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The organic cation transporter 1 (OCT1) belongs together with OCT2 and OCT3 to the
solute carrier family 22 (SLC22). OCTs are involved in the movement of organic cations
through the plasma membrane. In humans, OCT1 is mainly expressed in the sinusoidal
membrane of hepatocytes, while in rodents, OCT1 is strongly represented also in the
basolateral membrane of renal proximal tubule cells. Considering that organic cations of
endogenous origin are important neurotransmitters and that those of exogenous origin are
important drugs, these transporters have significant physiological and pharmacological
implications. Because of the high expression of OCTs in excretory organs, their activity has
the potential to significantly impact not only local but also systemic concentration of their
substrates. Even though many aspects governing OCT function, interaction with
substrates, and pharmacological role have been extensively investigated, less is known
about regulation of OCTs. Possible mechanisms of regulation include genetic and
epigenetic modifications, rapid regulation processes induced by kinases, regulation
caused by protein–protein interaction, and long-term regulation induced by specific
metabolic and pathological situations. In this mini-review, the known regulatory
processes of OCT1 expression and function obtained from in vitro and in vivo studies
are summarized. Further research should be addressed to integrate this knowledge to
known aspects of OCT1 physiology and pharmacology.
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INTRODUCTION

Organic cations (OCs) are positively charged substances with multiple biological significances as
neurotransmitters, metabolic waste products, xenobiotics, and drugs. Their movement through the
plasma membrane is mediated by transporters, such as the organic cation transporters (OCTs),
which for this reason have important physiological, toxicological, and pharmacological implications.
Three OCT paralogs are known: OCT1–3, which work as polyspecific, pH- and Na+-independent,
bidirectional transporters (Ciarimboli, 2008). OCTs have a species-specific tissue distribution. For
example, OCT1 in humans is mainly expressed in the liver (Gorboulev et al., 1997; Nies et al., 2009),
while in rodents, it is also present in the kidneys (Jonker and Schinkel, 2004; Holle et al., 2011).
Important substances of endogenous and exogenous origin are transported by OCT1. Acetylcholine
and monoamine neurotransmitters, and the antidiabetic metformin and the anticholinergic
trospium are examples for substrates of endogenous and exogenous origin, respectively (Busch
et al., 1996; Wang et al., 2002; Lips et al., 2005; Wenge et al., 2011). Since OCT1 has a high level of
expression in excretory organs, its activity has the potential to significantly impact not only local but
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also systemic concentrations of its substrates. Many aspects of
physiology and pharmacology of OCT1 are well known; however,
less attention has been paid to regulation processes of this
transporter. Therefore, this mini-review is aimed at collecting
the information available in the literature about regulation of
OCT1 and to underline the possible physiological,
pharmacological, and pathological implications of such a
regulation.

CELLULAR PROCESSING OF OCTS

Generally, OCTs localize to the basolateral membrane domain of
polarized cells, and, specifically, OCT1 is highly expressed in the
sinusoidal membrane of the hepatocytes (Wright and Dantzler,
2004). However, immunohistochemical staining suggested that
OCT1 may be also present in the apical domain of the plasma
membrane of human renal tubules (Tzvetkov et al., 2009) and
enterocytes (Han et al., 2013), suggesting that the localization
signals determining polarized expression of OCTs are not
inherent to the OCT structure, but probably depend on
specific processing mechanisms of the cells, where the
transporters are expressed. Human OCT1 (hOCT1), like all
the other OCTs, contains potential N-linked glycosylation sites
in the big extracellular loop (Zhang et al., 1997). This
glycosylation may be important for the trafficking of OCTs to
the plasma membrane, as demonstrated for rabbit OCT2 (Pelis
et al., 2006). Cysteine residues in the big extracellular loop of rat
OCT1 (rOCT1) are important for transporter homo-
oligomerization, which influences its plasma membrane
insertion, without changing the transport characteristics
(Keller et al., 2011). In other OCT paralogs, cysteine residues
in the extracellular loop seem to have a similar meaning for
oligomerization processes and transporter cellular processing
(Brast et al., 2012), suggesting that this is a common property
of OCTs. Therefore, modifications in this part of OCTs can
change their cellular expression pattern and activity.

