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Abstract

Multiple injection dynamic positron emission tomography (PET) scanning is used in the clinical 

management of certain groups of patients and in medical research. The analysis of these studies 

can be approached in two ways: (i) separate analysis of data from individual tracer injections, or 

(ii), concatenate/pool data from separate injections and carry out a combined analysis. The 

simplicity of separate analysis has some practical appeal but may not be statistically efficient. We 

use a linear model framework associated with a kinetic mapping scheme to develop a simplified 

theoretical understanding of separate and combined analysis. The theoretical framework is 

explored numerically using both 1-D and 2-D simulation models. These studies are motivated by 

the breast cancer flow-metabolism mismatch studies involving 15O-Water (H2O) and 18F-

Fluorodeoxyglucose (FDG) and repeat 15O-H2O injections used in brain activation investigations. 

Numerical results are found to be substantially in line with the simple theoretical analysis: mean 

square error (MSE) characteristics of alternative methods are well described by factors involving 

the local voxel-level resolution of the imaging data, the relative activities of the individual scans 

and the number of separate injections involved. While voxel-level resolution has dependence on 

scan dose, after adjustment for this effect, the impact of a combined analysis is understood in 

simple terms associated with the linear model used for kinetic mapping. This is true for both data 

reconstructed by direct filtered backprojection (FBP) or iterative maximum likelihood (ML). The 

proposed analysis has potential to be applied to the emerging long axial field-of-view PET 

scanners.
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1. Introduction

Positron emission tomography (PET) scanning is an important diagnostic imaging technique 

used in the management of patients with cancer and other diseases, as well as in medical 

research. In clinical settings, PET is typically used to create a single 3-D static image of the 

distribution of the tracer atoms in the field of view in a time-frame of interest, after the tracer 

has been administered. But PET can also be used to obtain a temporal sequence of scans 

after radiotracer injection. Such dynamic PET scans give the possibility to analyze the 

transport and retention of tracer in order to recover more detailed metabolic information 

(Cunningham and Jones; 1993; O’Sullivan; 1993). Most dynamic PET studies involve the 

use of a single radiotracer, such as 15O-Water (H2O) for blood flow (Herscovitch et al.; 

1983), 18F-Fluorodeoxyglucose (FDG) for glucose metabolism (Phelps et al.; 1979) or 11C-

verapamil for P-glycoprotein (P-gp) activity (Deo et al.; 2014). Studies in which multiple 

radiotracers are used in the same subject in the same imaging session have the potential to 

provide more comprehensive profiles of tissue function (Eary et al.; 2011; Kadrmas et al.; 

2013), in-vivo. Examples include: repeat 15O-H2O imaging for brain activation studies 

(Beason-Held et al.; 1999), 15O-H2O and 18F-FDG for breast cancer (Mankoff et al.; 2002), 
13N-NH3 and 18F-FDG for myocardial viability (Yamagishi et al.; 1999; Dilsizian et al.; 

2013), 15O-H2O and 11C-Verapamil for assessment of multi-drug resistance (Eyal et al.; 

2009).

While data from multiple radiotracer scans could be assembled post-hoc from separate 

imaging sessions, acquiring the data in a single imaging session has several advantages. (i) It 

can reduce issues of anatomic co-registration. This is important for comparing the facets of 

biology related to multiple tracers, especially for targets that may move between studies, for 

example, breast (Fowler et al.; 2016) and ovarian (Makvandi et al.; 2018) cancers comparing 

FDG PET/CT staging studies to therapeutic biomarkers. No doubt longer separation of 

injections can lead to more patient motions. (ii) It can reduce potential variation in the 

physiologic state of the subject from one session to the next (Huang et al.; 1982). This is 

especially true for metabolic studies using H2O and FDG or Glutamine and FDG (Zhou et 

al.; 2017). (iii) Tracer parameter estimation for multi-tracers may provide more reliable 

kinetic analysis due to common dependence of parameters: tracer delivery on flow or tracer 

clearance on plasma volume and hydration, etc.

With the development of new PET scanners like PennPET Explorer (Karp et al.; 2020) and 

Explorer total-body PET scanner (Badawi et al.; 2019), the longer field of view, increased 

temporal and spatial resolution, with lower dose are possible. These new scanners offer new 

opportunities for multi-tracer studies like the dual-tracer imaging with two 18F-labeled 

tracers using PennPET Explorer (Viswanath et al.; 2021; Viswanath; 2020) where combined 

data with conjoint modelling can help make more robust the comparison of regional 

differences in the relationship between the biologic parameters measures (Paquette et al.; 

2020; Mankoff et al.; 2019).

Multi-tracer studies bring a range of significant challenges (Krohn et al.; 2007), data 

analysis being one. There are many situations in which the analysis of multi-tracer dynamic 

studies must consider the full temporal time-course of data, see for example, (Spence et al.; 
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1998; Rust and Kadrmas; 2005; Zhang et al.; 2016). However, whenever the temporal 

separation between different tracer injections is much longer than the radiotracer half-life or 

there is a simple mechanism to correct for spillover (Huang et al.; 1982; Koeppe et al.; 1998, 

2001; Black et al.; 2009; El Fakhri et al.; 2013), analysis can be approached in one of two 

ways: (i) studies can be processed separately to recover kinetic information corresponding to 

individual tracers (Figure 1A), or (ii), studies can be concatenated temporally and a 

combined analysis (Figure 1B) of the resulting data carried out.

This paper develops a simplified theoretical framework for understanding the relative 

performance of separate and combined analysis of multi-tracer PET studies. The approach is 

based on a type of linear modelling framework for mapping kinetics (O’Sullivan; 1993; 

O’Sullivan et al.; 2014) - details in section 2. The theoretical analysis suggests that after 

controlling for voxel-level imaging accuracy (resolution), the relative performance of 

separate and combine kinetic mapping can be understood in simplified terms. A series of 

numerical experiments, motivated by flow-metabolism mismatch and repeat brain activation 

studies, are used to directly assess mean square error (MSE) characteristics of combined and 

separate analysis techniques. These studies consider both filtered backprojection (FBP) and 

maximum likelihood (ML) reconstructed data as well as a number of important factors 

including, overall dose, the relative dose of individual tracers and the number of injections 

involved. Data from numerical experiments are subjected to careful statistical analysis. This 

helps to clarify the main findings. In flow-metabolism studies, combined analysis improves 

MSE performance by between 8% and 30%, depending on the reconstruction method used. 

In the repeat injection studies, MSE improvements increase linearly with the number of 

injections involved. This is in line with the proposed theory.

The outline of the paper is as follows: The kinetic mapping approach and the associated 

analysis of the impact of data combination are developed in section 2. An illustrative 

practical example from a flow-metabolism mismatch study in a breast cancer patient is given 

in section 3. Section 4 describes a series of numerical studies based on 1-D and 2-D 

scanning models. Results are presented in section 5. Section 6 presents a detailed statistical 

analysis of simulation results. The paper concludes with discussion.

