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Abstract: This study aimed at building a prognostic signature based on a candidate gene panel
whose expression may be associated with lymph node metastasis (LNM), thus potentially able to
predict colorectal cancer (CRC) progression and patient survival. The mRNA expression levels
of 20 candidate genes were evaluated by RT-qPCR in cancer and normal mucosa formalin-fixed
paraffin-embedded (FFPE) tissues of CRC patients. Receiver operating characteristic curves were
used to evaluate the prognosis performance of our model by calculating the area under the curve
(AUC) values corresponding to stage and metastasis. A total of 100 FFPE primary tumor tissues from
stage I–IV CRC patients were collected and analyzed. Among the 20 candidate genes we studied,
only the expression levels of VANGL1 significantly varied between patients with and without LNMs
(p = 0.02). Additionally, the AUC value of the 20-gene panel was found to have the highest predictive
performance (i.e., AUC = 79.84%) for LNMs compared with that of two subpanels including 5 and
10 genes. According to our results, VANGL1 gene expression levels are able to estimate LNMs in
different stages of CRC. After a proper validation in a wider case series, the evaluation of VANGL1
gene expression and that of the 20-gene panel signature could help in the future in the prediction of
CRC progression.

Keywords: colorectal cancer; gene signature; mRNA expression; VANGL1; FFPE

1. Introduction

Radical surgery and adjuvant chemotherapy improve the clinical outcome of stage III
and high-risk stage II colorectal cancer (CRC) patients. However, it is known that 5-year
overall survival (OS) highly varies according to important prognostic factors, such the pTs
stage (stages II and III) and the involvement of lymph nodes (pN1 and pN2 stage III) [1–3].
Overall, lymph node metastasis (LNM) is a key prognostic factor for the determination of
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CRC outcomes and significantly relates to poorer prognosis, disease-free survival (DFS),
and OS [4,5].

Available clinical data suggest that the accurate diagnosis of LNM is not only im-
portant for the prediction of the prognosis of patients but also useful for further thera-
peutic management, such as for the selection of patients who would benefit from adju-
vant/neoadjuvant chemotherapy or chemo-radiotherapy [2,6,7]. In fact, the number and
sites of lymph nodes involved have a direct impact on the stage of disease as established
by the AJCC tumor-node-metastasis (TNM) staging classification for colon cancer [8].

However, it should be noted that pathological methods are not able to diagnose occult
LNMs (micrometastases). Thus, the use of advanced methodologies (e.g., gene expression
profiling (GEP)), the investigation of specific biomarkers (e.g., microsatellite instability
(MSI)), CpG island methylator phenotype (CIMP), the application of the immune score
recommended for increasing the detection power of disease recurrence, and in this regard
the use of genes associated with lymph node involvement are very useful to enhance this
evaluation [9–12]. In this regard, GEP has been used to discover biomarkers associated
with lymph nodes in epithelial neoplasms, such as pancreatic cancer [13], oral squamous
cell carcinoma [14], invasive breast cancer [15], and CRC [16]. However, the power of
diagnosis may vary based on gene selection.

High-throughput studies in which biomarkers of tumor suppressor genes and onco-
genes are potentially able to predict the prognosis of CRC patients at different stages of
disease and according to the lymph node involvement are available [4,8,17].

In order to find a suitable biomarker to predict LNM involvement, we evaluated
gene expression profiling studies and selected 20 genes (VANGL1, SMAD2, BUB1, EGFR,
HES1, MAP2K1, NOTCH1, ANXA3, SMAD4, MTA1, LEF1, RHOA, TGF-ß, CD44, CD133,
IL2RA, IL2RB, PITX2, PCSK7, and FOLH1) that play a key role in carcinogenesis, tumor
growth, LNM development tumor invasion, and metastasis by regulating a variety of
cellular processes (Table 1) [4,16–20].

Table 1. Information * on the biological functions of 20 candidate genes and on the primer sequences used for RT-qPCR

Gene Symbol Gene Name and Functions Primer Sequence

VANGL1
(KITENIN)

VANGL planar cell polarity protein 1 (located on chromosome 1)
1. It encodes a member of the tetraspanin family.

2. It may be involved in mediating intestinal trefoil factor-induced
wound healing in the intestinal mucosa.

F: 5′-GACACAAGTCACCCCGGAATA-3′
R: 5′-TCCTCTGTCCGAGTAGAATCATT-3′

Amplicon length: 109 bp

IL2RA
(CD25)

Interleukin 2 receptor subunit alpha (located on chromosome 10)
1. Mutations in this gene are associated with interleukin 2 receptor

alpha deficiency.
2. Serum IL-2R levels are found to be elevated in patients with

different types of carcinomas.