Another possible mechanism to regulate protein activity
derives from a direct interaction with other proteins. Such an
interaction may be important for regulation of cellular processing
of the transporter, like its trafficking to/from the plasma
membrane, and for stabilization of its expression in the
plasma membrane. For example, the importance of interaction
partners for transporter regulation has been already shown for the
Na+-glucose cotransporter 2 (SGLT2) and for the Na+-dependent
neutral amino acid transporter B (0)AT1 in the kidneys. Here, a
direct interaction with PDZK1-interacting protein 1 (PDZK1P1,
also known as MAP17, a protein mainly expressed in the apical
brush border membranes from renal proximal tubules) stimulates
SGLT2 activity (Calado et al., 2018), and the interaction of B(0)
AT1 with collectrin stabilizes the transporter in the apical plasma
membrane of renal proximal tubules (Camargo et al., 2009).
Focusing on OCT1, a specific interaction of OCT1 with another
protein, may explain why the transporter has a clear basolateral
cellular localization in some tissues, while in others, it appears to
be expressed on the apical membrane domain. However, there are
only few studies aimed at identifying OCT1 interaction partners.

A screening performed using the mating-based split-ubiquitin
system, a special yeast-two-hybrid technique, able to detect
protein–protein interactions taking place in the plasma
membrane, identified 24 potential interaction partners for
hOCT1 (Snieder et al., 2019). According to gene ontology
annotations, the interacting proteins are associated mainly
with transport processes, vesicle-mediated transport, signaling
pathways, protein modification, homeostatic processes, and cell
adhesion (Snieder et al., 2019). The cellular distribution of the
identified interaction partners may reflect hOCT1 cellular
processing: they are localized in the plasma membrane (CD9
(tetraspanin-29), CYSTM1 (cysteine-rich and transmembrane
domain containing protein 1), and PDZKP1), in the
endoplasmic reticulum (KRTCAP2 (keratinocyte-associated
protein 2), SERP1 (stress-associated endoplasmic reticulum
protein 1), VAMPB (vesicle-associated membrane protein-
associated protein B isoform 1), and TMEM147
(transmembrane protein 147), in the Golgi system (CHST12
(carbohydrate (chondroitin 4) sulfotransferase 12) and
TMBIM4 (transmembrane protein 41B), in endosomes and
lysosomes (CD63 (tetraspanin-30) and LAPTM4A (lysosomal
associated protein transmembrane 4 α), and in mitochondria
(FIS1 (fission, mitochondrial 1 protein), GHITM (growth
hormone–inducible transmembrane protein), and SLC25A11
(solute carrier family 25, member 11)). Of special interest may
be the hOCT1/PDZK1P1 interaction, which may explain why
hOCT1 in the kidneys appears to be expressed in the apical
plasma membrane domain (Tzvetkov et al., 2009). Of course,
these interactions with hOCT1 should be confirmed using an
independent system.

SHORT-TERM REGULATION OF ORGANIC
CATION TRANSPORTER 1 ACTIVITY

Substrate transport is one of the main functional performances of
the liver and of the kidneys. These organs use transporters to
secrete variable quantity of substances, depending on rapidly
changing fluid and meal intake and metabolic activities. For this
reason, a rapid regulation of hepatic and renal transport
functions, adapting their activity to variable situations, is
possible. Short-term transporter regulation can be achieved by
posttranslational modifications like phosphorylation/
dephosphorylation, which can alter transport kinetics. Indeed,
both the liver and the kidneys are the target of several hormones,
which regulate multiple signaling pathways. For example, insulin
regulates in the liver glucose, lipid, and energy metabolism via
binding to tyrosine kinase receptors, starting a cascade of
phosphorylation reactions (Boucher et al., 2014). Conversely,
glucagon, by binding to its hepatic receptors, activates
adenylate cyclase, which stimulates protein kinase A (PKA)
and cyclic AMP (cAMP) response element-binding (CREB)
protein. The activation of this pathway leads to increased
gluconeogenesis (Janah et al., 2019). In the kidneys, the
peptide hormone angiotensin II (Ang II) regulates the most
important Na+ transporters of the proximal tubules (the apical
Na+/H+ exchanger isoform 3, the basolateral Na+-HCO3

