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Review
Entry of hepatitis B and hepatitis D virus into hepatocytes:
Basic insights and clinical implications
Wenhui Li1,⇑, Stephan Urban2,3,⇑
Summary
For almost three decades following the discovery of the human Hepatitis B Virus (HBV)
the early events of virus infection (attachment to hepatocytes, specific binding to a recep-
tor on hepatocytes) remained enigmatic. The gradual improvement of tissue culture sys-
tems for HBV has enabled the identification of viral determinants for viral infectivity and
facilitated the discovery of the human sodium taurocholate co-transporting polypeptide
(hNTCP) as a liver specific receptor of HBV and its satellite, the human Hepatitis Delta
Virus (HDV). These findings are currently leading basic and clinical research activities
in new directions. (1) Stable hNTCP-expressing cell lines have become a valuable platform
to study the full HBV replication cycle from its native template, the cccDNA. (2) The suit-
ability of NTCP complemented cell culture systems for high throughput screening
approaches will facilitate identification of novel host factors involved in HBV replication
(including those that determine the peculiar host specificity of HBV infection) and will
enable identification and development of novel drug candidates for improved therapeu-
tics. (3) Since NTCP is a major host-specific restriction factor for HBV and HDV, hNTCP-
expressing animals provide the basis for future susceptible in vivo models. (4) The con-
cept obtained with the entry inhibitor Myrcludex B demonstrates that NTCP is a suitable
target for clinical interference with viral entry. This will foster further clinical approaches
aiming at curative combination therapies.
� 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All
rights reserved.
NTCP acts as a functional receptor of HBV and
HDV

The nature of the cellular receptor mediating
HBV infection remained elusive long time after
the discovery the virus [1–3]. Although some
candidate molecules were found to bind to the
envelope proteins of HBV, none of them ever
demonstrated a virus receptor activity upon
expression in non-susceptible cells, which is
accepted as a strong criteria regarding whether
a candidate is truly a functional virus receptor.
Studies of the infection biology of HBV and its
satellite virus hepatitis D virus (HDV), an RNA
virus using HBV envelope proteins for its packag-
ing and cellular entry, was hampered by the lack
of a convenient cell culture system. Primary
cultures of human hepatocytes (PHH) [4,5],
primary tupaia hepatocytes (PTH) [6–8], and a
hepatoma cell line, HepaRG, after differentiation
with DMSO [9], were the only cells susceptible
Journal of Hepatology 2016 vol. 64 j S32–
to HBV and HDV. PHH and PTH are scarce and
their susceptibility to the virus varies depending
on the source as well as isolation and culture
procedures. HepaRG cells require a 2-week dif-
ferentiation period before cells become suscepti-
ble. Nonetheless, elegant work using these cell
culture systems over the past decades has
revealed some critical aspects of HBV entry
[10]: (1) Infection of HBV exhibits extraordinary
species and organ specificity, indicating exis-
tence of a highly specific interaction between
the virus and the hepatocytes; (2) two of HBV
three envelope proteins, namely the small (S)
and large (L) envelope protein, but not the mid-
dle (M) protein are responsible for HBV entry
[11,12]; (3) the antigenic loop (AGL) of S protein
[13] and the preS1 domain of L-protein are
essential for HBV infection [14]; (4) the
N-terminal region of preS1 domain requiring an
uninterrupted sequence of 75 amino acids (geno-
type D) [15] with a myristoylation modification
S40
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Key point

The human sodium tauro-
cholate co-transporting poly-
peptide (hNTCP) is a bona fide
receptor for HBV and HDV.

Key point

hNTCP expressing hepatoma
cell lines are important tools to
study HBV and HDV replication.
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at the N-terminus [16,17] critically contributes to
infectivity, among which amino acid residues 9–
16 are of vital importance [18–20]. The corre-
sponding lipopeptide of this domain blocks viral
infection in vitro and in vivo [19–22].

