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Bacteriocins, toxic peptides involved in the competition between bacterial
strains, are extremely diverse. Previous work on bacteriocin dynamics has
highlighted the role of non-transitive ‘rock–paper–scissors’ competition in
maintaining the coexistence of different bacteriocin profiles. The focus to
date has primarily been on bacteriocin interactions at the within-host scale
(i.e. within a single bacterial population). Yet in species such as Streptococcus
pneumoniae, with relatively short periods of colonization and limited within-
host diversity, ecological outcomes are also shaped by processes at the
epidemiological (between-host) scale. Here, we first investigate bacteriocin
dynamics and diversity in epidemiological models. We find that in these
models, bacteriocin diversity is more readily maintained than in within-host
models, and with more possible combinations of coexisting bacteriocin
profiles. Indeed, maintenance of diversity in epidemiological models does
not require rock–paper–scissors dynamics; it can also occur through a
competition–colonization trade-off. Second, we investigate the link between
bacteriocin diversity and diversity at antibiotic resistance loci. Previous work
has proposed that bacterial duration of colonization modulates the fitness of
antibiotic resistance. Due to their inhibitory effects, bacteriocins are a plausible
candidate for playing a role in the duration of colonization episodes. We
extend the epidemiological model of bacteriocin dynamics to incorporate an
antibiotic resistance locus and demonstrate that bacteriocin diversity can
indeed maintain the coexistence of antibiotic-sensitive and -resistant strains.
1. Introduction
Bacteriocins are toxic peptides that allow bacteria to eliminate competitors.
Bacteriocins systems are pervasive in bacterial species and are thought to
play a significant role in competition within (and possibly between [1]) species
[2]. A mechanistic understanding of the role of bacteriocins in competition is
therefore important for characterizing the ecological dynamics of bacteria.

At a high level of abstraction, bacteriocin systems can be thought of as con-
sisting of three components: a system to produce and secrete toxins, a system to
achieve immunity against these toxins, and a regulatory system to control toxin
and immunity production—which may involve release of signalling molecules
(pheromones) allowing quorum-sensing and kin recognition. Even at this level
of abstraction, bacteriocin systems are highly diverse. A single species may have
a number of distinct systems, with considerable diversity within each of these:
coexistence of strains with different combinations of toxin, immunity and
regulatory genes is pervasive [3].

For example, the bacterial species Streptococcus pneumoniae has multiple
different bacteriocins systems. The two best described systems—the blp
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Figure 1. Strain interactions arising in different models of bacteriocin dynamics. P represents the producer strain (both toxins and immunity), M the immune strain
(immunity only) and N the non-producer (no toxins, no immunity). (a) A general formulation of rock–paper–scissors competition. Strain interactions are modelled in
terms of the outcome of head-to-head competition between two strains. The costs of toxins and immunity, as well as the killing action of the toxins, are modelled
implicitly in the outcome of this head-to-head competition. At the epidemiological scale, assuming fitness differences between strains are only apparent when the
strains are competing for the same host gives rise to this model structure. (b) Bacteriocin-specific within-host model [15,17]. The producer strains kill non-producer
strains, leading to resources being freed up. The costs of immunity and bacteriocin production are modelled as decreased growth rate or increased death rate.
(c) Bacteriocin-specific epidemiological model. The killing of the non-producer strain by the producer strain leads to the host becoming colonized with the producer
strain. In this epidemiological model, the costs associated with bacteriocin production and immunity can be represented in terms invasion probabilities and/or
epidemiological parameters (i.e. transmission and/or clearance rates).
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(bacteriocin-like peptide) locus [4–7] and the cib (competence-
induced bacteriocin) locus [8]—are both ubiquitous. The
specific combination of genes that make up the blp locus is
highly variable between strains, while the cib locus is more
conserved. Both loci are associated with a pheromone signal-
ling system, which regulates the expression of toxins and
immunity. These signalling systems are also diverse: there
are multiple distinct ‘pherotypes’ (i.e. specific pheromone–
receptor pairs allowing targeted signalling to cells of the
same pherotype [9,10]). By contrast, other pneumococcal bac-
teriocin systems, such as the pld locus [11] and the circular
toxin pneumocyclicin [12] are found on only a subset of
strains. Thus, to fully capture bacteriocin competition,
models should be able to explain both the diversity in bacter-
iocin profiles and the variation in the specifics of this diversity
between different bacteriocin systems.

