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Background: The purpose of this study was to investigate the role of CT radiomics
features combined with a support vector machine (SVM) model in potentially differentiating
pelvic rhabdomyosarcoma (RMS) from yolk sac tumors (YSTs) in children.

Methods: A total of 94 patients with RMS (n = 49) and YSTs (n = 45) were enrolled. Non-
enhanced phase (NP), arterial phase (AP), and venous phase (VP) images were retrieved
for analysis. The volumes of interest (VOIs) were constructed by segmenting tumor
regions on CT images to extract radiomics features. Datasets were randomly divided
into two sets including a training set and a test set. In the training set, the least absolute
shrinkage and selection operator (LASSO) algorithm was used to screen out the optimal
radiomics features that could distinguish RMS from YSTs, and the features were
combined with the SVM algorithm to build the classifier model. In the testing set, the
areas under the receiver operating characteristic (ROC) curves (AUCs), accuracy,
specificity, and sensitivity of the model were calculated to evaluate its diagnostic
performance. The clinical factors (including age, sex, tumor site, tumor volume, AFP
level) were collected.

Results: In total, 1,321 features were extracted from the NP, AP, and VP images. The
LASSO regression algorithm was used to screen out 23, 26, and 17 related features,
respectively. Subsequently, to prevent model overfitting, the 10 features with optimal
correlation coefficients were retained. The SVM classifier achieved good diagnostic
performance. The AUCs of the NP, AP, and VP radiomics models were 0.937 (95% CI:
0.862, 0.978), 0.973 (95%CI: 0.913, 0.996), and 0.855 (95%CI: 0.762, 0.922) in the training
set, respectively, which were confirmed in the test set by AUCs of 0.700 (95% CI: 0.328,
0.940), 0.800 (95% CI: 0.422, 0.979), and 0.750 (95% CI: 0.373, 0.962), respectively. The
difference in sex, tumor volume, and AFP level were statistically significant (P < 0.05).

Conclusions: The CT-based radiomics model can be used to effectively distinguish RMS
and YST, and combined with clinical features, which can improve diagnostic accuracy and
increase the confidence of radiologists in the diagnosis of pelvic solid tumors in children.
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BACKGROUND

Rhabdomyosarcoma (RMS) is a malignant tumor originating
from primitive mesenchymal cells that have the potential to
differentiate into striated muscle cells. RMS is the most common
soft tissue sarcoma in childhood (1), and it is also the third most
common extracranial solid tumor in children, behind
neuroblastoma and nephroblastoma (2). The clinical
manifestations and laboratory tests of the disease lack of
specificity, and there are few radiology reports about RMS (3,
4). Furthermore, RMS has the general radiological appearance of
soft tissue tumors, making it difficult to distinguish from other
soft tissue malignancies (4). Therefore, it is difficult for
radiologists to diagnose RMS correctly before surgery. During
the course of routine radiology diagnosis, 54% (20/37) of RMS
cases in this study were misdiagnosed as yolk sac tumor (YST) or
were difficult to distinguish from YST. RMS in the pelvis of
children can be misdiagnosed as YST, which is the most common
tumor among pelvic germ cell tumors (5). If a pelvic mass is
present, RMS should be considered only when a laboratory
examination of alpha fetoprotein (AFP) is used to exclude the
mass as a germ cell tumor. At present, biopsy is the only way to
confirm the diagnosis of RMS, but only a small part of the tissue
can be sampled, and biopsy is invasive, which may lead to
complications for some patients. Although RMS and YST are
both malignant tumors, RMS has high rates of recurrence and
malignant transformation and a poor prognosis (6). There are
some differences in the treatment of the two tumors. YSTs are
more sensitive to preoperative neoadjuvant chemotherapy than
RMS, which are mainly treated by neoadjuvant chemotherapy
combined with the surgery. RMS are mainly treated by surgery
combined with postoperative adjuvant chemotherapy. Therefore,
studies on new radiological methods to effectively identify the
two tumors are essential for accurate treatment and assessments
of patient prognosis.