The preS1 lipopeptide as a natural ligand is
useful to identify the specific receptor on hepato-
cytes. However, it was not an easy task to find its
binding partner on hepatocytes and several non-
functional molecules have been described [10].
Successful discovery of the bona fide receptor
sodium taurocholate co-transporting polypep-
tide (NTCP) was achieved using an innovative
preS1 peptide ligand combined with proteome
analysis of PTH and highly efficient tracing and
purification processes [23]. Biochemical studies
confirmed the interaction between preS1 and
the liver specific bile acids transporter. Remark-
ably, transfection of HepG2 cells with NTCP
expression DNA vector confers susceptibility to
this otherwise non-susceptible cell [23]. This
finding was quickly confirmed by several impor-
tant studies, including a study demonstrating
that human NTCP can confer susceptibility to
HDV pseudotyped with the envelope proteins of
bat hepadnavirus [24], woolly monkey HBV
(WMHBV) also exploits NTCP for viral entry in
tupaia hepatocytes [25] and HBV/HDV exploit
NTCP for species-specific entry into hepatocytes
[26]. Discovery of the receptor has also engen-
dered new perspectives on HBV and its associ-
ated diseases [27].

NTCP is coded by the SLC10A1 gene. It is a bile
acid transporter, responsible for hepatic uptake of
the majority of conjugated bile acids from blood,
and plays a critical role in bile acids homeostasis
and enterohepatic circulation [28]. The expres-
sion of NTCP and its subcellular distribution is
subjected to precise regulation at multiple levels.
NTCP contains up to nine transmembrane seg-
ments embedded in the cell membrane; its struc-
ture remains to be elucidated. Interestingly,
although the NTCP gene is conserved in mam-
mals, disrupting NTCP in mice in short term (ca.
2 months) did not result in significant abnormal-
ities in the animals but led to elevated serum bile
acids, in particular conjugated ones [29]. A single
point mutation of R252H of human NTCP inter-
feres with its surface expression on hepatocytes.
Recently, a five-year old girl bearing this muta-
tion was identified and she exhibited mild hypo-
tonia, growth retardation, delayed motor
milestones but no severe health problem [30].
Therefore, although the long-term consequence
of disrupting NTCP needs more studies, the phys-
iological role of NTCP can probably be compen-
sated by other, yet not defined mechanism(s),
and redundant pathways may operate in the
absence of NTCP. Whether there is another recep-
tor(s) for HBV entry is not known at present, how-
ever several lines of evidence support that NTCP
Journ
is well suited as a key receptor for HBV (Fig. 1).
It is predominantly expressed in hepatocytes
[31], as also shown by the hepatotropism of its
preS-ligand in vivo [32]. This is consistent with
the high liver specificity of HBV. Furthermore
NTCP resides on the sinusoidal side of hepato-
cytes [33–35], which is in line with the blood
transmission of the virus. There is only very low
or no expression of NTCP in hepatocarcinoma cell
lines like HepG2 or HuH7 and the expression of
NTCP rapidly decreases after isolation of primary
hepatocytes from animals [23,36–38]. These two
features at least partially explain why normal
liver cancer cells are resistant to HBV infection
and why the susceptibility of primary hepato-
cytes persists for only a few days after isolation.

Interestingly, a human population study on
1899 HBV patients from southern China (Guang-
dong) showed that a single mutation of NTCP,
S267F ((c.800G>A, rs2296651) on SLC10A1), is
associated with resistance to chronic hepatitis B
[39]. The S267F is a mutation found mainly in
Asian populations, with a minor frequency of ca.
10 % [40–42]. In cell cultures the mutation
abolished taurocholate (TC) transport and over
expression of S267F NTCP in HepG2 cells failed
to support genotype D HBV and HDV infection
[41]. The marked protection of this mutation
against HBV infection at population level strongly
argues that NTCP is a major viral receptor in
human. A more recent genetic association study
based on 3801 chronic hepatitis B (CHB) patients
from Taiwan confirmed that the same mutation
confers resistance to HBV infection and is
independently associated with decreased risk of
cirrhosis and HCC [42]. It is currently unclear
how the mutation would reduce the risk of
cirrhosis and HCC.

