB, AC, CC,
AD, and DD genotypes) also exist in the human gen-
ome, albeit at a much lower frequency, in this article
we develop our discussion around the bi-allelic
polymorphisms.
Usually, the genetic effects of each of the three geno-

types (AA, AB, and BB) on prognosis are unknown and
thus consideration of different genetic inheritance
models may be required during statistical analysis. Most
commonly used genetic models are the recessive, domin-
ant, codominant and additive genetic models [28]. In
these genetic models, when the risk allele is unknown
(whether it is the major or the minor allele, for ex-
ample), the genetic model can be defined after the minor
allele assuming that the minor allele is the risk allele. In
such a case, in the recessive model, patients with homo-
zygous (two) minor alleles (for example, patients with
the BB genotype) are considered to be different from the
group of patients with both homozygous major allele
(patients with the AA genotype) and heterozygote geno-
type (patients with the AB genotype) in terms of their
clinical and prognostic characteristics. In the dominant
model, the assumption is that only one minor allele is
enough to predict the outcome, thus the patients with
BB and AB (containing at least one minor allele) are
grouped together and compared with the AA patients.
In the codominant model (also called discrete model),
the assumption is that the heterozygotes (AB) have
a distinct effect, which is different than the effects
of minor (BB) and major (AA) homozygote genotypes;
therefore, a comparison of these three groups is
performed (usually where the major allele homozygotes
(AA) serve as a reference group and compared with AB
and BB genotypes separately). In the additive model, it is
assumed that the effect of heterozygote genotype (AB) is
in between the effects of minor homozygote genotype
(BB) and major homozygote genotype (AA) in a dose-
dependent manner.
Typically, there is no, little, or conflicting biological or

phenotype data to hint the right direction to use one in-
heritance model over another. Therefore, multiple
models may need to be investigated in genetic prognos-
tic studies. In our experience, the most common and ro-
bust genetic models investigated are the additive and the
codominant models. In order to completely evaluate the
role of a polymorphism with prognostic characteristics
of patients, however, ideally all possible genetic models
require investigation. Ironically, this also increases the
number of statistical tests performed, which may re-
quire correction for multiple testing (see section enti-
tled The multiple testing issues). In addition, the
correction for multiple testing procedures almost al-
ways reduce the statistical power. Therefore, as a way
of overcoming the multiple testing issue, many re-
searchers opt for application of only one or a few of
these inheritance models in their studies, rather than
investigating multiple models for a comprehensive ana-
lysis. Such a practice, however, may lead to omission of
potentially important findings.
In addition to the correction for multiple testing, ana-

lysis of multiple genetic models in the same study pre-
sents another challenge. In univariate analysis, detection
of a significant association of a polymorphism with an
outcome in more than one genetic model is not uncom-
mon. Especially if the models contain multiple polymor-
phisms, constructing a separate multivariate model for
each inheritance model, for example, is not a logical so-
lution as each polymorphism may affect the prognosis
under different inheritance patterns.