In 2012, the Dutch scholars Lambin et al. (7) first proposed
“radiomics,” which can convert traditional radiological images
into data that can be mined. The extracted high-throughput
radiomics features can quantify the spatial-temporal heterogeneity
of tumor tissue and provide more objective information beyond
visual evaluations. In addition, machine learning has been
introduced for further statistical analysis to achieve a more
accurate diagnosis or prediction model. In recent years, as a
non-invasive and reproducible radiological analysis method,
radiomics has been extensively applied for adult diseases (8–14).
Compared with the radiomics study of adult diseases, reports of
radiomics in children’s diseases are rare. MRI-based radiomics has
value in the diagnosis and differential diagnosis of posterior fossa
tumors in children (15–17).With regard to radiomics of children’s
abdominal tumors, at present, there is only one study (18), which
found that histogram parameters (90th percentile of D *, mean
value of f, etc.) based on MRI with intravoxel incoherent motion
diffusion-weighted imaging (IVIM-DWI) can help to distinguish
retroperitoneal neuroblastoma from nephroblastoma in children.
This study is the first to apply CT-based radiomics to differentiate
pelvic RMS tumors from YSTs in children. To the best of our
Frontiers in Oncology | www.frontiersin.org 2
knowledge, this has not been reported in any published
radiology study.
METHODS

Patients
This study was approved by the Ethics Committee of the
Children’s Hospital Affiliated with Chongqing Medical
University, and the requirement for written informed consent
was waived. The medical record management system and
radiology picture archiving and communication system
(PACS) of our department were searched from January 2013
to March 2020, and 94 patients with RMS (n = 49) and YST (n =
45) were recruited according to the inclusion and exclusion
criteria. The inclusion criteria were as follows: 1) patients
underwent abdominal contrast-enhanced CT less than 2 weeks
before surgery, and the CT images were clear and usable; 2)
pediatric patients with pathologically proven pelvic RMS or YST;
and 3) on CT, the tumors appeared as a solid mass. The exclusion
criteria were as follows: 1) patients with mixed YST, which
contained teratoma (calcifications and adipose tissue)
components (5) and 2) patients with bladder RMS
(characteristic CT manifestations).

CT Examination
All RMS and YST patients underwent abdominal three-phase CT
scans, and non-enhanced phase (NP), arterial phase (AP), and
venous phase (VP) images were acquired. CT examination was
performed using a LightSpeed VCT 64-slice CT (GE Healthcare,
USA) scanner. The scan extended down to the level of the lower
margin of the pubic symphysis. The CT acquisition parameters
were as follows: tube voltage of 120 kV, tube current of 200 mAs,
pitch of 0.984:1, slice thickness of 5.0 mm, and slice interval of
5.0 mm. After conventional non-enhanced scanning, the
contrast agent iohexol (350 µg/ml, 1.5 ml/kg) was injected into
the elbow vein through a high-pressure syringe at a flow rate of
1–3 ml/s. The AP and VP images were obtained at 25–30 and 65–
70 s, respectively.

Tumor Segmentation and Image
Preprocessing
The lesions were manually delineated on all slices using a
radiomics analysis platform [Radcloud, Huiying Medical
Technology (Beijing, China) Co., Ltd.] (Figure 1). Two
radiologists (with over 5 and 10 years of diagnostic experience)
delineated and reviewed the regions of interest (ROIs) of the NP,
AP, and VP images, and the computer fused the two-
dimensional ROIs of the tumor to obtain the three-
dimensional volume of interest (3D VOI) of the tumor.

To minimize CT intensity changes and obtain more stable
radiomics features, we normalized the intensity of the image
using the following formula (where x represents the original
intensity; f(x) represents the normalized intensity; m indicates the
average value; s refers to variance; and s is an optional scaling
ratio, which has been set to 1 by default).
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f (x) =
s(x − mx)

sx

Feature Extraction and Standardization
We used Python software (PyRadiomics, v2.2.0) for feature
extraction. A total of 1,321 quantitative radiomics features
were extracted from the VOIs based on NP, AP, and VP
images and could be classified into two categories as follows: 1)
first-order statistics, such as peak value, mean value, and
variance, which were used to quantitatively describe the
distribution of voxel intensity on CT images and 2) texture
features, such as gray level cooccurrence matrix (GLCM), gray
level run length matrix (GLRLM), and gray level size zone matrix
(GLSZM), which were used to quantify the heterogeneity of the
selected area. In addition, a variety of filters, such as the
logarithm, exponential, gradient, square, square root, local
binary patterns (LBPs), and wavelet (including wavelet-LHL,
wavelet-LHH, wavelet-HLL, wavelet-LLH, wavelet-HLH,
wavelet-HHH, wavelet-HHL, and wavelet-LLL), were used to
calculate the first-order statistics and texture features of the
transformed images (11). Moreover, before feature selection,
the feature values were standardized to [0, 1] to avoid features
with a large value interval dominating features with a small value
interval (19).