Interestingly, there are five HBV patients with
homozygous S267F NTCP mutation in the Guang-
dong cohort [39] the Taiwan study also found
five of such HBV patients [42]. How these
patients were infected is an interesting and
important question. There are several possibili-
ties: first, cell surface molecules other than NTCP
could mediate the viral infection; second, the
virus was adapted to S267F-NTCP; third, the
patients were genetically mosaic meaning some
of their hepatocytes might still have wildtype
NTCP. Clearly more work is needed to clarify
these possibilities and related studies would help
to deepen our understandings of HBV infection.
NTCP determines viral infection specificity at
entry level

HBV only infects human, chimpanzees and
northern treeshrew (Tupaia belangeri). It cannot
infect non-human primates, mouse, rat and other
al of Hepatology 2016 vol. 64 j S32–S40 S33
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Fig. 1. Diagram of viral entry of HBV/HDV. HBV (left) or HDV (right) travels with blood to liver, penetrates into the space of
Disse and reaches the sinusoidal side of hepatocytes. The virus is enriched on the cell surface by interaction with HSPG. The
viral envelope may undergo conformational changes upon binding to HSPG. Subsequently, the preS1 region of the envelope
binds to the extracellular loop(s) of NTCP with high specificity. Binding of virions to NTCP may lead to endocytosis of the
receptor, and ultimately the nucleocapsid (HBV) or the ribonucleoprotein complex (HDV) is realised to the nucleus and the
infection is established. NTCP, sodium taurocholate cotransporting polypeptide; Myrcludex B, a lipopeptide derived from the
2–47 residues of preS1 region of HBV; HSPG, heparan sulfate proteoglycan.
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experimental animals. However, once the HBV
genome is delivered to the monkey hepatocytes,
the virus can robustly replicate indicating that
these cells are able to form cccDNA and replicate
the virus [43]. Mouse hepatocytes bearing an
HBV transgene can produce infectious virions
but are unable to form cccDNA [44]. These obser-
vations support the hypothesis that the species
restriction of HBV is largely at the entry level.
Entry restriction is common in cross-species
transmission of many viruses, for example: the
infection of influenza virus among mammals
and birds heavily depends on the existence of
Journal of Hepatology 2016 vol. 64 j S32–
sialic acids (SA)-a-2,6-Gal–terminated saccha-
rides or (SA)-a-2,3-Gal–terminated saccharides
receptor [45]; and animal transmission of coron-
aviruses, including SARS-CoV and MERS-CoV is
controlled by their receptors [46]. Whether NTCP
is responsible for the species specificity at entry
level was first examined by assessing HBV infec-
tion mediated by NTCP chimeras from crab-
eating monkey (Macaca fascicularis) and human
[23]. A small motif covering residues 157–165
of NTCP was identified to be critical for preS1-
binding and HBV infection, highlighting the crit-
ical role of NTCP in mediating HBV infection
S40
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hNTCP-expressing HepG2 cell
lines allow high throughput
approaches for drug identifi-
cation.
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[23,26]. The observation that cynomolgus
monkey hepatocytes cannot bind the preS1-
lipopeptide in vitro and in vivo strongly sup-
ported this finding [32,34]. The key role of
residues 157–165 for HBV infection in humans
has also been supported by the recent CHB pop-
ulation study in Taiwan, in which no mutation
was found in this region in all CHB patients
[42]. Interestingly, naturally occurring transmis-
sible HBV infection (genotype D) was reported
among M. fascicularis from Mauritius Island,
however, the viral titre was very low and more
evidence is needed to support that HBV under-
goes a full life cycle in these monkeys [47].