Figure 2 Kaplan-Meier curves may identify the best fitting
genetic model for a polymorphism. For simplicity, survival curves
are shown as straight lines. AA = major allele homozygous genotype,
AB = heterozygous genotype, BB = minor allele homozygous
genotype, assuming allele ‘A’ is the common allele. (a) The effect of
the AB genotype on survival is approximately half between the AA and
BB genotypes, thus the additive model is appropriate for this
polymorphism in the multivariate analysis. (b) The curves of AB and
BB genotypes cluster closer to each other when compared to the AA
genotype’s curve, thus, the effect of the polymorphism is likely to be
dominant. (c) AA and AB genotype survival curves cluster together
and clearly separate from the BB genotype curve. Thus, the inheritance
pattern is likely to be recessive. (d) In this case, the effect of AB
genotype is somewhat in between the effects of AA and BB
genotypes, thus, analyzing this polymorphism assuming the
codominant model is suitable. (e) This is an interesting polymorphism
where the heterozygotes are associated with worse survival compared
to either homozygous genotypes (AA and BB). The codominant
genetic model is the appropriate model to investigate such
polymorphisms in multivariate analyses. Exact biological and genetic
reasons for such associations are not clear, but it may be due to
heterozygote disadvantage where the heterozygotes display
phenotype but not the either homozygotes. (f) The heterozygotes
have better survival than AA and BB homozygotes. This case may
represent a ‘heterozygote advantage’ situation, where the
heterozygotes have favorable survival characteristics. Similar examples
are observed in Mendelian diseases, such as sickle cell anemia [56]. In
both (e) and (f), presence of another genetic variation in close
proximity acting as a prognostic factor (which is not highly correlated
with this polymorphism) may be an alternative explanation.
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One solution to this issue is to determine the best pat-
tern of genetic effect (that is, inheritance model) for
each polymorphism by inspecting the univariate Kaplan-
Meier survival curves conducted for the codominant
genetic model (Figure 2). This way, the genetic model
for each polymorphism may be determined prior to
performing multivariate analysis, which circumvents the
concern of multiple and blind looks at the data and un-
necessary multiple modeling. Another solution is to test
the association of a genetic variation with prognosis
under multiple genetic models in separate univariate
analyses and then to select the best genetic model
among all based on the P values (that is, the lower the
P value, more appropriate is the genetic model to detect
the effect of the variation) [29].

The minor allele frequency of polymorphisms and the other
determinants of the study power in the multivariable
models
Genetic polymorphisms present in a range of minor al-
lele frequencies (MAFs) in human (1% to 50%). The
minor allele frequency of a polymorphism is critical in-
formation that helps determine the inclusion of the poly-
morphism into the statistical analysis, as rare variables
may hamper the model construction [6]. For example, a
polymorphism with a MAF of 1% studied in a cohort of
1000 chromosomes (that is, 500 patients, assuming it is
on an autosomal chromosome) will be detected in only
10 of the chromosomes. Therefore, the study analyzing
this polymorphism (in univariate or multivariate ana-
lyses) may not have enough power (that is, the prob-
ability of detecting a significant association when it
actually exists). Therefore, as a general rule, as the
MAF of a polymorphism increases, so does the study
power. Therefore, exclusion of polymorphisms with a
MAF of <1% or <5% is a common practice in current
genetic prognostic studies. However, exclusion of rare
genetic variations may also lead to missing the identifi-
cation of rare variations that have strong effects (for ex-
ample, high HRs) on prognosis. Study power is also
directly related to the size of the effect that a poly-
morphism has on the outcome; to detect smaller ef-
fects, larger sample sizes are required [30], yet to detect
prognostic markers (whether rare or common) with
strong effects, studying a cohort with a relatively
smaller size may be sufficient [4].
Finally, in addition to the sample size and the effect

size, we should also mention that the number of events
per investigated variable in a multivariable model may
impact the study power. A recommended rule for statis-
tical power in multivariate analyses is the presence of at
least ten events per independent variable [6]. The event/
variable ratio is usually high in cohorts with high risk of
events (such as metastatic cancer patients) or in cohorts
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with long follow-up periods that allow detection of most
events experienced by the patients. Thus, in the genetic
prognostic research, when an association is not detected,
the role of insufficient study power as well as inadequate
follow-up time should be considered before concluding
that the polymorphism is not an independent predictor
of prognosis. This event per variable ratio also demon-
strates the need of entering a relatively small number of
variables into the multivariable models.