F: 5′-GAACACAACGAAACAAGTGACAC-3′
R: 5′-GGCTGCATTGGACTTTGCATT-3′

Amplicon length: 81 bp

IL2RB
(CD122)

Interleukin 2 receptor subunit beta (located on chromosome 22)
1. It is involved in receptor-mediated endocytosis and transduction

of mitogenic signals from IL2.

F: 5′-CAGCGGTGAATGGCACTTC-3′
R: 5′-GGCATGGACTTGGCAGGAA-3′

Amplicon length: 113 bp

TGFβ1

Transforming growth factor ß (located on chromosome 19)
1. It encodes a secreted ligand of the TGFß superfamily of proteins.

The encoded protein regulates cell proliferation, differentiation,
and growth.

2. It is frequently upregulated in tumor cells.

F: 5′-CAATTCCTGGCGATACCTCAG-3′
R: 5′-GCACAACTCCGGTGACATCAA-3′

Amplicon length: 86 bp

SMAD2

SMAD2 family member 2 (located on chromosome 18)
1. The protein encoded mediates the signal of the transforming

growth factor (TGF)-beta, thus regulating multiple cellular
processes (i.e., cell proliferation, apoptosis, and differentiation).

F: 5′-CCGACACACCGAGATCCTAAC-3′
R: 5′-GAGGTGGCGTTTCTGGAATATAA-3′

Amplicon length: 125 bp

SMAD4

SMAD4 family member 4 (Located on chromosome 18)
1. The encoded protein forms homomeric complexes and

heteromeric complexes with other activated Smad proteins that
accumulate in the nucleus and regulate the transcription of target

genes.
2. The encoded protein acts as a tumor suppressor and inhibits

epithelial cell proliferation.

F: 5′-CCACCAAGTAATCGTGCATCG-3′
R: 5′-TGGTAGCATTAGACTCAGATGGG-3′

Amplicon length: 76 bp
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Table 1. Cont.

Gene Symbol Gene Name and Functions Primer Sequence

CD44
(CSPG8)

CD44 antigen (located on chromosome 11)
1. It is a cell-surface glycoprotein involved in cell–cell interactions,

cell adhesion, and migration.
2. The encoded protein participates in several cellular functions

(e.g., lymphocyte activation, recirculation and homing,
hematopoiesis, and tumor metastasis).

F: 5′-CTGCCGCTTTGCAGGTGTA-3′
R: 5′-CATTGTGGGCAAGGTGCTATT-3′

Amplicon length: 109 bp

CD133
(PROM1)

CD133 (located on chromosome 4)
1. It encodes a pentaspan transmembrane glycoprotein.

2. The encoded protein is often expressed on adult stem cells,
where it has been suggested to maintain stem cell properties by

suppressing differentiation.
3. It is the marker most commonly used for the isolation of cancer

stem cell population from different tumors.

F: 5′-GGCCCAGTACAACACTACCAA-3′
R: 5′-ATTCCGCCTCCTAGCACTGAA-3′

Amplicon length: 75 bp

HES1

HES family basic helix-loop-helix (bHLH) transcription factor 1
(chromosome 3)

1. It is a transcriptional repressor of genes that require a bHLH
protein for their transcription.

2. It plays an important role in the Notch signaling pathway.
3. The absence of Hes1 in the developing intestine promotes the

increase of Math1 (the production of intestinal cell types).

F: 5′-ACGTGCGAGGGCGTTAATAC-3′
R: 5′-GGGGTAGGTCATGGCATTGA-3′

Amplicon length: 90 bp

NOTCH1

NOTCH receptor 1 (located on chromosome 9)
1. The Notch signaling pathway regulates interactions between
physically adjacent cells through the binding of Notch family

receptors to their cognate ligands.
2. It plays a role in the development of numerous cell and tissue

types.
3. Mutations in NOTCH1 are associated with syndromes,

hematological and solid tumors.

F: 5′-TGGACCAGATTGGGGAGTTC-3′
R: 5′-GCACACTCGTCTGTGTTGAC-3′

Amplicon length: 82 bp

LEF1
(TCF10)

Lymphoid enhancer-binding factor 1 (located on chromosome 4)
1. It encodes a transcription factor belonging to a family of proteins

that share homology with the high mobility group protein-1.
2. It binds to a functionally important site in the T-cell

receptor-alpha (TCRA) enhancer, thus conferring maximal
enhancer activity.