The receptor-addressing preS1-lipopeptide
can bind to primary hepatocytes from HBV non-
susceptible animals, such as mouse, rat and dog
[32,34]. This finding was surprising and indicated
the resistance of these animals to HBV at entry
level was less likely due to the lack of a specific
binding partner of the virus on the hepatocytes.
Accordingly, either the binding could not lead to
a productive infection, or there is difference
between the isolated preS1 peptide versus the
same region residing on the virions. Extensive
mapping studies revealed that amino acid resi-
dues 84–87 in the first extracellular loop of NTCP
restricted mice from infection of HBV at the entry
level. Replacing three of these four amino acids
with their human counterpart effectively render
mouse NTCP a functional receptor for HBV in
HepG2 cells [26,48]. Consistent with the notion
that NTCP poses the major barrier for viral infec-
tion of mice, suckling C57BL/6 mice bearing
human NTCP are susceptible for HDV infection
and the virus successfully undergoes most of its
life cycles in the animal [49]. However, although
mouse liver cells like Hepa1-6, Hep56.1D,
mH274#26 supplemented with human NTCP
support HDV infection, they failed to support
HBV infection. These studies indicate that factors
other than NTCP may be also involved in HBV
infection. Although the nature of the factor(s) is
still unknown, HBV infection studies based on cell
fusion assays of HepG2 and mouse cells indicated
that infection in mouse cells is limited by the lack
of a host cell dependency factor [50]. Interest-
ingly, a study recently indicated that the stability
of viral nucleocapsids may be a determinant for
cccDNA formation in murine hepatocytes
(AML12) [51a]. Interestingly, this cell line, when
supplemented with hNTCP supports infection
with HBV [51b]. It will be important to further
identify cellular factors to successfully establish
a small animal model for HBV infection. On the
other hand, one also has to be aware that viral
infection in tissue culture can be influenced by
the variables among different cell clones, the
dosage of the inoculating virus and others
factors that are different from the physiological
conditions, therefore only viral infection of
Journ
animals with defined gene alternations can
provide definitive answer to the question.
NTCP complemented HepG2 cells provide a
valuable platform for screening new host
factors and developing antivirals against HBV/
HDV infection

HepG2 cells complemented with human NTCP
provide an easy accessible system for HBV/HDV
infection. The system is amendable for high
throughput screening procedure, thus enabling
studies of systemic identification of new factors
involved in HBV/HDV infection and developing
new antivirals. Targeted screening with HepG2-
NTCP cells has identified glypican 5 (GPC5) as
an entry factor for HBV/HDV [52]; viral infection
based assay has found some promising drug can-
didates in blocking HBV/HDV infection [53,54].
HBV can undergo its whole life cycle in HepG2-
NTCP cells, from entry to establishment of the
infection, and at a low efficiency of releasing of
progeny virions. The covalent closed circular
DNA (cccDNA) of HBV is the reservoir of chronic
infection and is widely believed to be the major
obstacle for eliminating the infection [55,56].
HepG2-NTCP cells support cccDNA formation
from incoming virions and are less efficient for
the replenishment of cccDNA via intracellular
recycling. Interestingly, although the carcinoma-
tous nature of HepG2 cell is a concern for studies
using HepG2-NTCP cells, a recent study indicates
the epigenetic regulations of cccDNA in the cells
are similar to those observed in PHH [57].
Entry inhibition of viral infections as a clinical
concept

Therapeutic interference by entry inhibitors is an
attractive clinical concept since it inhibits infec-
tion at its earliest step thereby preventing the
establishment of viral genomes (e.g. cccDNA) in
naïve or regenerating host cells [58]. Entry inhi-
bition in persistently infected patients is presum-
ably most efficient when virus spread requires
entry of progeny virus into naïve cells via a
receptor-mediated pathway. In addition, a fast
replenishment of infected cells by naïve cells
would limit the time of treatment to clear the
infection. For HIV it has been shown that a direct
spread from one cell-to-another can occur which
might explain the therapeutic limitation of entry
inhibitors [59,60]. Nevertheless, Fuzeon� and
maraviroc, two approved entry inhibitors, show
antiviral activity in patients [60–62]. For HBV it
has been demonstrated that spread in PHH-
transplanted uPA severe combined immunodeffi-
cient (SCID) mice was completely blocked by the
al of Hepatology 2016 vol. 64 j S32–S40 S35
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hNTCP is a suitable target for
drugs that interfere with HBV
and HDV entry (e.g. Myrcludex
B).
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NTCP-specific entry inhibitor Myrcludex B. This
indicates that intrahepatic spread greatly
depends on an NTCP-mediated entry of progeny
virus into naïve hepatocytes [63]. Moreover,
cccDNA-dissemination in the liver of these
animals is abrogated by cell proliferation [64],
indicating that HBV depends on an extracellular
virus cycle and works poorly by transferring the
cccDNA template via an intercellular pathway
into progeny cells. Thus, entry inhibition for
HBV may become clinically important in order
to block cccDNA reformation during either natu-
ral or immune-mediated/induced hepatocyte
turnover.