Previous theoretical and experimental work has high-
lighted the role of non-transitive competition in maintaining
bacteriocin diversity. Indeed, two-strain models of toxin-pro-
ducing (producer) and toxin-susceptible (non-producer)
strains do not typically predict coexistence (with some excep-
tions, see [13]): depending on the effectiveness of the toxins
and the cost associated with their production, either the pro-
ducer or the non-producer strategy out-competes the other
[14,15]. Coexistence can be achieved by inclusion of a third
(immune) strain which does not produce toxins but does
have immunity against them (or, alternatively, produces less
effective and less costly toxins [15]). If both toxin and immu-
nity incur a fitness cost, the total cost to the producer strain
(which has both toxins and immunity), is greater than the
total cost to the immune strain (which only incurs the cost
of immunity, but not toxin production). As a consequence,
in head-to-head competition, the non-producer out-competes
the immune strain; the immune strain out-competes the pro-
ducer; and the producer out-competes the non-producer. This
type of non-transitive competitive structure is referred to as
‘rock–paper–scissors’ dynamics [16].

To provide additional clarity in the context of bacteriocin
dynamics, we make a distinction between two types of rock–
paper–scissors model. In the most general formulation of
rock–paper–scissors dynamics (figure 1a)[16,18], strain inter-
actions are considered in terms of head-to-head competition
for the occupation and invasion of patches or sites. Strains
are differentiated through their ability to invade occupied
patches: each strain wins against one of the other strains
and loses against the other. Apart from the outcomes of
this head-to-head competition, there are no further ecological
differences between the strains. Models building on this
structure have been studied in a number of ecological con-
texts [16], including bacteriocin dynamics [18]—where, at
the epidemiological scale, patches would represent hosts to
colonize, or, at the within-host scale, space to occupy in the
colonized niche. Such models predict oscillatory dynamics
of the three strains in well-mixed environments and stable
coexistence in spatially structured environments [16,18].

This general formulation of rock–paper–scissors compe-
tition contrasts with bacteriocin-specific rock–paper–scissors
models (figure 1b) [15,17] that explicitly represent bacterio-
cin-related processes within a host (or within a liquid culture
or Petri dish). There are two key differences between these
models. The first is in the interaction between producer and
non-producer strains: in the bacteriocin-specific formulation,
toxins lead to the death of non-producer cells, rather than
their direct replacement by the producer cells. The death of
non-producer cells frees up resources (e.g. nutrients or
space), which can then be used by any of the strains—or any
of the locally present strains in a spatially structured model.
As a result, the immune strain can gain the same benefit
from the production of toxins as the producer strain, without
paying the cost (a ‘cheater’ strategy). The second difference
is how the cost of immunity and bacteriocin production are
represented: these are not modelled in terms of strain inter-
actions, but rather as a reduced growth rate or increased
death rate for the immune and producer strains. These bacter-
iocin-specific models predict stable coexistence of the three
strains in spatially structured environments, but dominance
of a single strain in well-mixed systems [15]. This prediction
has been verified in an experimental model of producer,
non-producer and immune strain interactions in Escherichia
coli [17]. More recent modelling suggests that when the
benefits of immunity are shared, rather than specific to the
immune strain (e.g. immunity involves secretion of toxin-
degrading compounds), coexistence of strains can also arise
in well-mixed environments [19]—although others have
suggested that coexistence in such models is not generally
robust to invasion by a non-producer cheater strain [20].