Population substructure of the patient cohort investigated
Most of the genetic prognostic studies are based on
population-based design with unrelated patients. How-
ever, these studies are prone to population stratification
[31]. Population stratification refers to different allele
frequencies of subpopulations in the study cohort due to
an ancestry difference in study patients (for example,
patients from different ethnicities). The influence of
stratification on genetic association studies has been
demonstrated even in well-designed protocols, with
greatest effect in admixed populations (such as
African-Americans) and for diseases with different vari-
ant prevalence rates in the ancestral populations [32].
For example, allelic frequencies of certain polymor-
phisms may significantly differ among Caucasians,
Asians, and Africans [33,34]. An example to such a
polymorphism is the (TA)7 allele in the UGT1A1 gene
(responsible for the detoxification of the active metab-
olite of the chemotherapeutic agent, irinotecan), which
is more common in Caucasians than in Asians [35]. In
addition, allelic frequencies of polymorphisms may also
differ within each of these populations (such as among
different populations from countries in Europe) [36].
Therefore, unrecognized population stratification can
lead to biased estimation (for example, inflated false-
positive results), or reduce statistical power if not ap-
propriately corrected [37].
Since many cohorts investigated contain patients from

different ethnicities and with potential population sub-
structure, various methods have been developed to de-
tect and control for population stratification in human
genetic association studies, which may also be applied to
genetic prognostic research; (a) the genomic control
method [38] corrects for population stratification by
adjusting with a variable determined from a set of ran-
dom genetic markers that are not associated with the
disease outcomes in the studied cohort, (b) structured
association can assign the study patients to distinct sub-
populations and then aggregates evidence of association
within each subpopulation. The most commonly used
genetic package for structured association analysis is
the STRUCTURE program [39], (c) a recent develop-
ment for the correction of population stratification uti-
lizes EIGENSTRAT [40], which computes principal
components for collected SNPs (for example, across
the genome in genome wide studies) to identify popula-
tion structure. In this approach, the top principal com-
ponents that contribute mostly to the genetic variation
in the study cohort are included as covariates in multi-
variate regression models to adjust for population
stratification. Using these or other similar methods to
identify and account for the population stratification in
genetic prognostic research may, therefore, improve re-
liability of results.

The multiple testing issues
When multiple hypotheses are tested in a study, using the
significance level at the traditional value of 0.05 may lead
to inflated false-positive results. In other words, the more
comparisons we perform, the more likely we can obtain a
significant result by chance. While for candidate gene
studies, a modified significance threshold (for example,
P <0.0005; [41]) was suggested, with the assistance of
high-throughput genotyping technologies, genetic prog-
nostic studies are increasingly investigating larger num-
bers of polymorphisms (for example, genomewide scans).
This increase in the number of polymorphisms creates a
challenge of how to deal with the multiple testing issue.
A variety of statistical correction methods have been

developed [42] and may be applied to genetic prognostic
research investigating large numbers of genetic markers.
The most commonly used methods for multiple-testing
correction are Bonferroni adjustment, permutation algo-
rithm, and the false discovery rate (FDR) methodology.
The Bonferroni adjustment is useful when the number
of multiple testing is not very large and the tests are in-
dependent (for example, candidate gene study with gen-
etic variants that are not in LD with each other).
However, Bonferroni adjustment may be too conserva-
tive when the tests are not independent, which is often
the case in genetic prognostic studies where the poly-
morphisms to be tested are in high LD. Nyholt [43] has
proposed a correction method based on estimation of
the effective number of independent tests. Permutation-
based adjusted significance levels are particularly useful
when there are strong dependencies among the tests.
However, the computation is quite intensive. FDR meth-
odology is suitable for very large scale multiple testing
[44]. The statistical significance thresholds can be set
according to the overall pattern of results [45]. To im-
prove power, the FDR method can be weighted
according to the importance of the test [46] such as evi-
dence from linkage scans [47]. While Bonferroni adjust-
ment can be performed manually, specific statistical
programs are required for both permutation-based and
FDR adjustments.
While the correction for multiple testing procedures

aim to reduce the false-positive findings, there are other
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ways to help limit the number of spurious findings. For
example, although not completely ideal, internal valid-
ation techniques such as cross-validation and bootstrap
may be applied to the cohort data to reduce the false-
positive discoveries [6,11,12]. The best approach to test
whether a positive association is a true association, how-
ever, is to replicate the findings in another patient cohort
preferably from another center or population [11].