Entry inhibition can be achieved by targeting
viral structures (e.g. the neutralisation of envel-
ope proteins at the viral surface, which are
involved in receptor binding). In the course of
the resolution of an acute infection, neutralising
antibodies fulfil this crucial role and are therefore
indispensable to clear the virus. Accordingly,
antibodies recognizing envelope proteins have
been developed for therapeutic purposes [65–
67]. Currently, neutralising antibodies are prefer-
entially applied in prophylactic clinical settings.
For HBV and HDV such antibodies prevent rein-
fection of liver transplants in infected patients,
are effective in post exposure prophylaxis or
the prevention of mother-child transmission
[68]. Long-term administrations of HBV neutral-
ising antibodies in chronically infected patients
have not been performed so far.

An alternative strategy to inhibit viral entry
takes advantage of drugs that target cellular
receptors/co-receptors. This approach is rela-
tively new but has been shown to work in HIV
infected patients [60]. Their mode of action is
based on the sustained inhibition of de novo for-
mation of viral templates. Although they are not
curative in HIV infected patients, they theoreti-
cally bear this potential even without the
involvement of adaptive immune responses. This
has been recently demonstrated in an immune-
deficient animal model for hepatitis C virus
(HCV) infection [69]. However, the duration of
treatment to gain virus elimination depends on
the natural turnover rate of infected cells, the
half-life time of the virus and the presence of
possible viral reservoirs, which have been estab-
lished in the host. Importantly, immune
responses that are directed against infected cells
may dramatically enhance the clearance of
infected cells. Accordingly, entry inhibition may
be highly synergistic, when combined with
immune therapeutic approaches.

Whether a virus receptor is a suitable ‘‘dru-
gable target” depends on different aspects.
Firstly, virus spread within an organism should
be subject to receptor-mediated de novo infec-
tion and should not primarily proceed by cell-
to-cell transmission of viral genomes. Secondly,
Journal of Hepatology 2016 vol. 64 j S32–
since virus receptors often serve important cellu-
lar functions, the drugs should not completely
mess up the natural function of these molecules
(clinical manageability). This can be achieved if
the targeting drug blocks the receptor function
at an IC50 below the concentration required for
inactivation of its cellular function. Such a ‘‘ther-
apeutic window” would allow drug dosing,
which is clinically acceptable even if the target
molecule displays an essential function. Alterna-
tively, the receptor may not be an essential pro-
tein and its function might be compensated by
salvage pathways. Finally, the interaction of the
drug with the receptor should be highly specific
in order to avoid ‘‘off-target” effects.
Inhibitors of HBV and HDV infection
addressing NTCP

HBV specifically targets hepatocytes in the
human liver with very high efficacy [70]. This
hepatotropism is related to specific interactions
of the viral envelope proteins with host factors,
including heparan sulfate proteoglycans (HSPG)
[71–73] and NTCP (see above). It has been shown
that known substrates of NTCP as well as HSPGs
interfere with HBV and HDV infection. These
substances can be subdivided in different groups:
firstly, natural or artificial substrates of HSPG like
heparin, highly sulphated dextrans, suramin or
negatively charged polymers [71–73]. They shall
not be further discussed here. Secondly, sub-
strates of NTCP, like the conjugated bile acid TC
or glycocholic acid [26,48,74,75]. These sub-
strates but also bile salt homologues are trans-
ported by NTCP in a sodium dependent manner
[28]. They bind into a pocket of the outward
conformation of NTCP and are released (together
with two sodium ions) after a substantial
structural change to the inward conformation
into the cytoplasm of the hepatocyte [53]. At
high concentrations, conjugated bile salts inhibit
HBV and HDV infection [41,76]. The concentra-
tions needed for infection inhibition are above
the normal bile salt levels in healthy and HBV
infected individuals, which probably explains
the lack of therapeutic effects of bile salts in
HBV/HDV infected patients [76].