These bacteriocin-specificmodels capturewithin-host inter-
actions between different bacteriocin profiles and thus provide
insights into dynamics at this scale. Yet, within-host inter-
actions will also impact dynamics at the epidemiological
scale by allowing strains to invade already colonized hosts
and/or by preventing such invasion. In addition, any fitness
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costs associated with bacteriocin production and immunity
may also impact epidemiological parameters (i.e. transmission
and clearance rates). In species such as Streptococcus pneumo-
niae, these effects at the epidemiological scale are likely to
play an important role in shaping the ecology and evolution
of bacteriocin systems, for two reasons. Firstly, within-host
models assume all three species are co-colonizing the same
host. However, multiple colonization is not necessarily the
norm: for example, reported rates of co-colonization with mul-
tiple pneumococcal strains are around 25% to 50% depending
on setting [21–23]. Secondly, when the duration of colonization
is relatively short (e.g. of the order of months in S. pneumoniae),
factors affecting transmission will play a large role in shaping
allele frequencies in the overall bacterial population.

The impact of bacteriocins at the epidemiological scale is not
well established and may depend on the specific bacteriocin
system. For example, the cib locus provides established colonizers
an advantage over invaders in a murine model of pneumococcal
colonization [24], suggesting these bacteriocins play a defensive
role. On the other hand, an observational study of pneumococcal
strains co-colonizing humans suggests that the blp locus has a
limited impact on which strains can co-colonize hosts [25]. Fur-
thermore, the impact of the cost of bacteriocin production and
immunity on epidemiological parameters and the effects of kin
recognition are unclear. Exploring bacteriocin dynamics at the
epidemiological scale therefore requires a flexible modelling
approach that can capture a range of effects.

While the general rock–paper–scissorsmodel (figure 1a) can
be interpreted as an epidemiologicalmodel (with patches corre-
sponding to hosts), previous work has focused on patch
invasion and not explored the possibility that toxin-production
and immunity associated costs might impact epidemiological
parameters. Bacteriocin-specific within-host models (figure 1b)
do not accurately capture interactions at the epidemiological
scale: at the within-host scale, toxins lead to the death of the
non-producer and freeing up of resources, while at the epide-
miological scale, toxins lead to invasion of the host occupied
by the non-producer and thus only benefit the producer
itself. To some extent, spatial structuring at the within-host
scale can limit the benefit of freed-up resources to the producer
strain, but this remains different from interactions at the
epidemiological scale: the benefit is only private when all
neighbouring cells are also producers—which cannot be true
across the whole population if multiple strains coexist. Thus,
bacteriocin-specific models of non-transitive competition at
the epidemiological scale (figure 1c) are necessary for under-
standing bacteriocin dynamics and diversity in S. pneumoniae
and species with similar ecology.

A further motivation for developing epidemiological
models of bacteriocin dynamics is their potential role in deter-
mining the duration of colonization episodes. We have
previously suggested that duration of colonization affects
selection pressure for antibiotic resistance in species which
are carried asymptomatically most of the time, such as
S. pneumoniae[26]. Strains that colonize hosts for longer gain
a greater fitness benefit from resistance, leading to an associ-
ation between long duration of colonization and antibiotic
resistance (including multi-drug resistance [27]). As a result,
balancing selection maintaining diversity at a locus that
affects duration of colonization could also maintain diversity
at a resistance locus [26], providing a potential explanation
to the long-standing puzzle of why antibiotic resistance has
not yet reached fixation [28]. However, this explanation is
not complete, because the genetic determinants of duration
of colonization have not been fully identified [29]. A more
complete understanding of resistance dynamics therefore
requires identifying loci that contribute to variation in duration
of colonization. The role of toxin production in killing compet-
ing bacteria and the role of immunity in preventing this killing
makes bacteriocin loci a promising candidate.

This paper is organized in two parts: the first part (section
2) develops an epidemiological model of bacteriocin dynamics
in S. pneumoniae (or a species with similar ecology). We explore
the circumstances in which this model allows coexistence of
strains with different bacteriocin profiles. In the second
part (section 3), we investigate differences in duration of coloni-
zation between bacteriocin profiles and their impact on resistance
dynamics.
2. Bacteriocin dynamics
(a) Epidemiological modelling of bacteriocin dynamics
We begin by considering a bacteriocin system with two com-
ponents: a toxin gene and an immunity gene. There are
therefore three possible strains: a producer strain (P), with both
toxin and immunity; an immune strain (M), with immunity
but no toxin; and a non-producer strain (N), with neither toxin
nor immunity (i.e. the entire bacteriocin locus is absent). Strains
with the toxin but no immunity are assumed to be lethal to
themselves and therefore not included. We formulate a generic
epidemiological model of competition between three strains
rather than focusing on what is known about a specific bacterio-
cin system, and consider how ecological differences between
bacteriocin profiles can be reflected in this generic model.