−
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cotransporter, and the basolateral Na+/K+-ATPase) in a
concentration-dependent manner. For example, at low
picomolar to nanomolar concentrations, Ang II stimulates
these transporters by binding to the Ang II receptor type 1
(AT1R), activating the protein kinase C (PKC), and/or
lowering intracellular cAMP concentration (Shirai et al., 2014).

Rapid regulation has been investigated in cells overexpressing
mouse, rat, or human OCT1 (mOCT1 (Schlatter et al., 2014),
rOCT1 (Mehrens et al., 2000; Ciarimboli et al., 2005), hOCT1
(Ciarimboli et al., 2004)), and in isolated proximal tubules (PT)
from mouse (Holle et al., 2011; Guckel et al., 2012; Schlatter et al.,
2014) and rabbit (Hohage et al., 1994) kidneys. In mouse and rabbit
PT, both OCT1 and OCT2 are expressed (Kaewmokul et al., 2003;
Schlatter et al., 2014); however, OCT1 seems to be the functionally
predominant form in mouse PT (Schlatter et al., 2014).

Most studies on acute regulation of OCT1 have been
performed measuring the effects of short-time (10 min)
activation or inhibition of various kinase pathways on OCT1
orthologs (m, r, or hOCT1) overexpressed in human embryonic
kidney (HEK293) cells using the fluorescent organic cation 4-(4-
(dimethylamino) styryl-N-methyl-pyridinium (ASP+) as a
substrate. This technique allows a dynamic measurement of

transporter function with high time resolution, as explained in
detail elsewhere (Ciarimboli and Schlatter, 2016). In the
following, the main results of these studies are summarized.

Rapid Regulation of mOCT1
Transport mediated by mOCT1 was stimulated by the activity of
Ca2+–calmodulin complex (CaM), p56lck tyrosine kinase, PKA,
and phosphoinositide 3-kinase (PI3K) (Schlatter et al., 2014)
(Table 1). Only PKC activation inhibited mOCT1 transport
(Schlatter et al., 2014) (Table 1).

Rapid Regulation of rOCT1
Using the same experimental approach, transport of ASP+

mediated by rOCT1 was demonstrated to be stimulated by
PKA, PKC, CaM, and p56lck tyrosine kinase. Other tyrosine
kinases did not influence rOCT1-mediated transport, while
cGMP inhibited it (Table 1) (Mehrens et al., 2000; Schlatter
et al., 2002; Ciarimboli et al., 2005). Importantly, it was
demonstrated that PKC activation directly phosphorylates
rOCT1 and changes transporter affinities (Ciarimboli et al.,
2005). The potential PKC-phosphorylation sites at positions
S286, S292, T296, S328, and T550 seem to be important for

TABLE 1 | Summary of the short-term effects of selected regulation pathways on the organic cation transport mediated by specific organic cation transporter 1 (OCT1)
orthologs (mouse (m), rat (r), and human (h) OCT1) in expression systems and in isolated murine proximal tubules (PT) freshly isolated from the kidneys of wild-type (WT)
mice and of mice with genetic deletion of OCT2 (OCT2−/−) (↑ indicates a stimulation of the transport activity; ↓ indicates an inhibition of the transport activity; 0 indicates no
effect on the transport activity). Where measured, the regulation effect on transporter kinetic parameters (affinity, Km; or maximum velocity, Vmax) is also reported.