In addition to endogenous substrates, xenobi-
otics and certain drugs have been shown to use
the transporter function of NTCP to enter hepato-
cytes [77]. Some of these molecules have been
developed as drugs and have been discovered
as NTCP addressing agents in the course of their
pharmacokinetic characteristics. One example is
ezetimibe, which is used as an inhibitor of the
primary cholesterol transporter NPC1L1 in the
intestinal lumen. It is also a substrate of NTCP
[28] and has been later shown to interfere with
HBV and HDV entry [78]. These substances have
S40
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hNTCP expression in non-
susceptible hosts provides the
basis for the development of
animal models for HBV and
HDV and the understanding of
host specificity.
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in common that the mechanism of HBV receptor
inhibition is coupled to their ability to bind the
substrate in the bile salt pocket and thereby
block the receptor to interact with the virus. Evi-
dence for that comes from the finding that deter-
minants for viral entry and bile salt transport
functionally overlap [41]. Accordingly, the
reported KDs of transporter activity and HBV
inhibition activity are comparable. In the future,
it will be interesting to see whether small mole-
cules that bind NTCP in its substrate pocket (e.g.
bile salt analogues that might covalently bind to
the transporter), could act as irreversible dead-
end inhibitors.

The third class of NTCP inhibitors are peptidic
substrates, which bind, but are presumably not
transported by NTCP. A prototypic member of
this family is cyclosporin A, which was known
as an NTCP-inhibitor before it was described as
an HBV receptor [79]. Its antiviral activity is not
restricted to the natural product cyclosporine A,
but also holds up for other derivatives including
non-immunosupressive variants like alisporivir
[74,80]. Like for Myrcludex B (see below), the
IC50s of cyclosporin A to inhibit HBV and HDV
infection is significantly lower compared to its
inhibitory effect on taurocholate (TC) uptake,
indicating that a therapeutic effect against HBV
might be achieved at non-NTCP-saturating con-
centrations [74]. However, since cyclosporins
are not specific for NTCP and inhibit (in addition
to modulate intracellular cyclophilins) other bile
salt transporters like organic anion-transporting
polypeptide (OATP) at even lower concentrations
[81] their therapeutic use for CHB and chronic
HDV infection might be limited.
HBV L-protein derived lipopeptides as highly
specific inhibitors of NTCP

Due to the high sequence homologies in their
receptor binding site, the N-terminal preS1-
domains of primate HBVs, like WMHBV or Gorilla
HBV and even the recently discovered Bat-
hepatitis B viruses are assumed to specifically
bind their respective host Ntcps. This interaction
only occurs after a preceding interaction to and
possibly activation byHSPGs. Remarkably, virions
do not expose the N-terminal preS-1 NTCP bind-
ing site 9-NPLGFFP-15 on their surface [53].
Accordingly, HBV may hardly be recognized and
inhibited by monoclonal antibodies recognizing
this motif [82]. Moreover, chronically infected
patients with high loads of preS-containing viri-
ons and subviral particles do not show elevated
serum bile salt levels indicating that the NTCP
may not or only partially blocked by the presence
of these particles [83]. In contrast, synthetic
preS1-derived lipopeptides that contain the
NPLGFFP-motif are potent NTCP-binders and
Journ
block the bile salt transporter function
[26,41,75]. Such peptides have been character-
ized extensively with regard to their specific
activities and the role of the fatty acid moiety
which is required for anchoring the peptide in
the membrane close to the NTCP binding site
[9,18–22,84–86]. A lead substance of these pep-
tides, which is presently in clinical development,
is Myrcludex B. It efficiently inhibits HBV and
HDV infection of hepatocytes at already picomo-
lar concentrations [18]. Notably, Myrcludex B as
a peptidic drug of 47 amino acids contains preS-
specific epitopes including the essential receptor
binding motif 9-NPLGFFP-15. It also contains C-
terminally located epitopes (e.g. 19-DPAF-22),
which may induce highly neutralising antibodies
[87]. Accordingly, Myrcludex B therapy may
induce anti-preS-specific antibodies that might
help to eliminate HBV or HDV from the liver.