2. Theory

The focus is on dynamic PET studies in which it can be assumed that the tracer’s interaction 

with tissue is substantially linear and time-invariant. This assumption is valid for a large 

class of tracers used in PET, particularly in a cancer setting. The interpretation of time-

course data from dynamic studies can be approached using classical indicator dilution theory 

(Meier and Zierler; 1954). This theory expresses the measured time-course as a convolution 

between the arterial input function (AIF) and the so-called tissue residue or impulse 

response function. The tissue residue is a necessarily monotone decreasing function. Widely 

used compartmental models (Kety and Schmidt; 1948; Phelps et al.; 1979), typically 

approximate the residue as a positive linear combination of 1 or 2 mono-exponential 

functions. The spectral method (Cunningham and Jones; 1993) generalizes this to allow the 

positive combination of potentially many mono-exponentials. In statistical terms, the residue 

may be viewed as a life-table for tracer atoms introduced to the tissue at time zero via the 
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arterial supply - indeed this is a key part of (Meier and Zierler; 1954). As life-tables can be 

represented in terms of the underlying distribution (density/histogram) of travel times 

associated with the physiologic/metabolic journey of individual tracer atoms in the tissue, 

any residue modelling assumption carries with it a specification for the distribution of such 

travel times within the volume of tissue being analyzed (O’Sullivan et al.; 2009). 

Compartmental and spectral approximation requires that travel-time densities be spiked at 

time zero and be monotone decreasing. However, strict monotonicity of travel-time densities 

may not always be reasonable (Li et al.; 1997). One might imagine this may only be 

practically important in studies with high-frequency temporal sampling - perhaps only in the 

context of the emerging PET scanning technologies (Badawi et al.; 2019; Karp et al.; 2020). 

However (O’Sullivan et al.; 2009) used circa-1996 PET scanner data involving relatively 

crude temporal sampling to demonstrate significant statistical deficiencies in the ability of 

the standard 2-compartmental model to correctly represent the regional cerebral time-course 

of PET-FDG data in highly homogeneous brain regions of normal subjects. The anomaly 

was identified by considering a more flexible non-parametric analysis of the residue 

function, with suitable cross-validation adjustment for potential overfitting relative to the 2-

compartmental model. In light of this finding, we have been motivated to employ a non-

parametric representation of the tissue residue, particularly when analyzing PET time-course 

data corresponding to large and potentially heterogeneous regions of interest. The concept 

has been incorporated into a non-parametric residue mapping (NPRM) methodology that we 

have found useful for parametric imaging of dynamic data from PET imaging of cancer 

(O’Sullivan; 1993; O’Sullivan et al.; 2014). Figure 2 shows a schematic. Before we consider 

the topic of combined analysis of multiple-injection studies, we elaborate on important 

details of the NPRM approach. Theoretical points are illustrated numerically in the context 

of kinetic mapping PET-FDG data.

2.1. Voxel-level Kinetic Mapping by the NPRM Approach

There is extensive literature on techniques for mapping kinetics from dynamic PET data - 

see (Wang et al.; 2020) for a recent review including many references. A broad family of 

techniques, including (Cunningham and Jones; 1993; O’Sullivan; 1993), involves voxel-

level representation of the tissue residue as a (positive) linear combination of suitable basis 

functions. Mono-exponential basis residues are used in (Cunningham and Jones; 1993); 

more elaborate basis elements, incorporating potentially complex blood-tissue exchange 

models are proposed in (O’Sullivan; 1993). NPRM technique is a variation on the latter 

approach in which basis elements (known as sub-TACs) are represented in terms of flexible 

model-free residues. A full account of the method with several cancer imaging applications 

is provided in (O’Sullivan et al.; 2014). In the current implementation of NPRM, sub-TACs 

are constructed by a 2-step data-adaptive process. We elaborate on these steps and indicate 

how derived kinetic are mapped.

Step 1 applies a standard recursive hierarchical clustering scheme to partition the image 

volume into a set of S segments or clusters, with the property that the time course data for 

voxels in the same segment are each approximately proportional to the mean time-course for 

that segment. Typically the number of segments needed for this is on the order of 100–200. 

The mean PET-measured time-course data for segments (zs) together with their standard 
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deviations (σs) are used to produce a reduced data set 

DS = zsl, σsl , s = 1, 2, …, S, l = 1, 2, …, NT . Here NT is the number of time-frame of PET 

data acquisition. Next, the mean time-course data for each segment is modelled to create an 

associated set of modelled elements ℳ = μs, s = 1, 2…, S . In the case of a single-injection, 

a generic time-course (z) in DS is modelled (μ) by one of: (a) a scaled (venous) injection-

site signal (CIV), (b) a non-parametric residue function (R), or (c), a scaled non-parametric 

distribution function (F) representing the total number of tracer atoms no longer in blood-

tissue exchange as a function of time. This last case is to accommodate data in which the 

bladder is in the field of view. Thus

μl = A ⋅ CIV tl − Δ   ;   μl = R ⋆ Cp tl − Δ   ;   μl = F ⋆ Cp tl − Δ (1)

for l = 1, 2, …, NT. Here Cp is the time-course of the tracer in the arterial blood (AIF). Δ is 

an optimized delay factor. R and F  are non-parametrically specified as piece-wise linear 

functions and estimated using constrained weighted least squares with weights 1/σl
2. It is 

important to appreciate that, apart from Δ, all unknowns in (1) are linear, so the computation 

of the optimal fit, for any fixed Δ, is evaluated by quadratic programming (QP). A grid 

search is used to determine the optimal delay. Choices other than the residue case are only 

selected if they significantly improve on the residue fit. Modelled elements are 

supplemented to include time-courses corresponding to the AIF and a further time-course 

corresponding to the integral of the AIF - the AIF exactly models a spike residue; the 

integral of the AIF corresponds to a constant residue. In deference to (Patlak and Blasberg; 

1985), the latter component is referred to as the Patlak-element. With multiple injections an 

elaboration of (1) is used - details of this are indicated below.

Step 2 of the basis selection procedure takes the full collection of modelled time-course 

patterns and applies a cross-validation guided backwards elimination procedure to identify a 

subset of these with the property that positive linear combinations of these patterns 

adequately fit the reduced dataset DS. This leads to a final set of basis elements given by a 

NT × K matrix X = μ1, …, μK . These basis elements (μ) are referred to as sub-TACs and K 

is their total number. Given the manner in which the segmentation process is implemented, 

voxel-level time-course data (zi) can be expected to be well-approximated by a positive 

linear combination of sub-TACs. NPRM fits voxel-level data by the linear model and 

approximates the voxel-level residue using the components that correspond to a residue 

process (1)

zil ≈ ∑
k = 1

K
αikμlk = Xαi     R t, xi = ∑

k ∈ Kr
αikRk(t) (2)

where R t ⋅ , xi  is the residue for the i’th voxel. Here Kr is the indices of the subset of sub-

TACs that are specified by a residue in (1). QP is used to evaluate αi.

2.1.1. Residue Decomposition and Mapping of Kinetics: Suppose a generic 

residue function R can be measured over a time interval [0, TE] - the PET scanning time-
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frame. Let TB for 0 < TB < TE represent a realistic upper-bound for the large-vessel travel-

time of tracer atoms - a TB value of 15 seconds seems physiologically reasonable, for most 

PET tracers, including FDG and H2O. Following (O’Sullivan et al.; 2014), the residue can 

be written as a sum of vascular, in-distribution and extracted elements

R(t) = RB(t) + RD(t) + RE(t) (3)

where RE(t) = R(TE) for t ∈ [0, TE]; RB(t) = R(t)−R(TB) for t ∈ [0, TB] and RB(t) = 0 for t > 

TB; RD(t) = R(t) − RB(t) − RE(t). Four useful summaries are

V B = ∫
0

TB
RB(t)dt  ;   V D = ∫

0

TE
RD(t)dt  ;   KD = RD(0)  ;   Ki = RE(0) (4)

These assess, large vessel and small vessel distribution volumes (VB, VD), non-large vessel 

flow (KD) and retention or apparent flux (Ki) at the end of scanning period. Note, that all of 

these quantities are linear functions of the residue. Tracer extraction is measured as Ki/K1 

where K1 = KD + Ki represents the overall flow. By the central volume theorem (Meier and 

Zierler; 1954), mean transit time (MTT) of non-extracted tracer is measured by a ratio of 

volume to flow. The measure may be adjusted to account for an overall delay (Δ) in the 

arrival of tracer atoms to the tissue region. This gives MTT = VD/KD + Δ.