Activated
pathway

Transporter/freshly isolated proximal tubules (PT)

mOCT1 rOCT1 hOCT1 OCT2−/−

mouse PT
WT mouse PT

PKA ↑ (Schlatter
et al., 2014)

↑ (Mehrens et al., 2000), 0 and
↓* (Gerlyand and Sitar, 2009)

↓ (Ciarimboli et al.,
2004); Km-effect

↑ (Schlatter
et al., 2014)

↑ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Vmax-effect (Guckel
et al., 2012)

PKC ↓ (Schlatter
et al., 2014)

↑ (Gerlyand & Sitar, 2009), (Mehrens et al.,
2000); Km-effect (Mehrens et al., 2000)

0 (Ciarimboli et al.,
2004)

↓ (Schlatter
et al., 2014)

↓ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Vmax-effect (Guckel
et al., 2012)

p56lck ↑ (Schlatter
et al., 2014)

↑ (Mehrens et al., 2000) ↑ (Ciarimboli et al.,
2004)

↑ (Schlatter
et al., 2014)

↑ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Vmax-effect (Guckel
et al., 2012)

Tyrosine kinase 0 (Mehrens et al., 2000)
cGMP ↓ (Schlatter et al., 2002) 0 (Ciarimboli et al.,

2004)
CaM ↑ (Schlatter

et al., 2014)
↑ (Ciarimboli et al.,
2004); Km-effect

↑ (Schlatter
et al., 2014)

↑ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Km-effect (Guckel et al.,
2012)

CamKII ↑ (Ciarimboli et al.,
2004)

MLCK 0 (Ciarimboli et al.,
2004)

PI3K ↑ (Schlatter
et al., 2014)

0 (Ciarimboli et al.,
2004)

↑ (Schlatter
et al., 2014)

↑ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Vmax-effect (Guckel
et al., 2012)

Ang II ↑ (Schlatter
et al., 2014)

↑ (Guckel et al., 2012; Holle et al., 2011;
Schlatter et al., 2014); Km-effect (Guckel et al.,
2012)

*Effect magnitudev depends on forskolin concentration used in (Gerlyand and Sitar, 2009): with 1 µM forskolin, no significant regulation of rOCT1 activity was observed, and with 10 µM
forskolin, a significant inhibition of rOCT1 was measured.
PKA, protein kinase A; PKC, protein kinase C; p56lck, p56lck tyrosine kinase; cGMP, cyclic GMP; CaM, Ca2+−calmodulin complex; CaMKII, multifunctional Ca2+/CaM-dependent protein
kinase II; MLCK, myosin light chain kinase; PI3K, phosphoinositide 3-kinase; Ang II, angiotensin II.
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this effect. Other studies showed a strong downregulation of
rOCT1-mediated transport under PKC inhibition with
staurosporine (Gerlyand and Sitar, 2009), confirming a
possible PKC stimulation of rOCT1-mediated transport.

Interestingly, using tetraethylammonium (TEA+) as a
transport tracer, PKA stimulation did not change rOCT1
activity (Gerlyand and Sitar, 2009). These results may be
explained admitting that OCTs have a large binding pocket,
with partially overlapping interaction domains for different
substrates (Ciarimboli et al., 2005; Popp et al., 2005).
Therefore, PKA may induce conformational changes in the
binding domain of ASP+ and not in that of TEA+, resulting in
stimulation of ASP+ uptake but not of TEA+ transport.

Rapid Regulation of hOCT1
ASP+ microfluorimetry has been used also to characterize the rapid
regulation of hOCT1 overexpressed in HEK293 cells or Chinese
hamster ovary (CHO) cells (Ciarimboli et al., 2004). Interestingly,
regulation patterns observed in the two cell systems were not
different. The hOCT1 activity was downregulated by PKA
stimulation. This regulation was different from what was observed
for mOCT1 and rOCT1, where PKA activation stimulated the
transporters (s above). Activity of PKC, myosin light chain kinase
(MLCK), or PI3K did not regulate hOCT1. The p56lck tyrosine
kinase, CaM, and the multifunctional Ca2+/CaM-dependent protein
kinase II (CaMKII) stimulated hOCT1 activity, similarly to what was
observed for m and rOCT1. Regulation of hOCT1 by PKA and CaM
was associatedwith changes of the transporter apparent affinity for its
substrates (Ciarimboli et al., 2004).