Feature Selection and Model Construction
The study cohort was randomly divided into two subsets, a
training set and testing set, in a proportion of 9:1. First, to reduce
the model redundancy, the least absolute shrinkage and selection
operator (LASSO) method was used to extract the effective
feature values that were closely related to the difference
Frontiers in Oncology | www.frontiersin.org 3
between RMS and YSTs in the training set. Then, to avoid
overfitting the model, the 10 most valuable features were
screened out by the size of the feature correlation coefficient.
Finally, a support vector machine (SVM) model was established
based on the extracted optimal features, and the prediction
model was verified in the testing set.

Statistical Analysis
Statistical analysis was performed using Python software
(PyRadiomics, v2.2.0) and SPSS (Version 22.0, IBM). Using the
pathological results as the gold standard, we calculated the
sensitivity and specificity of the SVM model, plotted the receiver
operating characteristic (ROC) curve, and calculated the area under
the ROC curve (AUC), thus evaluating the prediction performance
of the model.

The chi-square test or Fisher’s exact test were used to
compare the differences in count data between the two groups,
and the independent samples t-test or a non-parametric test were
used to compare the differences in measurement data. A value of
P < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
A total of 94 patients were enrolled in this study. The 49 patients
in the RMS group included 21 males and 28 females, aged 0.5 to
11.7 years, with an average age of 3.9 ± 2.6 years. The tumor sites
of the RMS patients included 7 cases of tumors in the perianal
area or sacral tail, 4 cases of tumors in the vagina, and 38 cases of
tumors in the pelvic (abdominal) cavity. There were 45 patients
A B

D E F

C

FIGURE 1 | Examples of manual segmenting and contouring of regions of interests (ROIs) of rhabdomyosarcoma (RMS) and yolk sac tumor (YST). Outline of the
ROI on one slice of an RMS on non-enhanced phase (NP) (A), arterial phase (AP) (B), and venous phase (VP) (C) images; outline of the ROI on one slice of a YST on
NP (D), AP (E), and VP (F) images.
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in the YST group, including 3 males and 42 females, aged 0.4 to
12 years, with an average age of 5.4 ± 4.3 years. The tumor sites of
YST patients included 12 cases of tumors in the perianal area or
sacral tail, 5 cases of tumors in the vagina, and 28 cases of tumors
in the pelvic (abdominal) cavity. The basic clinical data and
comparison results of the two groups of patients are shown in
Table 1. The differences in age and tumor location between the
two groups were not statistically significant (P > 0.05), but the
difference in sex, tumor volume, and AFP level were statistically
significant (P < 0.05). The patient characteristics of the training
and testing sets are shown in Table 2, and there were no
significant differences between the two cohorts.

Feature Extraction and Selection
A total of 1,321 radiomics features were extracted from each
patient’s NP, AP, and VP images. The LASSO algorithm was
used to reduce the dimensionality of the above high-dimensional
features based on the optimal parameters (Figure 2), and 23, 26, and
17 related features were screened from the images, respectively.
However, to prevent SVM model overfitting, the 10 features with
the highest correlation coefficients were retained (Table 3). These
features were statistical features of intensity and texture features, and
four statistical features of intensity and six texture features were
selected from the NP images, including first order, GLSZM, GLDM,
and GLRLM. Four statistical features of intensity and six texture
features were selected from the AP images, including first order,
GLSZM, GLCM, and GLRLM, and six statistical features of
intensity and four texture features were selected from the VP
images, including first order, GLSZM and GLRLM.
Frontiers in Oncology | www.frontiersin.org 4
Diagnostic Performance of Radiomics
These 10 selected radiomics features were used to establish the
SVM model, which was evaluated by ROC curves. The SVM
model achieved good classification performance for
differentiating RMS from YSTs. The AUCs of the NP, AP, and
VP radiomics models were 0.937 (95% CI: 0.862, 0.978), 0.973
(95% CI: 0.913, 0.996), and 0.855 (95% CI: 0.762, 0.922) in the
training set, respectively, which were confirmed in the test set by
AUCs of 0.700 (95% CI: 0.328, 0.940), 0.800 (95% CI: 0.422,
0.979), and 0.750 (95% CI: 0.373, 0.962), respectively (Figure 3).
The accuracy, sensitivity, specificity, and AUC of the radiomics
model for each CT phase are shown in Table 4.
DISCUSSION