In the NPRM procedure voxel-level kinetic parameters are based on the estimated residue in 

(2). This leads to mapped values for (VB, VD, KD, Ki, Ki/K1). For MTT, we use 
V D
KD

+ Δ

where Δ is the flow-weighted average of the delays (Δk) associated with residue components 

at the voxel being mapped, i.e. at voxel i, Δ =
∑k ∈ KrαikKDkΔk

∑k ∈ KrαikKDk
 with KDk the flow for Rk. 

Note (VB, VD, KD, Ki) are linear and (MTT, Ki/K1) are (smooth) non-linear functions of α-

coefficients in (2).

2.1.2. Why is the NPRM Approach Reasonable?—The NPRM approach has three 

important features: (i) In diverse tissue environments the formal theoretical support for 

compartmental models may be limited (even from an in-vitro stand-point), especially with 

more novel PET tracers. In this context a non-parametric approach has improved flexibility 

to adapt to the true (unknown) kinetics. (ii) NPRM can accommodate significant variations 

in the arrival of tracer to different parts of the field of view. This is accomplished by the 

inclusion of delays in the modelling of sub-TACs. (iii) NPRM gives an ability to adjust for 

potential artifacts associated with the bladder or the injection site within the scanner field of 

view. This is not important in the data presented in this paper but has relevance in abdominal 

scanning and in cases where there may be enhanced temporal scanning resolution.

An alternative non-parametric approach, based on a truncated singular value decomposition 

(SVD), has been used to map perfusion parameters with MR and CT data (Østergaard et al.; 

1996; Konstas et al.; 2009). Unlike the method used here, the SVD approach does not 

constrain the target residue to be either positive or monotone decreasing. Also, it does not 

have a mechanism to address heterogeneity voxel-level data or indeed to accommodate 
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artefacts associated with the retention of tracer in the bladder or signals associated with a 

venous injection site in the field of view. Further examination would be helpful in getting a 

detailed clarification of the performance of the truncated SVD approach relative to the 

NPRM technique. NPRM mapping would also seem to have potential for application to 

perfusion imaging with MR and CT. In addition, the approach may also have a role in 

quantitative analysis of digital subtraction angiography imaging (DSA) data - see (Liang et 

al.; 2019)

A small 1-D PET-FDG numerical simulation study comparing NPRM with classic voxel-by-

voxel compartmental analysis (Kety and Schmidt; 1948; Phelps et al.; 1979) is implemented. 

Details of the scanning model and source distribution are as specified in section 4. The 

source distribution is specified as a linear combination of specified sub-TACs (μk) - like (2). 

In one case (I), source sub-TACs correspond to non-parametric residues derived from 

regional analysis of breast cancer imaging data; in the second case (II) source sub-TACs are 

replaced by the best fitting one-compartment (1C) model (Kety and Schmidt; 1948) to the 

real data. The table reports the relative root mean square error (RMSE) performance of 

mapping the six summary kinetic parameters described above, when voxel-level residues are 

estimated using either the NPRM technique or by application of a 2-compartment (2C) 

model (Phelps et al.; 1979) that includes adjustment for the fractional blood volume and 

tracer delay (O’Sullivan et al.; 2009). The model function (η) is:

η(t ∣ β) = fbCp(t − Δ) + ∫
0

t
A1e−λ1(t − s) + A2e−λ2(t − s) Cp(s − Δ)ds (5)

where Cp is the AIF and fb accounts for the contribution from the vasculature. The unknown 

parameters are β= (Δ, fb, A1, A2, λ1, λ2) – Δ is unconstrained but the other components of β 
are constrained to be positive.

For computational reasons, associated with the 2C model fitting, RMSE values are based on 

NR = 50 replicate simulations at each dose. Relative RMSE values, e ipd in (6), are consistent 

across Nd = 5 dose levels (d) and N voxels (i). Average values and standard errors are 

summarized for each of the six parameters (p) - (VB, VD, KD, Ki, MT T, Ki/K1).

ep = 1
NNd

∑
i, d

e ipd  ;   p = 1, 2…, 6   where   e ipd = RMSEipd
2C /RMSEipd

NPRM
(6)

Table 1 presents the comparisons between the NPRM and 2C methods when the source sub-

TACs are generated by a compartmental form (case II) and also when the sub-TACs follow a 

non-parametric form (case I). Results show substantially enhanced performance of NPRM 

when the source is not compartmental and a more similar performance when the source is 

compartmental. Remarkably however, perhaps due to spatial mixing associated with data 

reconstruction, the 2C method does not perform as well for the VB and VD parameters. 

Indeed NPRM is seen to be strongly competitive with the 2C mapping scheme when the 

underlying source is specified in terms of a compartment model structure. At its worst, in the 
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case of Ki/K1, the relative RMSE efficiency of NPRM mapping is 84%. This result is quite 

typical.

2.1.3. Local Error Characteristics of NPRM Mapping: Although the voxel-level 

model in (2) used by NPRM has a linear form, the sub-TACs involved, X = μ1, …, μK , are 

derived by a complex data-adaptive process. Hence the overall error in voxel-level kinetics is 

a function of the uncertainties in the estimation of α-coefficients and the uncertainties in the 

construction of sub-TACs. Intuitively, because the sub-TACs are constructed by modelling 

average time-course data for segments, one might expect that the uncertainties associated 

with the sub-TACs have a minor impact on the error on NPRM voxel-level kinetics. In order 

to justify this intuition, we report on another simulation. Here we used a standard 2D PET-

FDG simulation in which voxel-level kinetics were assessed using both known and unknown 

data-estimated sub-TACs. The 2-D context is used as the segmentation process with 2-D 

data gives rise to more realistic subsets of data defining each sub-TAC. The scanning model 

and source structure are as described in section 4. The statistical relation between the RMSE 

(averaged across voxels) using known and unknown sub-TACs are shown in Table 2. This 

study only considered a single (realistic) dose and was restricted to a modest number of 

replications (NR = 50) - standard errors of simulation estimated quantities of interest do not 

suggest we need any more. The results show that kinetic mapping errors are substantially the 

same regardless of whether or not sub-TACs are known. Thus when analyzing voxel-level 

NPRM kinetic mapping errors, it seems sufficient to focus on error associated with 

determination of voxel-level α-coefficients conditional on known model sub-TACs. We will 

adopt this approach in our analysis of the impact of data combination.

We now focus on what controls NPRM kinetic mapping error. A simplistic linear model 

analysis (Seber; 2009) of the NPRM model (2) would suggest that the RMSE of the kinetic 

summaries should substantially scale with the level of uncertainty in the reconstructed data. 