3. It is involved in the Wnt signaling pathway, and mutations in
this gene have been found in some tumors.

F: 5′-ATGTCAACTCCAAACAAGGCA-3′
R: 5′-CCCGGAGACAAGGGATAAAAAGT-3′

Amplicon length: 76 bp

MTA1

Metastasis-associated 1 (located on chromosome 14)
1. MTA1 expression has been correlated with the metastatic

potential of some carcinomas, but it is expressed also in many
normal tissues.

2. The profile and activity of the encoded protein suggest that it is
involved in regulating transcription and that this may be

accomplished by chromatin remodeling.

F: 5′-ACGCAACCCTGTCAGTCTG-3′
R: 5′-GGGCAGGTCCACCATTTCC-3′

Amplicon length: 104 bp

EGFR
(ErBb-1)

Epidermal growth factor receptor (located on chromosome 7)
1. It encodes a transmembrane glycoprotein that is a member of

the protein kinase (PK) superfamily.
2. EGFR binds to EGF, thus inducing receptor dimerization and

tyrosine autophosphorylation, leading to cell proliferation.
3. Mutations in EGFR are associated with lung cancer.

F: 5′-TGCGTCTCTTGCCGGAAT-3′
R: 5′-GGCTCACCCTCCAGAAGGTT-3′

Amplicon length: 71 bp

MAP2K1
(MEK1)

Mitogen-activated protein kinase kinase 1 (located on chromosome
15)

1. The encoded protein is a member of the dual specificity PK
family that acts as a mitogen-activated protein (MAP) kinase

kinase.
2. The encoded protein stimulates the enzymatic activity of MAP

kinases upon a wide variety of extra- and intracellular signals.
3. As a component of the MAP kinase signal transduction pathway,

the encoded protein is involved in many cellular processes (e.g.,
proliferation, differentiation, and transcription regulation).

F: 5′-CAATGGCGGTGTGGTGTTC-3′
R: 5′-GATTGCGGGTTTGATCTCCAG-3′

Amplicon length: 91 bp

FOLH1
(PSMA)

Folate hydrolase 1 (located on chromosome 11)
1. It encodes a type II transmembrane glycoprotein belonging to

the M28 peptidase family.
2. Also known as prostate-specific membrane antigen (PSMA), it is

expressed in many tissues, including the prostate.
3. In the prostate, the FOLH1/PSMA protein is upregulated in

cancer cells and is used as an effective diagnostic and prognostic
indicator of prostate cancer.

F: 5′-AGAGGGCGATCTAGTGTATGTT-3′
R: 5′-TGATTTTCATGTCCCGTTCCAAT-3′

Amplicon length: 74 bp
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Table 1. Cont.

Gene Symbol Gene Name and Functions Primer Sequence

BUB1

BUB1 mitotic checkpoint serine/threonine kinase (located on
chromosome 2)

1. It encodes a protein that plays a central role in mitosis.
2. This protein may also function in the DNA damage response.
3. Mutations in this gene have been associated with aneuploidy

and several forms of cancer.

F: 5′-AGCCCAGACAGTAACAGACTC-3′
R: 5′-GTTGGCAACCTTATGTGTTTCAC-3′

Amplicon length: 136 bp

RHOA

Ras homolog family member A (located on chromosome 3)
1. It encodes a member of the Rho family of small GTPases that
function as molecular switches in signal transduction cascades.

2. Overexpression of this gene is associated with tumor cell
proliferation and metastasis.

F: 5′-GGAAAGCAGGTAGAGTTGGCT-3′
R: 5′-GGCTGTCGATGGAAAAACACAT-3′

Amplicon length: 118 bp

PCSK7

Proprotein convertase subtilisin/kexin type 7 (located on
chromosome 11)

1. It encodes a type 1 membrane-bound protease that is expressed
in many tissues, including the neuroendocrine, liver, gut, and

brain.
2. It has been implicated in the transcriptional regulation of

housekeeping genes.
3. A chromosomal translocation associated with B-cell lymphoma

occurs between this gene and its inverted counterpart.

F: 5′-GCAGCGTCCACTTCAACGA-3′
R: 5′-GCCCAGTCACATTGCGTTC-3′

Amplicon length: 117 bp

PITX2
(ARP1)

Paired-like homeodomain 2 (located on chromosome 4)
1. It encodes a member of the RIEG/PITX homeobox family, which

is in the bicoid class of homeodomain proteins.
3. The encoded protein acts as a transcription factor and regulates

procollagen lysyl hydroxylase gene expression.