In this model formulation, strain i colonizes uncolonized
individuals X at rate βi and is cleared at rate μi. In addition,
strains can invade already colonized individuals and displace
the resident strain at rate βikij for strain i replacing strain j,
where k represents the probability of successful invasion rela-
tive to colonization of an uncolonized host. We assume the
dynamics of this replacement are fast; the invading strain is
therefore modelled as replacing the resident strain instan-
taneously. Hosts are therefore only ever colonized with a
single strain at a time and there is no co-infection. Note that
our qualitative results are robust to relaxing this assumption
(electronic supplementary material, section 2.1). The dynamics
of this general model are described by the following equations:
dIP
dt

¼ bPIPX þ ðbPkPM � bMkMPÞIMIP þ ðbPkPN � bNkNPÞINIP � mPIP,

dIM
dt

¼ bMIMX þ ðbMkMN � bNkNMÞINIM þ ðbMkMP � bPkPMÞIPIM � mMIM

and
dIN
dt

¼ bNINX þ ðbNkNP � bPkPNÞIPIN þ ðbNkNM � bMkMNÞIMIN � mNIN

ð2:1Þ
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Here, the X and I variables represent proportions of the
total host populations: X + IP + IM + IN = 1.

Differences between bacteriocin profiles (i.e. producers P,
non-producers N and immune strains M) can be reflected in
two ways in this model (figure 1c). Firstly, through asym-
metric invasion probabilities k (0≤ k≤ 1) arising from
differences in within-host fitness: toxins allow P to invade
N more often than the other way around (kPN≥ kNP); simi-
larly, the cost of toxin production means M out-invades P
(kMP≥ kPM); and the cost of immunity means N out-invades
M (kNM≥ kMN). Secondly, the costs of toxins and immunity
could also affect epidemiological parameters—i.e. trans-
mission and clearance rates: μP≥ μM≥ μN and βN≥ βM≥ βP.
These inequalities reflect typical assumptions about bacterio-
cin dynamics and, unless otherwise indicated, we have
assumed they hold in our analysis.

In this structure, the impact of toxins (and other within-
host fitness differences) can be modelled as either offensive
(i.e. enabling invasion of already colonized hosts) or defensive
(i.e. preventing invasion by another strain) or a combination of
both. Figure 1 depicts offensive interactions: invasion is only
possible when the invading strain has a fitness advantage.
This is also how we parameterize the model in main text
results (i.e. kNP= kPM = kNM = 0). It is worth noting that the dis-
tinction between offensive and defensive only impacts
epidemiological dynamics if the transmission rate differs
between strains: when transmission rates are equal, the inter-
action between two strains—say strain A and strain B—
simplifies to [kAB− kBA]βIA IB in the dynamics of strain A
(and similarly [kBA− kAB]βIA IB in the dynamics of strain B).
The dynamics therefore depend only on the relative rates of
invasion. Under these circumstances, modelling bacteriocins
as offensive is mathematically equivalent to modelling them
as defensive. This equivalence does not hold when trans-
mission rates are not equal (i.e. when epidemiological costs
affect transmission rate). However, we find that in practice,
the distinction between offensive and defensive bacteriocins
does not have an impact on which strains are observed to
coexist (electronic supplementary material, section 2.2).

(b) Epidemiological differences between strains allow
a wider range of outcomes

Our aim is to understand the circumstances under which
multiple strains coexist at equilibrium in this system. We
address this through linear stability analysis (unless other-
wise indicated). In general, we parameterize clearance rate
as μ = 1 and transmission rate as β = 3. In time units of
month−1, these are plausible values for S. pneumoniae [28].
All analyses and simulations were performed using Wolfram
Mathematica [30]; the code is available in the electronic
supplementary material.