Thus for a given voxel (i) the error in an estimate of kinetic variable, θ ip, denoted 

RMSEip
NPRM should have a strong relation to the corresponding root-mean-square deviation 

between the reconstructed time-course data (zil) and the true voxel-level time course 

λil − RMSEi
z = 1

NT
∑j = 1

NT zil − λil
2 ≡ σi. We examined this numerically using the 

simulation data used to produce Table 1. The statistical analysis, which incorporated data 

from a range of dose settings, finds

log RMSEip/θip ≈ αp + βp log σi/θip (7)

well-describes the relation between voxel-level errors in kinetics and the local reconstruction 

accuracy of the input data (σi). Model R2-values and β-coefficients are given in Table 3. 

Note that (7) suggests formal mean square error convergence of the NPRM procedure - as 

the reconstruction error diminishes so too does the error in determination of kinetics. The 

rate of convergence, measured by the βp coefficient, is seen to be close to 1 and suggests that 

standard parametric inference asymptotics apply to this situation (Van der Vaart; 2000). A 

similarly strong relation is found between the modelling error associated with the linear 
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model (2), RMSEi
λ = 1

NT
∑j = 1

NT λil − λil
2 ≡ σi

λ, and the RMSE of the kinetic summaries, 

i.e.

log RMSEip/θip ≈ αp′ + βp′  log σi
λ/θip (8)

In simulations this is important as it allows us to use modelling error as a surrogate metric 

for the analysis of errors in individual kinetic variables.

2.2. Multiple Injections and their Combined or Separated Analysis by NPRM

With multiple injections the model in (1) is elaborated to account for the effect of individual 

injections and the separate delay factors that may be associated with measurement of the 

tracer AIFs. This gives

μk = ∑
j = 1

J
Aj ⋅ CIV

(j) tk − Δj   ;   μk = ∑
j = 1

J
Rj ⋆ Cp

(j) tk − Δj   ;   μk = ∑
j = 1

J
F j

⋆ Cp
(j) tk − Δj

(9)

Here the index j relates to individual injections. As with (1), the residue and outflow 

functions can either be modelled using suitable parametric forms (Kadrmas and Hoffman; 

2013; O’Sullivan; 1993; Spence et al.; 1998) or with non-parametric formulations as used by 

(Lan et al.; 2019). Note the non-parametric approach leads to an optimization problem, in 

which only the delay factors Δj enter in a non-linear fashion. This simplifies computation. 

Our interest is in the case where it is possible to consider the separate analysis of kinetics of 

individual injections. In this setting, because there is negligible temporal overlap (spillover) 

between the separate injections, modelling of sub-TACs in the NPRM voxel model can be 

accomplished by separate application of the simple form in (1). Regardless of whether there 

is overlap or not, voxel-level kinetic parameters, say {θp, p = 1,2, … P}, are expressed as 

simple functions of the α-coefficients in (2). Thus θ ip = gp αi  where gp is a (smooth) 

function defined using the estimated residue functions and delay factors for separate 

injections.

If data are combined, coefficients are obtained based on the full time-course for the 

measured data and the sub-TACs. Separate analysis recovers kinetics based on the shorter 

sub-TAC time-course corresponding to individual injections. Now suppose we are interested 

in a kinetic summary variable corresponding to the j’th tracer injection - say θ = g(α). The 

separate analysis estimate, θ j = g αj , is based on fitting (2) using only the j-injection time-

course; the combined estimate, θC = g αC , is based on fitting the full time-course data. Thus 

at the i’th voxel we would map the kinetic parameter associated with g using one of

θ i
j = g αi

j   or  θ i
C = g αi

C (10)

Intuitively, we expect that the combined data estimator will be preferred but it is helpful to 

have a quantitative appreciation of the factors that might be important. The results reported 
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in the paper address this issue via numerical simulation. Before that, we present a simplified 

theoretical analysis that may give some intuition.

2.3. An Approximate Theoretical Analysis of Combined versus Separated Analysis

Table 3 suggests that regular parametric statistical inference theory associated with Gaussian 

approximation applies to the NPRM model coefficient estimates and the derived kinetic 

variables. In light of this it seems reasonable to use Gaussian approximation to develop 

insight into the potential benefits of combined versus separate analysis for multi-injection 

studies. By Gaussian approximation we get the following.

Result 2.1.—If the conditions for Gaussian approximation hold, the combined analysis 
estimator always has lower variance than the separate injection estimator. For a given kinetic 
parameter (θ), the ratio of the MSE of the combined analysis estimate, based on J injections, 

to the MSE of the separate analysis estimate, using only study j, is given by the formula

MSE θC

MSE θ j = σj−2

σ1
−2 + σ2

−2 + … + σJ
−2 (11)

where σj2 is the variance of the kinetic parameter based on data from injection j.

The Appendix provides a theoretical justification for this result. In replicate studies, 

individual scan variances (σj) are identical so the MSE ratio is 1/J, i.e. the percent 

improvement in MSE with the combined analysis is proportional to (J − 1). While the 

combined analysis will always produce better estimates, the amount of improvement will 

depend on the reliability of the other scans involved. (8) indicates that the reliability of 

kinetics for individual scans kinetics is a function of the associated source model error. We 

would anticipate that the study dose and relative sharpness of the AIF, which impact voxel-

level model error, would play a role. Numerical studies will explore this in some detail.

3. Illustration with a Flow-Metabolism Study in a Breast Cancer Patient

The data come from a study conducted on a breast cancer patient prior to surgical resection 

and prior to scheduled neoadjuvant chemotherapy. PET scanning involved dynamic imaging 

with 15O-H2O and 18F-FDG in the same session. 15O-H2O is a tracer used to measure blood 

flow and perfusion - the gold-standard technique for in-vivo measurement of such 

information. 18F-FDG is the most widely used clinical PET tracer. FDG measures 

information about tissue glucose utilization. It is a key marker used in the diagnosis and 

clinical management of several cancers. Details of PET dynamic imaging protocols for H2O-

FDG scanning in breast cancer and reports on the prognostic utility of the derived 

information are given in the earlier reports - see (Mankoff et al.; 2002, 2003; Dunnwald et 

al.; 2008, 2011). For the data we present here, 1302 MBq of 15OH2O in a 1–4 mL volume 

was injected as a bolus and 318 MBq of 18F-FDG in 7–10 mL volume was injected over 2 

minutes with a constant infusion pump. Data were acquired on a GE-Advance scanner using 

a plane-by-plane FBP reconstruction algorithm with corrections for attenuation, scatter, 

deadtime and random events. The 4-D PET data set consists of an imaging volume with N = 
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128 × 128 × 35 voxels and T = 82 (57 for H2O and 25 for FDG) time frames of acquisition. 

Dynamic 15O-H2O images were collected for 8.75 min according to the following 

acquisition sequence (number of time frames and their durations): 1 × 1 min (pre-injection), 

15 × 2 s, 15 × 5 s, 12 × 10 s, 8 × 15 s and 6 × 20 s. The FDG injection and dynamic imaging 

followed H2O. The FDG acquisitions were conducted over 61 minutes according to the 

sequence: 1×1 min (pre-injection), 4 × 20 s, 4 × 40 s, 4 × 1 min, 4 × 3 min and 8 × 5 min.

The data were analyzed using the NPRM technique described in section 2. Arterial input 

functions used were recovered from the left-ventricle (LV) of the heart using the technique 

reported in (O’Sullivan et al.; 2017). Kinetics were mapped using both separate and 

combined analysis of the H2O and FDG data.