The presence of specific phosphorylation sites in the OCT1
orthologs can probably contribute to explain the specific
regulation observed in the works cited above. For example,
focusing on PKA effect on mOCT1, rOCT1, and hOCT1,
using the group-based prediction system GPS 5.0 (Xue et al.,
2008), the same 3 potential phosphorylation sites (S334, T348,
and S537) are found in the primary structure of mOCT1 (NCBI
sequence NP_033228.2) and rOCT1 (UniProtKB: Q63089.1). In
hOCT1 primary structure (UniProtKB: O15245.2), only one
potential PKA phosphorylation site (T347) is detected.
Therefore, phosphorylation of S334 and/or S537 may be
responsible for PKA upregulation of mOCT1 and rOCT1
activities measured by ASP+ microfluorimetry.

Rapid Regulation of ASP+ Transport in
Freshly Isolated Mouse Proximal Tubules
Comparing acute regulation of ASP+ uptake in freshly isolated
proximal tubules (PT) from wild-type (WT) mice and mice
with genetic deletion of OCT2 (OCT2−/−, in these mice, the
predominant OCT in proximal tubules is OCT1 (Holle et al.,
2011)), an identical regulation pattern was observed. Moreover,
the regulation of ASP+ uptake in PT isolated from WT- and
OCT2−/−- mice was the same as that observed in HEK cells
overexpressing mOCT1. These results suggest that OCT1 is the
main functional OCT paralog in this part of the mouse nephron

(Schlatter et al., 2014). OCT regulation by p56lck, PI3K, PKA,
and PKC in mouse kidneys is linked to Vmax changes of ASP

+

transport (Guckel et al., 2012). Interestingly, the same
qualitative regulation pattern of ASP+ transport was
observed in PT from male and female OCT2−/− mice.
However, p56lck and PKC had an approximately 20 %
stronger effects in female than in male animals (Schlatter
et al., 2014). A dependence of OCT-mediated transport
regulation on sex has been observed also in rats (Wilde
et al., 2009), probably due to a stronger endogenous
expression of regulatory enzymes, such as CaM (Wilde et al.,
2009).

Activation via p56lck seems to be a rapid regulation pathway
conserved along all OCT1 orthologs (s above) and the other
OCT paralogs (Wilde et al., 2009; Massmann et al., 2014;
Schlatter et al., 2014; Frenzel et al., 2019). Interestingly,
according to the group-based prediction system GPS 5.0
(Xue et al., 2008), all OCT1 and OCT2 orthologs have a
conserved potential lck phosphorylation site in the
intracellular domain on tyrosine 543 (hOCT1), 545 (mOCT1
and rOCT1), or 544 (mOCT2, rOCT2, and hOCT2), close to
the carboxy-terminus. The OCT3 orthologs have such a
conserved potential lck phosphorylation site on tyrosine 456
(mOCT3 and rOCT3) or 461 (hOCT3) in the small intracellular
loop between the transmembrane domains 10 and 11.
Therefore, it can be supposed that a direct phosphorylation
by p56lck regulates OCT activity. Mutagenesis of these tyrosines
to, for example, alanine may help to reveal whether OCT
regulation by p56lck is associated with phosphorylation of
these sites. Such an experimental approach has been used to
show that point mutations in the OCTs can have a specific
influence on the binding characteristics of different substrates
(Ciarimboli et al., 2005). These findings support the concept
that OCTs have a large binding site with different interaction
regions for diverse substrates (Koepsell, 2019; Sandoval et al.,
2019). Therefore, transporter regulation studied with different
OCT substrates may show different results, as outlined above
for PKA regulation of rOCT1 activity.