In contrast to the small substrate molecules
mentioned above, preS-derived lipopeptides
(including Myrcludex B, as the clinically used
lead substance) are allosteric inhibitors of NTCP,
which irreversibly bind and inactivate the HBV
receptor function of the molecule. These peptides
also inhibit the bile acid transporter function, but
only at ca. 500-fold higher concentrations
[26,75]. Functional recovery of NTCP is slow
and probably only possible when the preS/recep-
tor complex is dissociated after endocytic turn-
over or replacement by de novo synthesis [21].
Whether functional recycling of NTCP after for-
mation of a preS-complex can occur is presently
unknown. The reason for the remarkable differ-
ences in the IC50s of e.g. Myrcludex B between
bile salt transporter (IC50 ca. 47 nM) activity
and HBV/HDV infection inhibition (ca. 0.1 nM)
is still unclear. However, a plausible assumption
is that the HBV L-protein forms multimeric (e.g.
trimeric) complexes with NTCP (as it has been
shown for many other enveloped viruses). Such
a complex could be functionally inactivated, if
only one out of three binding sites is occupied
by the peptidic fragment. In fact, NTCP has been
shown to form multimeric complexes [88]. From
a therapeutic point of view, this allows to inacti-
vate the receptor function of NTCP at doses that
do not significantly affect its natural function as
a bile salt transporter.
Therapeutic efficacy of Myrcludex B in HBV
and HDV infected patients

A phase I safety trial revealed that Myrcludex B,
the first in class entry inhibitor addressing the
NTCP-receptor of HBV was well tolerated in
healthy volunteers at intravenously applied dose
of up to 20 mg. Pharmacokinetic studies revealed
that doses of >10 mg subcutaneously resulted in
NTCP saturation >80% for at least 15 h (Blank
al of Hepatology 2016 vol. 64 j S32–S40 S37
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et al., under revision). The proof of clinical effi-
cacy of Myrcludex B in chronically HBV infected
patients has been achieved in a phase IIa clinical
trial (Bogolomov et al., AASLD meeting 2014). A
sub study of this trial was performed in HBV/
HDV co-infected individuals (Bogolomov et al.,
under revision). The trial performed in HBeAg-
negative HBV monoinfected patients shows a
reduction in HBV serum levels by a mean of
101.45 within 12 weeks of treatment in the
10 mg arm. Assuming that Myrcludex B only
interferes with de novo infection of cells and that
the rate of virus production per infected cells
remains unchanged, this indicates a substantial
reduction of the number of infected cells during
treatment. However, this has to be proven
directly in future studies by immunohistochem-
istry of liver biopsies. In the sub study of 24
HDV co-infected HBV patients (Bogolomov
et al., under revision) Myrcludex B was applied
either alone at 2 mg daily, or in combination with
PegIFN for 24 weeks. Myrcludex B was well toler-
ated in all patients, with only slightly increased
conjugated bile salt levels. Within 24 weeks
HDV RNA declined by >1 log in all cohorts and
even became negative in two patients each in
the Myrcludex B and PegIFN control arm.
Remarkably, negativation was observed in five
of seven evaluable patients of the Myrcludex B/
PegIFN combination arm, indicating a synergistic
effect both drugs.

Taken together these first proof of concept
studies using Myrcludex B demonstrate that
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targeting NTCP as a key molecule of hepatocyte
specific entry of HBV is a feasible clinical concept
in future therapeutic approaches aiming at the
functional cure of chronic Hepatitis B and Hepati-
tis D. It will be interesting to see if long-term
inhibition of viral entry results in HBsAg loss or
anti-HBsAg seroconversion and whether combi-
nation with immunomodulatory drugs like IFN-
alpha can induce and/or accelerate such a
process.
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