This analysis provides voxel-level mapping of H2O blood flow (K1
O, mg/mL/min), FDG 

metabolic rate or flux (Ki
F , mg/mL/min) and metabolism-flow mismatch ratio (Ki

F /K1
O) for 

separate or combined analysis approaches. Results are presented in Figure 3. Coronal planes 

of metabolic parameters demonstrate increased flow and metabolism in the tumour. The 

flow-metabolism mismatch is also seen to be highly elevated in the tumor region - an 

elevated mismatch has been shown to be associated with poor response to chemo-therapy 

and early cancer relapse (Mankoff et al.; 2002). In qualitative terms the flow and mismatch 

maps recovered by separate analysis appear more noisy, the flux maps are not much 

different. To explore these differences more carefully, two regions-of-interests (ROIs) - 

normal breast (335 voxels) and tumour (322 voxels) are extracted, as shown in Figure 3. The 

distribution of metabolic parameters in these two ROIs is presented in boxplots in Figure 3.

We can see the flow distributions in tumour and normal breast are more variable for the 

separate analysis, the standard deviations (SD) of flow from combined and separate analysis 

in 2 ROIs are 0.04 and 0.07 (tumour), 0.014 and 0.018 (normal breast) respectively. The 

additional variability is on the order of 75% and 28.6% in tumour and normal breast. For 

flux, the standard deviations with the two approaches are 0.006 and 0.005 (tumour), 0.0004 

and 0.0003 (normal breast). These differences are small. The variability of mismatch from 

separate analysis is much bigger than the combined analysis in the tumour region - the 

situation is somewhat reversed in the normal region but this could also be due to an 

underestimation of the normal tissue flow in the separate analysis. In light of these results, 

we are motivated to develop a better understanding of the relative statistical behaviour of 

combined and separate analysis of this and similarly structured multiple injection studies.

4. Numerical Experiments

We conducted two sets of experiments, one related to the H2O-FDG study in section 3 and a 

second one relating to repeat H2O activation studies. A schematic for the structure of the 

simulation process is provided in Figure 4. Below we provide details of the setup of the 1-D 

and 2-D simulation models used, the specification for the source distributions in the two 

examples and, finally, the procedure used to compare the performance of the combined and 

separate analysis techniques. FBP and ML reconstructions are both considered in 1D 

simulation studies, but for computational efficiency we restrict the H2O-FDG setup to only 

FBP reconstruction in the 2-D case.
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4.1. Scanning Models

In the 2-D case a standard PET scanning model involving Poisson sampling of a discretized 

(attenuated) parallel-beam Radon transform of the source is used (Kak et al.; 2002; Natterer; 

2001). The imaging domain is the unit square, discretized to an array of dimension 128 × 

128, and the projection domain is the region [ − 2, 2] × [0, π], discretized to a 183 × 181 

sinogram array of distances and angles. For computational reasons numerical experiments in 

2-D only consider direct FBP reconstruction. In 1-D a less familiar Poisson deconvolution 

model is employed. The model is used because the computational efficiencies enable us to 

carry out a sufficient number of replicate studies using both direct and iteratively 

reconstructed data. Full details of the model are given in (O’Sullivan and Roy Choudhury; 

2001). The observed data over a given time-frame is a realization from a projected and 

scaled source. The projection process is given by the product of a fixed attenuation profile (a 
> 0) and the discrete convolution between the scaled source and a kernel κβ (β > 0). The 

kernel acts to smooth the source - its discrete Fourier transform is given by

κν
β = ν −β     for    ν = ± 1, ± 2…N /2.

If y is a realization from the projected and scaled source then the direct reconstruction of y is 

simply obtained

z* = 1
τ ℱ−1 ν β (y/a)ν

where (y/a) is the discrete Fourier transform of the attenuation corrected count data, ℱ−1

represents the inverse transform and τ is the expected total counts (dose) used for scaling. 

Smoothing is achieved by convolving the raw reconstruction z* with a discrete Gaussian 

kernel. The smoothed reconstruction is an analogue of an FBP reconstruction used in PET. 

ML reconstructions are readily obtained in this setting. Standard iteratively re-weighted least 

squares (IRLS) (with positivity constraints) apply. The convolution structure allows such 

iterates to be easily evaluated. Similar to FBP, the raw ML estimator can be smoothed to 

obtain an analogue of the expectation–maximization (EM) reconstruction methods used in 

PET. The simple convolution model captures the essential estimation complexity of PET. 

This is because the reconstruction filter acts like a fractional derivative. By choice of β, it is 

possible to adapt the model so that the behaviour of the reconstruction MSE as a function of 

count rate, is matched to 2-D PET. Experimentation by Gu (Gu; 2021) with the breast FDG 

data in section 3 found that a value of β = 1:35 in the 1-D scanning model worked well. This 

is the setting we use in the studies reported here.

4.2. Source Patterns

The true (target) source is expressed as a linear model with K components.

λ(x, t) = α1(x)μ1(t) + α2(x)μ2(t) + … + αK(x)μK(t) (12)
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In the 2-D case we only consider the H2O-FDG studies. The configuration is matched to the 

real data presented in section 3 - see Figure 5. Spatial patterns correspond to a central slice 

through the tumor region; the temporal patterns including the AIF come from the full data 

set.

The source specification is more abstract in the 1-D case. Figure 6 shows the spatial pattern 

of the α-coefficients and how they are transformed into the measurement domain. This 

aspect is the same for H2O-FDG and the repeat H2O studies. The shape of the AIFs for H2O 

and FDG match those in the breast cancer data. The time-course patterns for the H2O-FDG 

are also adapted from the breast cancer analysis; in the repeat H2O studies, a 1-

compartmental Kety-Schmidt (Kety and Schmidt; 1948) model is used to create patterns 

relating to regions in a normal brain - parameters are given in Figure 6. Figure 7 shows 

observed time course patterns for H2O and FDG from six ROIs in the breast data, together 

with the fit corresponding to the analysis in section 3. The time courses fitted by NPRM are 

used. The simulation uses a range of seven dose levels τ. The range is adapted to produce 

data with a voxel-level noise pattern matched to real data. For the H2O-FDG studies, the 

relative dose of the H2O and FDG injections are also varied. A range of seven dose-ratio 

settings from 16 : 1 to 64 : 1 are examined. The middle dose ratio corresponds to the data in 

section 3. Simulated data, at the middle dose and dose ratio for the H2O-FDG studies, are in 

Figure 8. The simulation noise level is a reasonable match to that seen in the real data. The 

repeat H2O study is calibrated in the same way, but not presented. In repeat H2O studies we 

consider situations in which there are 2, 4, 6 and 8 separate H2O injections. In 1-D studies 

with FBP and ML reconstructed data are reported. All studies, both for the H2O-FDG and 

repeat H2O, are replicated 500 times for each dose and in the H2O-FDG case for each dose-

ratio setting.

4.3. Evaluation of Performance

Our studies use the model MSE characteristics of the estimated source, as a surrogate for 

understanding the MSE characteristics of estimates of the mapped kinetics. The motivation 

for this comes from Table 3 which showed a setting where MSE characteristics of mapped 

kinetics are proportional to the MSE reliability of the underlying source estimate. As 

indicated in Figure 1 the overall scan period, T, is made up of a set of J non-overlapping 

time intervals corresponding to the scanning periods for the separate tracer injections under 

consideration, T = T1∪T2 ⋯∪TJ. If αC is the combined estimate coefficient, the 

corresponding estimated source is λC(x, t) = ∑k = 1
K αk

C(x)μk(t) and the squared error 

assessment is

Se λC, λ = ∫Ωx
∑

j

1
Djλj

2∫Tj
λC(x, t) − λ(x, t)

2
dtdx (13)

where Dj and λj are the durations and maximum intensities for the j′th scan. Integrals are 

evaluated by simple discretization. For the separate scan case, the estimate of the source for 

the j’th time-interval is based on the corresponding coefficients (αj) - i.e. 