In conclusion, the cellular processing of OCT1 may be regulated
by a direct interaction with other proteins. Moreover, rapid
regulation of OCT1 activity is probably necessary to adjust
transporter activity to physiological requirements. This
regulation is ortholog and paralog specific, and changes
transport characteristics such as the affinity to known substrates
and the maximum reaction velocity. Both in the liver and at least in
the rodent kidneys, OCT1 mediates the first step of organic cation
secretion, that is, the uptake of substrates into hepatocytes and into
cells of the renal proximal tubules, respectively. For this reason, it
should be investigated whether a regulation pathway able to
stimulate the second step of secretion process, that is, the
excretion of organic cations into the bile and urine, by, for
example, the multidrug and toxin extrusion proteins (MATEs)
(Kantauskaite et al., 2020), can work together with OCT
regulation to globally modulated hepatic and renal substrate
secretion.
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LONG-TERM REGULATION OF OCT1

Factors Determining OCT1 Expression and
Function in Humans and Mice
Tissue-specific processes activated by different
pathophysiological conditions influence OCT1 expression and
activity. As outlined above, OCT1 is mainly expressed in
hepatocytes. However, there are few studies, which try to
explain why OCT1 is highly expressed in the liver. The
hepatic expression of many proteins is under the control of
two transcription factors: the hepatocyte nuclear factor 4α
(HNF4α) and the CCAAT/enhancer-binding protein (C/EBP)
(Nishiyori et al., 1994). For this reason, the expression of mRNA
coding for HNF4α and for C/EBP has been correlated with that of
hOCT1 in the human liver. A significant correlation between
hepatic mRNA expression of hOCT1 and that of HNF4α and
C/EBP was found (Rulcova et al., 2013). Moreover, stimulation of
HNF4α by dexamethasone in human primary hepatocytes
increased hOCT1 expression. Two functionally important
response elements for HNF4α have been found in the 5’-
flanking region of the solute carrier 22A1 (SLC22A1) gene, the
gene coding for hOCT1 (Saborowski et al., 2006; Hyrsova et al.,
2016). These elements seem not to be conserved in rodents
(Saborowski et al., 2006).

Another important regulator of drug transport and
metabolism in humans is the hepatocyte nuclear factor 1
(HNF1), a transcription factor, which is highly expressed in
the liver (Courtois et al., 1988). HNF1 has been identified as a
potent regulator of hOCT1 expression. HNF1 increases SLC22A1
promoter activity by binding to an evolutionary conserved region
in intron 1 of the SLC22A1 gene (O’Brien et al., 2013).

The presence of single nucleotide polymorphisms (SNPs) in
SLC22A1 is well known to modulate its function (Kerb et al.,
2002; Shu et al., 2003; Shu et al., 2007; Tzvetkov et al., 2009;
Tzvetkov et al., 2011; Tzvetkov et al., 2012; Tzvetkov et al., 2013).
The SNPs of SLC22A1 have been shown to influence hOCT1
transport characteristics (affinity Km and maximal velocity Vmax)
and the pharmacokinetics of drugs, which are substrates of
hOCT1. This aspect of hOCT1 regulation has been already
summarized in other excellent reviews (Yee et al., 2018; Zazuli
et al., 2020) and will be further discussed in detail in other
contributions to this special issue.

In mice, a transcriptional regulation of Slc22a1 (murine genes
are conventionally written in lowercase) by peroxisome
proliferators activated receptors (PPAR) has been proposed.
PPAR are transcription factors which play an important role in
metabolic regulation and in determining liver function (Kersten,
2014). For example, in the liver, the nuclear receptor PPARα is
activated in the fasted state, and its activation induces fatty acid
oxidation and gluconeogenesis (Preidis et al., 2017). PPARγ
stimulates several proteins associated with lipid uptake,
triacylglycerol storage, and formation of lipid droplets (Wang
et al., 2020). The physiological ligands of PPAR are fatty acids,
which are mobilized during fasting or food restriction. Therefore,
PPAR-α and PPAR-γ agonists are agents, which can modulate
many hepatic metabolic and transport processes. In mice, feeding
PPAR-α and -γ agonists increased transcriptional Slc22a1 gene