Occult tumors located in the basin are difficult to locate on CT
images in the presence of large tumors occupying the entire
pelvic cavity. RMS comprises a group of highly heterogeneous
malignant tumors that can grow anywhere in the body but
mainly occur in the retroperitoneal and genitourinary system
in the pelvis in children (20). YST is the most common type of
germ cell tumor of the pelvis of children. Simple YST is the most
common form, mainly originating from the gonads (testes and
ovaries), but other types of extragonadal YST can occur in the
pelvis, sacral tail, and vagina. (21). The tumor locations of RMS
and YSTs partially overlap, and these tumors have similar
imaging manifestations, including larger solid tumors
occupying the pelvis, with little calcification and hemorrhaging,
abundant blood vessels in the AP, and progressive enhancement
(21–23). Although some studies have summarized imaging
features of RMS, its manifestations still lack specificity (4, 20).
Laboratory examination of AFP level is an important indicator
for differentiating RMS from YST. In this study, there is
significant differences in AFP levels between the two tumors. It
is necessary to combine clinical examinations and AFP level to
distinguish pelvic germ cell tumors to improve the diagnostic
accuracy of RMS.

In recent years, with the development of precision medicine,
radiomics has developed rapidly.

Radiomics uses many automatic data characterization
algorithms to convert images of areas of interest into
quantitative high-throughput feature values. These quantitative
features may not be perceivable by the human eye and can reflect
the biological information of tumors, such as cell morphology
and molecular and gene expression (24). Radiomics provides
non-invasive information for diagnosis, differential diagnosis,
staging, efficacy evaluation, and prognosis of tumors. Among
adult diseases, reports of CT radiomics are more common,
including in the differential diagnosis, staging and grading of
pancreatic tumors (12), renal cell carcinoma (11), lung cancer
(9), and gastric cancer (14). Reports of CT radiomics in children
are lacking. In this study, radiomics was combined with machine
learning to extract and select quantitative radiomics features
derived from NP, AP, and VP CT images of the lesion. Finally, 10
features were selected from each phase as important predictors of
TABLE 1 | Clinical data of patients with rhabdomyosarcoma (RMS) and yolk sac
tumors (YST).

Patient characteristics RMS group YST group P value

n 49 45
Age (x ± s, median, years) 3.9 ± 2.6, 2.5 5.4 ± 4. 3, 4 0.051
Gender 0.001
Male 21 4
Female 28 42
Tumor site 0.243
Perianal area or sacral tail 7 12
Vagina 4 5
Pelvic (abdominal) cavity 38 28
Tumor volume (mm3) 211,019.24 370,145.75 0.001
*AFP (x ± s) 0.25 ± 0.27 4.076 ± 0.91 <0.001
RMS, rhabdomyosarcoma; YST, yolk sac tumor). *The data of AFP were log10
transformed to ensure the normality.
TABLE 2 | Patient characteristics in the training and testing sets.

Patient characteristics Training cohort Testing cohort P value

Age (median) 6 6 0.462
Gender 0.577
Male 21 3
Female 64 6

Pathology 0.831
RMS group 44 5
YST group 41 4
November 2020 | Volume 10 | Article 584272
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radiological characteristics to construct the model. Among the
selected features, the texture features were obviously superior to
the first-order statistical features, and among the texture features,
each phase contained GLSZM features. The GLSZM records the
number of occurrences of case where j and i elements are
adjacent in the two-dimensional image area and describes the
distribution of similar intensity area, which is a measure of the
uneven gray level of the tumor area. The GLSZM has a significant
value in characterizing texture consistency, aperiodicity, and
speckle texture, indicating differences in texture uniformity
between RMS and YSTs.
Frontiers in Oncology | www.frontiersin.org 5
The results showed that radiomics features can distinguish
between RMS and YSTs. The classification efficiency of AP CT
scans was better than that of the VP and NP scans. The AUC of
the AP radiomics model was 0.973 (95% CI: 0.913, 0.996) in the
training set, which was confirmed in the test set with an AUC of
0.800 (95% CI: 0.422, 0.979). The reason for this high value may
be that the radiomics features extracted from post enhancement
AP images can better detect and describe the biological
heterogeneity of the tumor. RMS and YSTs are malignant
tumors, and the high heterogeneity of malignant tumors may
be related to abnormal tumor angiogenesis and cell infiltration.
A B

D
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FIGURE 2 | Lasso algorithm for feature selection on non-enhanced phase (NP) (A, B), arterial phase (AP) (C, D), and venous phase (VP) (E, F) images. The optimal
a parameters of the least absolute shrinkage and selection operator (LASSO) model were determined [NP: -log(a) = 1.16; AP: -log(a) = 1.25; VP: -log(a) = 1.11].
Features that correspond to the optimal a value were extracted.
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TABLE 3 | The 10 optimal features selected by the least absolute shrinkage and selection operator (LASSO) algorithm for each CT phase.