First, it is useful to note that if strains differ only in inva-
sion probabilities (the k parameters) but not epidemiological
parameters (i.e. μP = μM = μN and βN = βM = βP), the model is
structurally identical to the classic rock–paper–scissors
model (e.g. [16]; see figure 1). The behaviour of this system
is well characterized: as long as the non-transitive competi-
tive structure is maintained, all three strains coexist, with
oscillatory dynamics around a stable equilibrium point (see
also figure 2). When the non-transitive competition structure
is not present, a single strain dominates. Equilibria involving
just two of the strains are never stable.
Introducing differences in epidemiological parameters (i.e.
transmission rate β or clearance rate μ) between bacteriocin
profiles has two effects. Firstly, oscillation is not observed
when the strains differ in epidemiological parameters (figure
2; electronic supplementary material, figure S7). Thus, like
spatial structure in previous models [15–17], differences in
the epidemiological parameters of strains act to stabilize coex-
istence. Secondly, the range of possible outcomes increases.
Stable coexistence no longer requires all three strains; for
some parameter ranges, the producer and non-producer
strain can coexist without the immune strain (figure 2b).

It is worth noting that the properties of the two and
three-strain equilibria are different. The general rock–
paper–scissors model (figure 1a) is known to give rise to a
‘survival of the weakest’ effect: increasing the competitive
advantage of a strain (i.e. ability to invade) decreases its
equilibrium frequency [16]. This occurs because of the
non-transitive competitive structure. For example, a
smaller kPN and thus less frequent displacement of N by P
increases the frequency of N and therefore the rate at
which M is displaced. This, in turn, decreases the frequency
of M and displacement of P, leading to a higher frequency of
P despite its lower competitive advantage. We find that this
effect also applies to the relationship between transmission
rate and equilibrium frequency (electronic supplementary
material, figure S6 and section 2.3): increasing the trans-
mission rate of a strain decreases its equilibrium frequency
when all three strains are present at equilibrium. This survi-
val of the weakest effect is not observed for two-strain
equilibria.

Finally, the number of stable strain combinations is even
greater if the bacteriocin-producer can be associated with a
lower cost than the immune strain: this allows the producer
to exclude the other two strains (figure 2b). Such circum-
stances would arise when bacteriocin-production has
benefits beyond inter-strain competition—such as bacterioci-
dal action against other species, leading to the producer
having increased success in colonizing hosts which are not
carrying the focal species. This would result in an increased
transmission rate for the producer strain, thus offsetting
some of the cost of bacteriocin production.
(c) The effects of kin recognition ( pherotype)
To explore the effect of kin recognition on bacteriocin diversity,
we expand the original model to include two different signal-
ling molecules and corresponding receptors (i.e. two distinct
pherotypes), yielding a six-strain model. The dynamics
between strains of the same pherotype remain as described
in equation (2.1). Across pherotypes, immunity is not effective:
the signal to turn on expression of immunity proteins is not
recognized. Producer strains are therefore able to out-compete
immune strains with a different pherotype; in other words, the
interaction between producer and immune strain is the same
as the interaction between producer and non-producer strain.
Under the assumption that bacteriocins are required for inva-
sion, this results in the model depicted in figure 3a (see
electronic supplementary material, section 1.1 for equations
and additional discussion).

The inclusion of pherotype in the model decreases the
parameter space in which coexistence is observed: the produ-
cer strain excludes the other strains in a large part of the
explored parameter space (figure 3b). The inclusion of
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pherotype also increases the number of combinations in
which strains can coexist, allowing stable equilibria with the
producer and immune strains without the non-producer
strain. These effects arise because the addition of pherotype
expands the range of strains that are susceptible to the
toxins, thus allowing the producer strain to exist without
the non-producer strain.
3. Potential role for bacteriocins in resistance
dynamics