λS(x, t) = ∑k = 1
K αk

j (x)μk(t) for t ∈ Tj. In this way an overall assessment for the separate scan 
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analysis is obtained as Se λS, λ . With simulated data, we evaluate the error of combined and 

separated scan estimators for study replicates and by averaging an MSE assessment for the 

source error is obtained. This gives

MSEC = E Se λC, λ     and    MSES = E Se λS, λ (14)

Relative percent improvement is assessed by

%Improvement = MSES − MSEC

MSEC × 100% = MSES

MSEC − 1 × 100% (15)

5. Results

We begin by presenting some sample results for the H2O-FDG and repeat H2O studies. This 

is followed by detailed MSE comparisons, including some associated plots.

5.1. Sample Metabolic Parameters Estimates

In the breast cancer study, H2O and FDG are used to measure blood flow and glucose 

metabolism, respectively. Metabolic parameter comparisons for a single replicate at the 

middle dose and dose-ratio are presented in Figure 9. True parameters are represented by 

black lines. Estimated parameters from combined and separate analysis are shown using 

dashed red and blue lines separately. We can see metabolic estimates from combined 

analysis are closer to the true parameters and show more advantages in H2O study. 

Metabolism estimated from these two approaches are both close to the true values in FDG 

study and difference can be negligible. The quantitation of H2O can get more benefits from 

the combined analysis and these results are also consistent with findings from the real 

dataset in section 3. Similarly, we also show one sample metabolic parameters - flow and 

blood volume (VB) at the middle dose in a repeat H2O study (H2O*) in Figure 9. The 

combined analysis is seen to achieve improvements in both situations.

5.2. MSE Performance Comparisons

5.2.1. H2O-FDG Studies: The MSE in (14) as the function of the dose and dose ratio 

from combined and separated approach in 1-D and 2-D simulations are presented in Table 4. 

Figure 10 presents the information graphically. MSEs from combined and separated analysis 

decrease with the dose and increase with relative dose ratio. In 1-D simulation studies, the 

improvements are 20.85% and 11.65% from FBP and ML reconstruction at the reference 

dose and middle dose-ratio level - matched to the real dataset and improvement is smaller 

based on the ML reconstructed data. Benefits by combined approach in 2-D simulation with 

FBP reconstruction is similar to 1D FBP performance.

5.2.2. Repeat H2O Studies—The quantitative improvements for different numbers of 

injections at seven dose levels from two reconstruction algorithms are presented in Table 5. 

We can see, the number of injections has a strong effect. See also Figure 11. These results 

show lower doses and more injections have higher MSEs. Dramatically smaller 
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improvements are seen with ML. This may be because the bandwidth of smoothing process 

used in reconstruction is adapted based on the total update scan so there is a more limited 

impact on individual time frames; the ML procedure constrains the reconstruction to be 

positive and in doing so implicity smooths the voxel-level time-course data.

6. Statistical Analysis of Simulation Results

The highly structured nature of the MSE patterns in Figure 10 and 11, invites a more refined 

interpretation.

6.1. MSE values scaled by Image Data Accuracy

The overall accuracy of the input data is assessed by σz
2 = 1

N ∑iσi
2 - where σi was introduced 

in (7). While we can scale MSE values by this, a simpler (and statistically equivalent) 

procedure is to scale by the voxel-by-voxel error in the total-uptake reconstruction. We label 

this σz •
2 . For the H2O-FDG study, the scaled values are in Figure 12.

These data are well described by the model

log MSE /σz •
2 a0 + a1I + a2DR (16)

where I is the method indicator for combined or separate analysis and DR is the dose ratio. 

Table 6 reports estimates values for these coefficients. Note a1 corresponds to about 21% 

(e0.19 − 1) and 12% (e0.11 − 1) improvements at middle dose-ratio with the FBP and ML 

reconstruction in 1-D simulation studies. The results from 2D simulation have the similar 

performance.

A similar analysis of the scaled MSE data from the repeat H2O study, leads to a model with 

an interaction term:

log MSE /σz •
2 β0 + β1I + β2No . Studies + β3 I × No . Studies (17)

The scaled MSE values are in Figure 13 with the model results in Table 7. The 

improvements of combined analysis in the repeat H2O studies with two injections are 55% 

and 15% for the FBP and ML reconstructed data, respectively. The impact of dose, although 

significant, is not substantial in comparison to the overall impact of dose on MSE.

6.2. Analysis of the Uptake MSE as a function of Dose

Analysis of MSE of total uptake from FBP and ML reconstruction as a function of dose 

gives a 2-factor statistical model:

log σz •
2 γ0 − γτlog(τ) + γMM (18)

where τ is dose level, M is dose ratio (DR) for H2O-FDG study and number of injections for 

repeat H2O studies, respectively. The estimated coefficients γ0, γτ and γM are shown in 

Table 8. We can see γτ is similar in different studies and reconstruction methods. The 
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intercept - γ0 in FBP is always bigger than ML, which means uptake based on ML has 

smaller errors. Table 8 shows that the main effect of dose is described by τ−.42 - this is 

consistent with previous asymptotic analyses of ML and FBP in PET, e.g. (O’Sullivan; 

1995). The fact that the rate of convergence is so similar between the 1-D and 2-D 

simulation models is a good indicator that the 1-D PET framework captures the estimation 

complexity of 2-D PET.

The rate of convergence analysis allows us to develop a relation between percent 

improvements obtained by combined data analysis and the equivalent precent increase in 

dose that would be needed to ensure that the separate data matched the benefits of combined 

analysis. Figure 14 presents this equivalence. In light of Table 8, which gives a dose rate 

coefficient on the order of 0.42 for ML and FBP, a 10% improvement in MSE obtained by 

combined data analysis would require a 25% increase in dose if separate data analysis 

methods were used.

7. Discussion

We have presented a combination of theoretical intuition, real data and numerical simulation 

to examine the benefits of combined NPRM analysis of multiple injection studies in PET. 

This work has been fully motivated by practical imaging protocols. The results demonstrate 

that there are clear gains in MSE performance by a combined analysis approach. With H2O-

FDG studies the MSE improvement is around 21% on the same order of the regional 

variance comparisons found in section 3. For the repeat H2O studies, improvements increase 

in accordance with the factor (J − 1) indicated by the theory in section 2. In general 

improvements are seen to be a function of intra-injection dose-ratio but are substantially 

independent of dose for FBP reconstructed data. In the ML case, the impact of dose is 

apparent with combined analysis leading to greater improvements at higher doses. Even 

though the theoretical analysis looks at the asymptotic situation in which variance is the 

main contributor to the error, the predictions from that theory provide good guidance on the 

nature of benefits that would be associated with combined analysis.

Our work has exclusively focused on parameter mean square error performance (MSE and 

RMSE). In kinetic mapping, the average accuracy of estimation of the target parameters, 

measured by the RMSE, is a natural metric and is used extensively in quantifying estimation 

error in many settings. Nevertheless, a number of other metrics could also be of interest. 