NP AP VP

1 wavelet-HHH_gldm_ HighGrayLevelEmphasis wavelet-HLH_glszm_ SizeZoneNonUniformityNormalized wavelet-LHL_glszm_ ZoneEntropy
2 wavelet-HLL_ firstorder_Maximum wavelet-HHL_glszm_ SizeZoneNonUniformityNormalized wavelet-LHL_glrlm_ GrayLevelVariance
3 square_firstorder_Skewness wavelet-HHL_glcm_ Autocorrelation wavelet-LHH_firstorder_ Median
4 wavelet-LLH_gldm_ DependenceEntropy wavelet-LLH_ firstorder_Skewness wavelet-HLL_firstorder_ Maximum
5 square_firstorder_MeanAbsoluteDeviation wavelet-HHH_glrlm_ LowGrayLevelRunEmphasis wavelet-HLH_glszm_ HighGrayLevelZoneEmphasis
6 wavelet-HLH_ glszm_ZoneEntropy wavelet-LHL_ firstorder_Energy wavelet-HHL_firstorder_ Skewness
7 wavelet-LHL_glszm_

SmallAreaHighGrayLevelEmphasis
wavelet-HLH_ glcm_JointEnergy gradient_firstorder_Skewness

8 wavelet-HHL_ glszm_ZoneVariance gradient_firstorder_Kurtosis wavelet-HHL_firstorder_ Uniformity
9 wavelet-LHH_ glrlm_RunVariance wavelet-LHL_glszm_ SizeZoneNonUniformityNormalized wavelet-HLH_glszm_ LargeAreaHighGrayLevelEmphasis
10 wavelet-LHH_firstorder_Energy wavelet-HHL_ firstorder_Minimum wavelet-LHH_ firstorder_Maximum
Fron
tiers in Oncology | www.frontiersin.org
 6
glcm, gray level cooccurrence matrix; glrlm, gray level run length matrix; glszm, gray level size zone matrix; gldm, gray level dependence matrix.
A B

D

E F

C

FIGURE 3 | ROC curves of the support vector machine (SVM) classifier in the training set during the non-enhanced phase (NP) (A), arterial phase (AP) (B), and
venous phase (VP) (C); receiver operating characteristic (ROC) curves of the SVM classifier in the test set during the NP (D), AP (E), and VP (F).
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There are abundant blood sinuses and blood vessels between the
cell clusters in the AP, and the enhancement is rapid and long-
lasting. Therefore, we suggest that radiomics characteristics of
the dominant AP in CT scans can be used to distinguish RMS
from YSTs, and the VP and delay phase can be omitted in the
diagnosis RMS, to reduce the radiation dose.

There were some limitations in this study. First, this was a
retrospective study, which may have inherent selection bias.
Second, the study did not include other pelvic cell tumors;
considering the low incidence of other solid germ cell tumors,
RMS was mainly distinguished from YST by clinical radiological
diagnosis. Third, the sample size was small. RMS and YST are
not common diseases in children; therefore, in future research,
we need to further expand the sample size and establish a
multicenter, prospective study. Finally, the image layer
thickness used in this study was 5 mm, which likely affected
the diagnostic performance of radiomics features. We will
evaluate the performance differences between thin- and thick-
layer images in radiomics analysis in future studies.
CONCLUSIONS

In summary, the CT-based radiomics model developed and
validated can be used to effectively distinguish RMS and YST,
and combined with clinical features, which can improve
diagnostic accuracy and increase the confidence of radiologists
in the diagnosis of pelvic solid tumors in children. It is believed
that as an important part of precision medicine, radiomics will be
widely used in the diagnosis, evaluation, and individualized
treatment of diseases in children in the future.
Frontiers in Oncology | www.frontiersin.org 7
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