(a) Bacteriocins profiles differ in duration of colonization
We now turn to the potential role of bacteriocins in the
dynamics of antibiotic resistance. We have previously
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suggested that the duration of colonization affects selection
pressure for antibiotic resistance: modelling predicts that
fitness effect of resistance depends on a strain’s duration of
colonization, with longer colonization being associated with
a greater benefit from resistance [26]. Indeed, a strain’s
duration of colonization correlates with the frequency of resist-
ance within the strain in multiple pneumococcal datasets
[26,31]. Variation in the duration of colonization among coex-
isting strains could therefore maintain the coexistence of
antibiotic sensitive and resistant strains, with long-colonizers
being antibiotic resistant and short-colonizers antibiotic sensi-
tive. Bacteriocins, due to their inhibitory effects on others
strains, are a plausible source of such stable variation in
duration of colonization.

To assess the potential role of bacteriocins in resistance
dynamics, we examine the extent of variation in duration of
colonization between different bacteriocin profiles. In the
model represented by equation (2.1), the mean duration of
colonization of strain i (Di)—i.e. the inverse of its overall
clearance rate—is given by

DP ¼ 1
mP þ bMkMPIM þ bNkNPIN

,

DM ¼ 1
mM þ bNkNMIN þ bPkPMIP

and DN ¼ 1
mN þ bPkPNIP þ bMkMNIM

ð3:1Þ
Bacteriocin profiles can thus affect duration of colonization
through two mechanisms: (i) directly through any effects of the
cost of toxin production and immunity on clearance rate and
(ii) through strain displacement, the impact of which depends
on invasion rates (k), the effect of the cost of immunity and
toxin production on transmission rate, and the prevalence of
the invading strain. As a result, the extent of variation in duration
of colonization and which strain is associated with the longest
colonization depends on parameter values (figure 4; electronic
supplementary material, section 2.5). When costs affect trans-
mission, the longest duration of colonization is associated with
either the producer or immune strain, and the shortest with
either the non-producer or immune strain. This is reversed
when costs affect clearance, with the longest duration of coloni-
zation associated with the non-producer or immune strain, and
the shortest with the producer or immune strain. In broad
terms, the greatest variation in duration of colonization is
observed when the cost associated with bacteriocin production
is high. A more detailed discussion of the relationship between
parameters and duration of colonization can be found in
electronic supplementary material, section 2.5.

(b) The effect of bacteriocins on antibiotic resistance
dynamics

The observed variation in the duration of colonization of
different bacteriocin profiles suggests that diversity in
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bacteriocin profiles could indeed maintain diversity at
the antibiotic resistance locus. To investigate the effect
of bacteriocins on antibiotic resistance frequencies in more
detail, we expand the model of bacteriocin dynamics
(equation (2.1)) to include competition between resistant
and sensitive strains.

We model a species that is carried asymptomatically
most of the time (e.g. S. pneumoniae)—the antibiotic
exposure of hosts is therefore independent of whether they
are colonized and equal to the average antibiotic consump-
tion rate in the population (τ). Interactions between the three
bacteriocin profiles are the same as previously described. In
addition, each profile can be either antibiotic sensitive (S) or
antibiotic resistant (R), giving rise to six possible strains.
Antibiotic sensitive strains are subject to an additional clear-
ance rate τ (we assume immediate clearance in response to
antibiotics). Resistance carries a fitness cost, which can be
associated with clearance and/or transmission rate. The
full model structure is given in electronic supplementary
material, section 1.2.

Consistent with previous results, the between-strain vari-
ation in duration of colonization allows coexistence of
antibiotic sensitivity and resistance. Antibiotic resistance is
associated with the bacteriocin profile(s) with longer duration
of colonization (figure 5). The range of antibiotic consump-
tion rates over which coexistence is observed and the
frequency of antibiotic resistance in this region of coexistence
is highly dependent on parameters. The finding that diversity
at the bacteriocin locus can maintain intermediate antibiotic
resistance frequencies is generally robust, with the exception
of some specific cases when the cost of antibiotic resistance
affects clearance rate. These are discussed in detail in
electronic supplementary material, section 2.6.
4. Discussion
This paper was motivated by two main questions: firstly, the
role of epidemiological processes in bacteriocin dynamics
and diversity in S. pneumoniae and similar species; and
secondly, whether these epidemiological processes could gen-
erate variation in duration of colonization between different
bacteriocin profiles and, as a result, contribute to the observed
coexistence of antibiotic sensitive and resistant strains.