Data-fit or predictive error, with suitable adjustment for model flexibility, might also be 

considered. In addition, criteria based on parameters defined by functions of the kinetics 

variables associated with individual tracers would also be of interest. MSE improvements 

associated with combined analysis of ML-reconstructed data are smaller than those achieved 

with FBP-reconstructed data. This phenomenon may well have to do with the implicit 

regularization that ML achieves in low-count frames. Our studies used a common bandwidth 

for all injections. While this gives some assurance that the resolution of each scan is the 

same for FBP; it is not clear, given the implicit regularisation achieved by imposition of 

positivity, if this is necessarily the case for ML. The effect is probably most significant in the 

repeat studies with many injections. In this setting the total uptake bandwidth selection will 

lead to very noisy individual scans. The bandwidth selection process ensures voxel-level 
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FBP time-course data are inherently noisier than in ML so the analysis of kinetics for FBP 

data can end up being worse than the same analysis of ML. The issue is apparent in Table 5. 

An obvious way to address this issue could be to select bandwidths for individual injections 

separately. This may allow the noise characteristics of FBP to be more comparable to ML 

(O’Sullivan; 1995; O’Sullivan and Roy Choudhury; 2001). The issue merits further 

investigation - (Gu and O’Sullivan; 2021) reports on some initial work in this direction.

For computational reasons we made extensive use of a 1-D scanning model in this work. 

This allowed comprehensive evaluation of estimators with iteratively reconstructed ML data 

over a range of count rates and many replicates. While FBP is used very little in practice, we 

included it in simulations. The relation between 1-D and 2-D FBP results might be used as a 

vehicle to understand how combined analysis methods of 1-D ML data might perform in a 

2-D or 3-D setting. Our simulations here demonstrate that combined analysis will 

significantly improve the accuracy of NPRM kinetic mapping in multiple injection studies. It 

will be important to see how these results translate into 3-D and especially for the next 

generation total-body PET scanners (Badawi et al.; 2019; Karp et al.; 2020). In this context 

the emerging techniques for efficient bootstrapping of 3-D multi-frame PET studies 

(Kucharczak et al.; 2018; Gu et al.; 2019; Huang et al.; 2020) may facilitate a more direct 

practical assessment of the benefits of combined analysis in a given patient, without the need 

for highly sophisticated step-by-step representations of the scanner emission measurements 

and reconstruction processes.
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Appendix:: Derivation of Formula in (11)

Gaussian approximation of estimates of α-coefficients means that as any voxel we can 

assume

αj N α, Σj (19)

where Σj is a covariance matrix associated with the weighted least squares estimation 

process. Within the Gaussian framework αj is a sufficient statistic, i.e. it captures the full 

information about α based on the j’th can data. As a result the optimal (maximum-

likelihood) combined estimator of α is a matrix-weighted average of the individual scan 

estimators, i.e.

αC = ∑
j*

∑j*
−1

−1
∑

j
∑j

−1αj     ;     αC N α, ∑C (20)

where ∑C = ∑1
−1 + … + ∑J

−1 −1
. We can write ∑C as ∑j

1/2 I + Bj
−1∑j

1/2. where
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Bj = ∑
j* ≠ j

∑j
1/2∑j*

−1∑j
1/2

(21)

Clearly Bj is symmetric and positive definite. Thus if λj is the smallest eigenvalue of Bj, 

then for any vector v, we have

v′ I + Bj
−1v ≤ 1 + λj

−1v′v (22)

Since λj ≥ 0, it follows that for any parameter (θ) defined by a linear combination θ = ξ′α

E θ j − θ
2

E θC − θ
2 =

V ar θ j

V ar θC ≥ 1 + λj ≥ 1 (23)

i.e. the combined estimator will always have a smaller MSE than the single scan estimate.

More generally suppose that Gaussian approximation applies directly to the kinetic 

parameter, θ = g(α). This might follow by first-order Taylor series expansion of g(α) about α 
(Van der Vaart; 2000). With this we would have

θ j N θ, σj2     wℎere  σj2 = v′∑jv (24)

and v is the gradient of g evaluated at α. As in (19), θ j is now (to within the approximation) 

sufficient for estimation of θ based on the information acquired in the j’th scan. The optimal 

combined scan estimator is a weighted average of these estimates

θC =
σ1

−2θ1 + σ2
−2θ2 + … + σJ

−2θJ
σ1

−2 + σ2
−2 + … + σJ

−2 (25)

Thus θC N θ, σC
2  with σC

2 = 1
σ1

−2 + σ2
−2 + … + σJ

−2 . The result in (11) follows from this.
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Figure 1: 
Multi-Injection Dynamic PET Studies. A: Separate Analysis; B: Combined Analysis.
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Figure 2: 
Non-parametric residue mapping (NPRM) process.

Gu et al. Page 23

Phys Med Biol. Author manuscript; available in PMC 2021 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Estimates of flow, flux and mismatch in a H2O-FDG breast cancer study from combined and 

separate analysis. Row A: Combined Analysis; Row B: Separate Analysis; Row C: ROI 

Analysis.
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Figure 4: 
Diagram of Simulation Process
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Figure 5: 
Source distribution, λxt = ∑k = 1αk(x)μk(t) for 2D simulations. Row 1: α map and 

normalized time courses (μ) for H2O and FDG. Row 2: True parametric images for flow, 

flux and mismatch.
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Figure 6: 
1-D phantom (mixing coefficients - αk’s) and their projections for H2O-FDG (a,b) and 

repeat H2O studies (c,d). x-axis is location (1–128) and y-axis is coefficient. Different colors 

represent different ROIs. Values of the Kety model parameters (K1, K1/k2) used to create 

simulated time courses are given in the legends for (c) and (d).
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Figure 7: 
Fitted time courses and real data for six kinds of tissues - spleen, tumour, myocardium, 

normal breast, liver and left ventricle (LV). Red and blue lines are fitted time courses for the 

H2O and FDG studies, respectively. Black points are real data. x and y axis are time 

(minutes) after injection and activities (MBq/cc).
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Figure 8: 
True time courses and simulated image data at middle dose and dose ratio for same six kinds 

of tissues. Red and blue lines are true time courses for H2O and FDG studies in simulation, 

respectively. Grey points are simulated data. x and y axis are time (minutes) after injection 

and activities (MBq/cc).
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Figure 9: 
Sample metabolic estimates (at a middle dose setting) based on the FBP and ML 

reconstruction. x-axis gives location (1–128); y-axis is values of metabolic parameters in 1-

D simulations. See Figure 6 for location of different structures. Plots (1) and (2) show flow 

and flux in H2O-FDG study; (3) and (4) show flow and blood volume (VB) in the repeat 2 

H2O studies.
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Figure 10: 
MSE of combined (solid) and separate (dashed) analysis as a function of dose and dose ratio 

in H2O-FDG study. Different colors represent different dose ratios.
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Figure 11: 
MSE of combined and separate analysis in multiple H2O studies.
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Figure 12: 
MSE values scaled by image data accuracy for combined (solid) and separate (dashed) 

analysis as a function of dose and dose ratio in H2O-FDG study.
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Figure 13: 
MSE values scaled by image data accuracy for combined (solid) and separate (dashed) 

analysis as a function of dose and number of studies in the repeat H2O setting.
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Figure 14: 
Estimated relation between MSE improvements and study dose. Calculation based on (18) 

with different colors corresponding to a range of possible γτ values.
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Table 1:

Relative Performance (6) of NPRM and 2C kinetic mapping in a PET-FDG setting. Based on a 1-D simulation 

model with source sub-TACs in case I matched to real Breast Cancer data Figure 8 and to their best-fitting 1C 

model fit in case II. Data reconstruction by both direct (FBP) and iterative (ML) methods.