F: 5′-GCCAAGGGCCTTACATCCG-3′
R: 5′-GGTGGGGAAAACATGCTCTG-3′

Amplicon length: 101 bp

ANXA3
(annexin) A3

Annexin A3 (located on chromosome 4)
1. It encodes a member of the annexin family.

1. Members of this calcium-dependent phospholipid-binding
protein family play a role in the regulation of cellular growth and

in signal transduction pathways.
2. The encoded protein functions in the inhibition of

phospholipase A2 and cleavage of inositol 1,2-cyclic phosphate to
form inositol 1-phosphate.

F: 5′-TTAGCCCATCAGTGGATGCTG-3′
R: 5′-CTGTGCATTTGACCTCTCAGT-3′

Amplicon length: 104 bp

B2M β2-microglobulin (located on chromosome 15) – Housekeeping
gene

F: 5′-TGCTGTCTCCATGTTTGATGTATCT-3′
R: 5′-TCTCTGCTCCCCACCTCTAAGT-3′

Amplicon length: 86 bp

ACTB β-actin (located on chromosome 7) – Housekeeping gene
F: 5′- GCCGGGACCTGACTGACTAC-3′

R: 5′- TTCTCCTTAATGTCACGCACGAT-3′
Amplicon length: 100 bp

* Information available at https://www.ncbi.nlm.nih.gov/ (accessed on 10 February 2021).

Thus, the aim of this study was to identify at the mRNA level and to validate at the
protein level the potential prognostic role of these candidate genes in relation to the LNM
of CRC patients.

2. Materials and Methods
2.1. Patients and Sample Collection

This retrospective study was performed in 100 formalin-fixed paraffin-embedded
(FFPE) tumor tissues of CRC patients at stage I or II (n = 52) and at stage III or IV (n = 48)
and 10 FFPE samples of normal tissues (colonic mucosa) as calibrators in RT-qPCR, as
well as paired samples of normal colonic tissues from the same CRC patients. All samples
were anonymized. Patients underwent surgical resection for CRC from February 1998 to
December 2018 at Taleghani Hospital, Shahid Beheshti University of Medical Sciences,
Tehran, Iran. They were chemo- and radiotherapy naïve, and none of them experienced
previous neoplastic disease. Clinical information, such as colonoscopy/pathology report,
follow-up data, and cause of death, was collected from medical records. All patients were
carefully followed up to confirm their clinical outcomes.

This study was approved by the ethical committee (IR.SBMU.RIGLD.REC.1396.947) of
the Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University
of Medical Sciences, Tehran, Iran. Written informed consent was obtained from all patients.

https://www.ncbi.nlm.nih.gov/
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The inclusion criteria for the patients were the following: (1) signed informed consent; (2)
availability of the pathology report to confirm the tumor histology; (3) nonresident in an
institution, such as a prison, nursing home, or shelter; (4) no severe illness in the intensive
care unit; and (5) no preoperative chemotherapy and radiotherapy. The exclusion criteria
were the following: patients affected by familial adenomatous polyposis (FAP), hereditary
nonpolyposis CRC (HNPCC), cancer at any site at the time of selection, and patients who
received neoadjuvant chemotherapy or radiotherapy. The FFPE tissue blocks were cut
10–15 µm and 4–7 µm in thickness for mRNA extraction and immunohistochemistry (IHC),
respectively.

To ensure the quality of the presence of tumor and normal cells in FFPE tissue blocks,
before performing the laboratory process, each section was evaluated for tumor and normal
cells (>80% representative) by the pathologist using hematoxylin and eosin (H&E) staining.

2.2. RNA Isolation

Ten–fifteen micrometer thick sections were cut from the FFPE blocks, and each section
was transferred into a microcentrifuge tube. Deparaffinization was performed with 1 mL
xylene, incubating twice for 10 min, and 1 mL absolute ethanol, also incubating twice for
10 min.

2.3. Quantitative and Qualitative Analysis of the Isolated RNA Samples

Total RNA was extracted from the target tissues using the Rneasy Kit (Qiagen,
Chatsworth, CA) according to the company’s protocol. To avoid genomic DNA con-
tamination, RNA samples were treated with Dnase I according to the manufacturer’s
protocol (Invitrogen, Carlsbad, CA, USA). RNA concentration was measured by a Nan-
oDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc., Rockland, DE, USA). An
A260/A280 ratio was used to evaluate the RNA purity, and values in the range of 1.8–2.0
were accepted.