expression. In an in vitro model, the increased Slc22a1 expression
induced by PPAR-α and PPAR-γ agonists resulted in a stimulation
of cellular organic cation uptake (Nie et al., 2005). Since OCT1 is a
high-affinity choline transporter (Sinclair et al., 2000), and choline is
essential for phosphatidylcholine synthesis, the stimulation of
OCT1 by fatty acids may be useful to increase choline uptake
when its portal blood concentrations are low (Nie et al., 2005).

There are several works demonstrating that sex can influence
OCT1 expression at mRNA and protein levels. In mice and rats,
renal OCT1 protein expression was higher in male than in female
animals (Sabolic et al., 2011). However, renal OCT1 mRNA
expression was higher in female than in male rats (Sabolic et al.,
2011). Therefore, regulation of OCT1 mRNA and protein
expression can be divergent, at least in rodents. It is not known
whether OCT1 expression in humans is dependent on sex.

Long-Term Effect of Kinase Activation on
OCT1 Expression and Function
Regarding long-term effects of kinase activity on transporter
function, 24 h incubation with 10 µM epinephrine has been
demonstrated to down-regulate hOCT1 mRNA-expression via
cAMP formation in primary human hepatocytes (Mayati et al.,
2017a). These results confirm what was observed for rapid
regulation of hOCT1 under stimulation of PKA activity
(Ciarimboli et al., 2004), showing that this regulation axis has
similar short- and long-term effects on hOCT1 function.

Long-time (24–48 h) exposure to PKC activators such as phorbol
ester 12-myristate 13-acetate (PMA, 100 nM) reduced
hOCT1 mRNA-expression and activity in human hepatoma
HepaRG cells and primary human hepatocytes (Mayati et al.,
2015). However, shorter incubation times with PMA did not
change hOCT1 transport activity in HepaRG cells (Mayati et al.,
2017b), confirming what was found for rapid hOCT1 regulation by
PKC (s above). Therefore, it can be concluded that acute and chronic
kinase activationmay have also a different impact on hOCT1 activity.

How can the data be interpreted on OCT1 regulation in a
physiological context? Focusing on hOCT1 and the liver, one can
try to build a model integrating hOCT1 short- and long-term
regulation and activation of a specific signaling pathway. For
example, it is well known that activation of the cAMP/PKA
pathway is important for regulation of hepatic energy
metabolism. Glucagon and catecholamines stimulate in the liver
the formation of cAMP and PKA, which leads to an increased
glucose production, increased gluconeogenesis, and a decreased
glycolysis. Activation of this pathway also influences lipid
metabolism by decreasing biosynthesis of fatty acids and
lipogenesis and increasing fatty acid oxidation. Moreover,
activation of this pathway represses the expression of the PPAR-
γ gene, which is a key regulator of lipogenic genes. Therefore,
activation of the cAMP/PKA pathway leads to increased hepatic
glucose production and decreased lipid accumulation (Wahlang
et al., 2018). Therefore, since hOCT1 activity is rapidly inhibited by
PKA activity and PPAR-γ agonists increased transcriptional
Slc22a1 gene expression, increased hepatic glucose production
may be associated with immediate reduction of hOCT1 activity
and decrease of hOCT1 gene expression.
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LONG-TERM REGULATION UNDER
PATHOLOGICAL CONDITIONS AND BY
ENVIRONMENTAL TOXINS
Studies in Animal Models
Decreased protein expression of OCT1 in kidneys from diabetic
rats was detected (Thomas et al., 2003; Grover et al., 2004), which
was restored by inhibition of angiotensin-converting enzyme
(Thomas et al., 2003) or insulin treatment (Grover et al., 2004).
Since these changes are evident at the protein but not at the mRNA
level (Grover et al., 2004), it was speculated that they are due to
posttranscriptional alterations (Grover et al., 2004).