Parameters (p) VB VD KD Ki MTT Ki/K1

I FBP 1.64 ± 0.02 1.45 ± 0.03 1.13 ± 0.02 1.06 ± 0.01 1.60 ± 0.03 1.60 ± 0.05

ML 1.78 ± 0.02 1.43 ± 0.03 1.19 ± 0.02 1.05 ± 0.01 1.51 ± 0.03 1.65 ± 0.05

II FBP 1.32 ± 0.01 1.36 ± 0.02 0.92 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 0.84 ± 0.02

ML 1.38 ± 0.02 1.31 ± 0.02 0.97 ± 0.03 0.96 ± 0.01 0.94 ± 0.01 0.85 ± 0.02
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Table 2:

Impact of data-adaptive sub-TAC selection in NPRM on Kinetic Mapping errors. Statistical model: 

RMSEp
unknown ≈ βp RMSE pknown. Results based on a 2D PET-FDG simulation with FBP reconstruction. 

Standard errors for estimates are the order of 0.01.

Parameters (p) VB VD KD Ki MTT Ki/K1

β 0.99 0.97 0.82 1.01 0.92 1.03

R2 0.99 0.97 0.93 0.97 0.90 0.94
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Table 3:

Voxel-level errors in NPRM kinetics as a function of the local reconstruction (σi) and modelling (σi
λ) errors - 

c.f. (7),(8). Results based on 1D- PET-FDG simulation.

Parameters (p) VB VD KD Ki MTT Ki/K1

FBP β 0.82 1.03 0.82 0.95 0.99 0.97

R2 0.96 0.93 0.88 0.99 0.99 0.97

ML β 0.78 1.02 0.88 0.97 0.99 0.98

R2 0.78 0.88 0.87 0.98 0.98 0.96

FBP β′ 0.86 1.03 0.88 0.97 0.99 0.99

R2 0.98 0.92 0.92 0.99 0.98 0.96

ML β′ 0.77 1.01 0.89 0.98 0.99 0.99

R2 0.83 0.88 0.88 0.98 0.98 0.96
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Table 4:

Combined analysis improvements (15) by dose level/ratio for H2O-FDG study.

Dose Ratio╲Dose 0.3 0.5 0.7 1 1.5 2.2 3.2

(a) FBP (1D)

16 : 1 16.97 17.12 17.37 18.01 18.71 19.25 19.79

20 : 1 17.67 17.60 18.55 19.13 19.38 20.10 19.70

25 : 1 18.13 18.05 18.94 19.09 19.95 20.85 21.17

32 : 1 20.10 19.78 19.47 20.85 21.35 21.38 22.34

40 : 1 20.91 20.80 21.16 22.20 22.79 23.44 23.75

51 : 1 23.06 23.11 23.94 24.30 25.23 25.27 26.07

64 : 1 25.08 25.93 26.57 27.22 27.26 27.99 28.86

(b) ML (1D)

16 : 1 8.23 8.91 9.19 10.44 10.77 12.34 12.97

20 : 1 8.39 8.74 9.40 10.81 11.29 12.80 13.38

25 : 1 8.55 9.08 9.55 10.45 11.84 13.27 14.81

32 : 1 8.87 10.18 10.38 11.65 11.64 13.76 14.88

40 : 1 8.98 10.75 10.81 12.11 12.33 13.92 15.65

51 : 1 10.55 11.42 11.60 12.76 13.92 15.50 16.05

64 : 1 10.71 12.35 12.69 13.61 15.06 16.70 17.23

(c) FBP (2D)

16 : 1 12.98 13.80 13.73 13.30 12.82 14.21 14.17

20 : 1 13.83 13.26 12.75 14.02 13.82 13.28 13.08

25 : 1 14.93 16.23 15.38 15.19 14.89 16.78 14.30

32 : 1 16.75 15.74 17.37 16.60 16.31 15.65 15.26

40 : 1 16.21 17.72 16.19 17.85 17.87 17.82 17.10

51 : 1 17.39 19.27 18.33 20.74 19.71 19.29 18.93

64 : 1 23.42 21.59 21.16 19.95 22.55 21.33 21.08
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Table 5:

Combined analysis improvements (15) in multiple H2O studies at 7 dose levels.

No.Studies╲Dose 0.3 0.5 0.7 1 1.5 2.2 3.2

(a) FBP

2 45.69 46.76 46.67 46.54 48.39 48.49 49.48

4 125.91 129.36 133.47 136.76 133.89 140.95 137.81

6 208.94 211.81 214.03 219.74 222.75 226.32 225.94

8 284.02 283.77 297.29 293.94 304.76 306.66 314.65

(b) ML

2 9.51 10.17 11.21 12.14 13.66 15.19 17.15

4 18.31 20.55 23.44 26.02 28.72 31.48 35.92

6 23.67 26.53 29.95 33.94 37.92 42.47 48.95

8 27.86 31.05 35.06 39.93 45.60 51.66 58.28
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Table 6:

Modelling Scaled MSE in the H2O-FDG study - c.f. (16).

a0 a1 a3

FBP(1D) −6.29 ± 0.03 0.19 ± 0.04 1.40 ± 0.04

ML(1D) −6.17 ± 0.03 0.11 ± 0.04 1.43 ± 0.04

FBP(2D) −6.10 ± 0.03 0.15 ± 0.04 1.26 ± 0.04
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Table 7:

Modelling Scaled MSE in the repeat H2O study, see (17).

β0 β1 β2 β3

FBP 1.80 ± 0.03 0.44 ± 0.04 −0.45 ± 0.01 0.32 ± 0.02

ML 2.23 ± 0.03 0.14 ± 0.04 −0.34 ± 0.02 0.07 ± 0.02
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Table 8:

MSE characteristics of reconstructed data in H2O-FDG and H2O studies (H2O*) based on FBP and ML. 

Analysis is based on equation (18).

γ0 γτ γM

FBP(1D)

H2O 2.91 ± 0.01 0.42 ± 0.01 −0.20 ± 0.01

FDG 4.41 ± 0.02 0.42 ± 0.03 −1.41 ± 0.04

H2O-FDG 4.75 ± 0.02 0.42 ± 0.03 −1.10 ± 0.04

H2O* −1.71 ± 0.05 0.44 ± 0.04 0.71 ± 0.03

ML(1D)

H2O 2.78 ± 0.01 0.42 ± 0.01 −0.16 ± 0.01

FDG 4.30 ± 0.02 0.43 ± 0.03 −1.40 ± 0.04

H2O-FDG 4.65 ± 0.02 0.43 ± 0.03 −1.06 ± 0.04

H2O* −1.85 ± 0.05 0.43 ± 0.04 0.72 ± 0.03

FBP(2D)

H2O −2.21 ± 0.01 0.44 ± 0.01 0.03 ± 0.02

FDG −2.15 ± 0.01 0.37 ± 0.01 −0.03 ± 0.01

H2O-FDG −2.33 ± 0.01 0.42 ± 0.01 −0.05 ± 0.02
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