2.4. Real-Time PCR Analysis

cDNAs were generated with a PrimeScript RT Reagent kit (Takara, Shiga, Japan)
according to the manufacturer’s protocol.

The mRNA levels of 20 candidate genes (i.e., VANGL1, IL2RA, IL2RB, TGF-ß, SMAD2,
SMAD4, CD44, CD133, HES1, NOTCH1, LEF1, MTA1, EGFR, MAP2K1, FOLH1, BUB1, RHOA1,
PCSK7, PITX2, and ANXA3) (Table 1) and of the housekeeping gene β2-microglobulin
(B2M) were analyzed by RT-qPCR using the SYBR Fast qPCR Mix Kit (Takara). The cDNA
samples were amplified by the 7500 Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA) with an initial denaturation at 95 ◦C for 30 s, followed by 40 cycles each
at 95 ◦C for 5 s and 60 ◦C for 34 s. Relative expression abundances of the target genes
were determined by normalizing to B2M and β-actin using the 2−∆∆Ct method. Each
measurement was performed in triplicate. B2M was utilized to calculate the relative
quantitation (RQ) of mRNA transcripts using the 2−∆∆Ct method.

2.5. Unsupervised Hierarchical Clustering

An unsupervised hierarchical clustering was used to graphically display the expres-
sion levels of 20 candidate genes in CRC samples. Dendrograms and clustering were
generated by using the Gene Cluster version 3.0 software and visualized with the Java
TreeView version 3.0, available at http://rana.lbl.gov/EisenSoftware.htm (accessed on
1 February 2021) and http://jtreeview.sourceforge.net (accessed on 1 February 2021), re-
spectively. The color of each square box represents the ratio of gene expression. Green
boxes indicate upregulated genes, while red boxes represent downregulated genes.

2.6. Immunohistochemistry and Evaluation of Staining

To investigate the expression levels of candidate proteins, an IHC analysis was per-
formed on slices of FFPE tissues ranging from 4 to 7 µm in thickness. For deparaffinization,

http://rana.lbl.gov/EisenSoftware.htm
http://jtreeview.sourceforge.net
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the slides were incubated at 37 ◦C for 24 h and then washed with xylene (100%), ethanol
(100%, 85%, and 75%), and distilled water, respectively. After deparaffinization, slides
were incubated in a solution of 10% H2O2 and methanol at a ratio of 1:9 for 15 min and
subsequently washed with the distilled water. Next, the slides were treated in the 10 mM
citrate buffer solution (pH = 6) and microwaved with 800 W for 24 min and washed with
the Tris-buffered saline (TBS). After treating with the blocking serum for 15 min, the slides
were immunostained with mouse anti-human MoAbs for 45 min and later washed with
TBS. Later, by treating with the EnVision + visualization system (Dako) for 30 min, followed
by DAB (Master Diagnosis, LOT. No 090517C1-01) as the chromogen substrate for 10 min,
the bound primary antibody was visualized. Finally, the slides were washed with distilled
water, dehydrated with ethanol, and stained in hematoxylin. All the slides were indepen-
dently checked by investigators who had no knowledge of the patients’ characteristics and
clinical outcome using a microscope (Nikon, Tokyo, Japan).

The analysis of immunostaining intensity was performed using a qualitative scale
and ocular observation. Sections were first scanned at low-power magnification (10x) and
were quantitatively assessed as follows: under a light microscope at 400x magnifications,
five high-power fields (HPFs) were randomly selected, and the immunostaining intensity
was determined.

Mean values were estimated through the scanning of the entire tissue sections of
all samples using two graded scales: negative, <10%, and positive, >10%. The positive
controls were the following: (a) a normal colonic tissue was taken as an internal control for
ß-catenin IHC, and (b) a histologically diagnosed section of colon carcinoma tissues for
nuclear positivity by ß-catenin IHC. Negative control was achieved by omitting the primary
antibody. The MoAbs used in this study were VANGL1 (Abcam, Anti-VANGL1 antibody
ab69227), SMAD4 (Abcam, Phospho-SMAD4 antibody T277), EGFR (Master Diagnosis,
Anti-EGFR antibody Lot No. 0664000), and LEF1 (Master Diagnosis, Anti-EGFR antibody
Lot No. 07430003).