Use of genomic material extracted from achieved specimen
may require extra care in the genetic prognostic studies
The majority of prognostic studies have been conducted
on retrospective cohorts collected for other purposes.
Here the availability of genetic material and its efficiency
in yielding the genotypes are not usually considered op-
timal. For example, in a significant portion of studies in
cancer, formalin-fixed-paraffin-embedded (FFPE) tissue
blocks (from both tumor and adjacent non-tumor tissue)
collected during surgery are used to extract genomic
DNA. The quality and the amount of this type of DNA
may not be high and is susceptible to lower genotyping
yields. This limitation in quantity and quality of the gen-
omic DNA in retrospective cohorts usually restricts the
options on suitable genotyping technology and the ex-
tent of the genotyping analysis (for example, limiting the
number of genes/polymorphisms that can be investi-
gated). An increased proportion of failed genotyping
may also create biased study results. Recently a few stud-
ies have shown that the limitations of FFPE-extracted
DNA can be overcome by certain genotyping methods
[48,49]. In addition, recent prognostic studies have been
keen about banking blood samples that contain DNA
(that is, whole blood or leukocytes). These technological
and study-design-related advances are expected to im-
prove the genotyping success rates and reduce bias, and
thus increase the capacity and reliability of the future
genetic prognostic research.

Use of tumor DNA versus non-tumor DNA in genetic
prognostic research: which one is appropriate?
Due to the availability of the tumor tissue in many stud-
ies and the fact that disease progression and prognosis
of cancer patients are affected by tumor behavior
[50-54], analysis of the tumor genotypes may be feasible
and can yield interesting and valuable prognostic infor-
mation. However, distinct differences between the tumor
and non-tumor extracted DNA samples of a single pa-
tient create a challenge. For example, frequent, somatic
small-scale (such as point mutations) and large-scale
(such as aneuploidy and loss-of-heterozygosity (LOH))
alterations are well-known characteristics of the cancer
genomes. Therefore, tumor DNA and non-tumor DNA
of the same individual may have different genotypes for
a given polymorphism.
In prognostic research in oncology, the optimal source
of DNA depends on the study aims. If the association
being tested is toxicity, then the optimal DNA may be
the DNA in the target organ of the toxicity (for example,
skin for rash, gut for diarrhea) or the organ that metabo-
lizes, excretes, or activates the active drug (for example,
liver, kidney, biliary track). Surrogate DNA in this case
may come from any germline (that is, non-tumor)
source, such as blood. In addition, if the mechanism
influences the host stroma (that is, angiogenesis), the
optimal source of DNA is from the host tissue (that is,
non-tumor surgical tissue). In contrast, if the association
relates to efficacy and the polymorphism influences the
tumor itself (for example, by affecting the proliferative
capacity or oncogenic pathways in tumors), then the
most appropriate source of DNA is the tumor itself.
Since it is impractical to obtain multiple sources of DNA
to test different hypotheses in the same patient popula-
tion, one can test tumor and non-tumor DNA for their
correlation in genotype. High concordances (that is,
above 95%) may suggest that the polymorphism itself is
not a hotbed of somatic change in the tumor and thus
allow tumor and non-tumor tissue to become surrogates
for each other.

Conclusions
Genetic prognostic research examining the relation and
predictive value of genetic polymorphisms is a promising
and rapidly developing research area. In contrast to other
variables commonly studied, genetic polymorphisms have
several unique characteristics that require special consid-
erations in study design and data analysis. While some
of these characteristics (such as linkage disequilibrium
among genetic polymorphisms and tagSNPs) ease our ef-
forts, other characteristics (such as different frequencies of
polymorphisms in different ethnicities and use of genomic
material extracted from archived specimen) may bias our
results, if left unaccounted for. In addition, variability in
study design and analysis can adversely affect advance-
ment of the genetic prognostic research and translation of
its results into the clinic. Recommendations modeled as
guidelines (for example, REMARK guidelines [55]) on
how to conduct and compare genetic prognostic research
involving genetic markers may be needed to expedite this
exiting and promising research field.
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