We have shown that bacteriocin diversity is readily main-
tained in epidemiological models. This finding is robust to
assumptions about how the inhibitory activity of bacteriocins
and costs associated with bacteriocin production and immu-
nity translate to the epidemiological scale (e.g. within-host
fitness differences leading to one strain displacing another
versus differences in epidemiological parameters versus a
mixture of the two): coexistence of different bacteriocin
profiles is found under a range of assumptions. We find
that the specifics of this coexistence (i.e. which bacteriocin
profiles coexist and at what frequencies) are highly depen-
dent on parameter values. This sensitivity to the properties
of the bacteriocins—such as the cost of toxin production—
may explain the observed variability in characteristics
(e.g. prevalence and composition of bacteriocin loci) of
bacteriocin systems.
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In addition to the robust diversity in bacteriocin profiles
in epidemiological models, we can also draw other general
insights from these results.

Firstly, the inclusion of transmission dynamics introduces
additional mechanisms through which strain diversity can
be maintained, allowing different combinations of strains
to coexist. Previous work at the within-host scale had
suggested that all three strains (producer, non-producer and
immune) must be present to allow diversity to persist: the
maintenance of diversity depended on a non-transitive
competitive structure (rock–paper–scissors dynamics)
[15,17]. Coexistence of the producer and non-producer has
previously been observed in a two-strain meta-population
model, through a mechanism related to the dynamics of
co-colonization [13]. In our three-strain epidemiological
model, coexistence of the producer and non-producer
strain without the immune strain is also possible. The mech-
anism at play here is neither rock–paper–scissors dynamics
nor co-colonization but rather a competition–colonization
trade-off [32]: the producer strain has an advantage at the
within-host scale (i.e. it can displace the non-producer)
but a disadvantage at the between-host scale (i.e. it pays a
fitness cost which reduces transmission rate and/or
increases clearance rate). This type of trade-off gives rise to
negative frequency-dependent selection—the benefit of
the within-host advantage depends on the prevalence of the
non-producer strain—and thus maintains coexistence of
the competitors [33].

Secondly, in S. pneumoniae, some bacteriocin systems,
such as the pld locus [11] and the circular toxin pneumocycli-
cin [12], are found on only a subset of strains. Others, such as
the blp [4–7] and cib [8] loci, are ubiquitous. Such ubiquity is
not consistent with our epidemiological model under stan-
dard assumptions about bacteriocin ecology: all stable
equilibria require the presence of the non-producer strain,
because toxin production is only beneficial when susceptible
strains are present. Our results highlight two mechanisms
which allow toxin-producers to exist in the absence of non-
producers (in other words, mechanisms that allow the bacter-
iocin locus to fully invade the bacterial population). Firstly,
the producer can exclude the other two strains if it beats
the immune strain in head-to-head competition—such cir-
cumstances could arise if toxins are also effective against
other bacterial species present in the host, thus providing a
benefit beyond their effect on the non-producer. Secondly,
in the pherotype model, immunity is not protective against
toxins released by a different pherotype, and strains of one
pherotype are therefore susceptible to toxins from another
pherotype. Toxin production is therefore beneficial even in
absence of the non-producer strain. Indeed, the ubiquitous
cib and blp loci are both associated with a signalling locus
(i.e. pherotype), suggesting this may be the explanation for
their ubiquity.