Ischemia–reperfusion injury (IRI) down-regulated mRNA
and protein expression of OCT1 in rat kidneys. In this model,
IRI increased NO generation by stimulation of inducible nitric
oxide synthases (iNOS). Inhibition of iNOS at the end of ischemia
restored OCT1 expression at normal levels, suggesting that NO is
a negative regulator of OCT1 (Schneider et al., 2011).

Syngeneic and allogeneic rat kidney transplantation
downregulated the mRNA and protein expression of OCT1 in
the transplanted kidneys. Immunosuppression with cyclosporine
A partially restored OCT1 mRNA expression in the allogeneic
model (Ciarimboli et al., 2013).

Hepatic cholestasis, studied in a bile duct ligation (BDL)
model in the rat, down-regulates the expression and function
of rOCT1 in the liver, probably as a protection mechanism, to
decrease hepatic accumulation of potentially toxic substances
(Denk et al., 2004).

Studies in Human Tissues and Human Cells
in Culture
Epigenetic modifications (e.g., DNA methylation and histone
modification) are heritable variations that regulate chromatin
structure and DNA accessibility and can change gene
expression without changing its DNA sequence. In human
hepatocellular carcinoma (HCC), the mRNA and protein
expression of hOCT1 were found to be significantly reduced
compared with normal adjacent liver tissue (Schaeffeler et al.,
2011). Methylation of SLC22A1 seems to be associated with a
lower expression of hOCT1 in HCC (Schaeffeler et al., 2011).
Interestingly, the downregulation of hOCT1 in HCC has been
confirmed in an independent study and was found to be
associated with tumor progression and a worse patient
survival (Heise et al., 2012). The same relationship between
hOCT1 expression and consequences for tumor progression
and patient survival has been observed in cholangiocellular
carcinoma (CCA), a hepatic malignancy derived from
cholangiocytes (Lautem et al., 2013). It has been observed
that in diabetic patients treated only with metformin,
methylation of liver SLC22A1 decreases (Garcia-Calzon
et al., 2017), suggesting that diabetes may decrease OCT1

expression by increasing SLC22A1 methylation. However, to
my knowledge, there is still no quantitative measurement of
OCT1 expression in diabetic patients.

Liver function deterioration (e.g., induced by hepatitis C,
primary biliary cholangitis, primary sclerosing cholangitis,
alcoholic liver disease, and autoimmune hepatitis) decreased
the amount of hOCT1 mRNA and protein in the liver
(Drozdzik et al., 2020).

Cigarette smoking is well known to have an important
pharmacological impact because it can change drug
pharmacokinetics and drug–drug interactions. Cigarette smoke
condensate decreases mRNA expression and activity of hOCT1 in
human hepatoma HepaRG cells, probably via activation of the
aryl hydrocarbon receptor (AhR) signaling pathway (Sayyed
et al., 2016). Activation of the AhR signaling pathway may be
also the mechanism by which exposure to the diesel exhaust
particles (25 μg/ml, 48 h) decreases hOCT1 mRNA expression in
HepaRG cells (Le et al., 2015).

Taken together, these results suggest that pathological insults
and environmental toxins down-regulate OCT1 expression.

CONCLUSION

In conclusion, OCT1 is subjected to a multifaceted regulation,
which can change its function. Therefore, modulation of its
expression and activity may have important physiological and
pharmacological consequences due to the role of OCT1 for
handling of endogenous and exogenous substrates such as
neurotransmitters and drugs. It would be important to
investigate whether and at which position OCT1 is
phosphorylated by rapid regulation processes and to define
the exact role of interacting proteins for transporter cellular
processing. In this way, new functional meaning of SNPs in
hOCT1 and/or interacting proteins can be detected. Regulation
of OCT1 may change excretion of its substrates and modify
toxicity of drugs and environmental toxins. Further research is
necessary to clarify these important issues of OCT-mediated
transport.
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