In section 3, we have shown that bacteriocins are a plaus-
ible candidate for involvement in resistance dynamics. We
predict differences in duration of colonization of different
bacteriocin profiles, with the magnitude of these differences
highly sensitive to parameter values. The duration of coloni-
zation is predicted to modulate the fitness of antibiotic
resistance [26]; we therefore expect an association between
antibiotic resistance and bacteriocin profile and indeed
observe this in a model incorporating both bacteriocin and
resistance dynamics.
Testing this predicted association empirically is possible
in theory, but would prove challenging given our current
understanding of bacteriocin systems. Firstly, the direction
of association between bacteriocin profile and antibiotic
resistance depends on parameters. It is therefore unclear
whether we expect antibiotic resistance to be associated
with the producer, non-producer or immune phenotype,
and indeed, this may differ between different bacteriocin sys-
tems. Secondly, the mapping between these modelled
phenotypes and observed genotypes is non-trivial: although
toxin and immunity genes can be identified, the effect on
phenotype is less clear when multiple toxin and immunity
genes are present on a genome (either because of the presence
of a multi-toxin bacteriocin system or the presence of multiple
different systems on one genome). Furthermore, in some bac-
teriocin systems, additional factors may affect the association
between toxin and immunity genes; for example, a large pro-
portion of blp systems may not be able to secrete pheromones
and toxins because of an impaired transporter [34] and there
is evidence of regulatory interplay between the blp and cib
systems [35,36]. Thus, although we have shown bacteriocins
are a plausible candidate for involvement in resistance
dynamics, more specific predictions about this involvement
will require a more detailed understanding of specific
bacteriocin systems.

It is worth highlighting two potential limitations of our
modelling approach. Firstly, we do not model co-coloniza-
tion: within-host strain displacement is assumed to be fast.
This assumption may not hold: co-colonization with multiple
strains is known to occur (e.g. 25–50% of colonized hosts
depending on setting [21–23]), although whether such
co-colonization is possible between strains with different bac-
teriocin profiles is not clear. Furthermore, previous theoretical
work suggests that assumptions about within-host dynamics
and competition can have considerable impact on predictions
about strain diversity at the between-host scale [37–39]. We
tested the impact of allowing slower within-host dynamics
and thus co-colonization in all three models (bacteriocin
dynamics, pherotype and antibiotic resistance) and find our
results are qualitatively robust (electronic supplementary
material, section 2.1).

Secondly, we consider toxin-production and immunity
(and antibiotic resistance) as binary traits: strains either pos-
sesses genes encoding for toxins and immunity or they do
not. This modelling approach reflects observed variation in
the absence/presence of toxin and immunity genes in pneu-
mococcal genomes [4–8,11,12]. An alternative approach
would be to treat these traits as continuous variables; this
would correspond to assuming genes are present on all
strains and that effects are tunable (e.g. through modulation
of gene expression), leading to different levels of toxicity,
immunity and fitness cost. This would allow modelling the
evolution of the level of toxicity and immunity. Such
approach would require assumptions about how tunable bac-
teriocin effects are; trade-offs between fitness cost and levels
of toxicity and immunity; and the relative time scale of evol-
utionary and epidemiological processes. Such assumptions
will be subject to considerable uncertainty. For example, the
extent to which bacteriocins are tunable is unclear—indeed,
the relationship between inhibition and toxin concentration
appears threshold-like rather than gradual [7], suggesting
inhibitory effects may not be readily modulated. Neverthe-
less, the impact of assuming bacteriocin traits are evolvable
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on a similar time scale to epidemiological processes is an
open and interesting question.

In summary, we have shown that diversity in bacteriocin
profiles arises robustly in epidemiological models of
bacteriocin dynamics and can be maintained through either
rock–paper–scissors dynamics or a colonization-competition
trade-off. The specifics of the predicted diversity are sensitive
to assumptions about how bacteriocins affect epidemiological
processes and to bacteriocin-related parameters (e.g. costs of
bacteriocin production and immunity), providing a potential
explanation for differences between bacteriocin systems.
We have also demonstrated that diversity at bacteriocin loci
is a plausible candidate for also maintaining diversity at
resistance loci. These insights arise from modelling that
approaches bacteriocins dynamics from a high level of
abstraction, rather than representing a specific bacteriocin
system. Generating more specific insights into particular
bacteriocins systems will require models informed by the
biology of the specific system. Therefore, a more complete
understanding of the role of bacteriocins in bacterial ecology
will need a more specific characterization of their effects on
transmission, invasion, within-host competition and duration
of colonization.
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