2.7. Statistical Analysis

Tumors were divided into lymph node metastases (LNMs) and non-lymph node
metastases (non-LNMs) based on the histopathological results. The mRNA expression
levels of tumor tissues were represented as the mean± standard deviation (SD). The Mann–
Whitney U and Kruskal–Wallis tests were used to assess the differences of the mRNA
expressions of 20 genes between the established groups (i.e., presence/absence of LNMs;
stage (I–II vs. III–IV), tumor differentiation grade (well vs. poor differentiated), sex (male
vs. female), and age (<50 vs. ≥50)). All statistical analyses were performed by the IBM
SPSS Statistics software version 22 (IBM, SPSS, Chicago, IL, USA) and Stata analyzer.

For receiver operating characteristic (ROC) curve analysis, the R 3.6.1 software was
used to evaluate the sensitivity and specificity of the prognosis prediction (evaluated
by OS) according to the mRNA gene expression by analyzing the area under the curve
(AUC). Stratification of patients in high and low tumor gene expression was established
according to the cutoff obtained for each gene by ROC analysis. OS analysis was per-
formed by plotting Kaplan–Meier (log-rank test) curves. p-Values < 0.05 were considered
statistically significant.

3. Results
3.1. Clinical and Pathological Characteristics of Patients

The population study consisted of 100 FFPE tissues from CRC patients (59 men and
41 women with an average age of 52.17 years, 20–78 range). The clinical features of the
study population are shown in Table 2. Information on age, sex, stage, tumor differentiation,
and tumor location is available for all patients. Among patients, 52% had stage I or II CRC,
while 48% of the cases had stage III or IV. Of 100 patients, 37 were positive and 63 were
negative for LNM.
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Table 2. Clinical and pathological characteristics of patients.

Characteristics Number of Patients, 100 (%)

Gender
Male 59 (59%)

Female 41 (41%)

Age
<50 years 59 (59%)
≥50 years 41 (41%)

Tumor localization
Left (descending colon) 49 (49%)
Right (ascending colon) 51 (51%)

Tumor stage
I 9 (9%)
II 43 (43%)
III 41 (41%)
IV 7 (7%)

Differentiation grade
Well differentiated 82 (82%)

Poorly differentiated 18 (18%)

Lymph node metastasis
Yes 37 (37%)
No 63 (63%)

Median overall survival, range 10.8 years, 0.019–21 years

3.2. Gene Expression Analysis

To identify molecular determinants of LNMs, gene expression profiles from patients
with or without LNMs and at different stages of disease were compared. Based on literature
data, we selected 20 genes that relate to the lymphatic metastatic process and evaluated
their expression levels in 100 FFPE blocks.

Relationships of tumor gene expression with demographic (sex, age), clinical (tumor
location), and pathological (stage, LNM, grade) features are reported in Tables 3 and 4.

Table 3. Relationships between the expression of 20 CRC study genes and age and sex.

Gene Symbol
Fold Change of Age Fold Change of Sex

<50 ≥50 p-Value Male Female p-Value

VANGL1 4.910 ± 7.56 7.155 ± 10.54 0.44 5.706 ± 9.02 6.972 ± 10.08 0.36

IL2RA 0.603 ± 0.640 1.509 ± 1.83 0.02 1.148 ± 1.61 1.098 ± 1.37 0.93

IL2RB 0.699 ± 1.10 0.635 ± 1.24 0.88 0.870 ± 1.37 0.351 ± 0.71 0.02

TGFβ 1.056 ± 1.61 1.285 ± 2.02 0.79 1.308 ± 2.14 1.010 ± 1.34 0.90

SMAD2 1.313 ± 2.20 0.855 ± 1.45 0.74 0.942 ± 1.64 1.205 ± 2.06 0.30

SMAD4 2.157 ± 2.36 2.425 ± 2.21 0.41 2.417 ± 2.20 2.157 ± 2.37 0.34

CD44 0.596 ± 0.814 0.537 ± 0.87 0.44 0.478 ± 0.85 0.687 ± 0.82 0.10

CD133 0.832 ± 1.77 1.329 ± 2.83 0.62 0.870 ± 2.43 1.495 ± 2.44 0.07

HES1 2.830 ± 3.52 2.134 ± 3.28 0.36 2.685 ± 3.39 0.955 ± 3.38 0.44

NOTCH1 1.088 ± 2.18 0.953 ± 2.22 0.58 0.795 ± 2.36 1.332 ± 1.89 0.02

LEF1 1.178 ± 1.80 1.038 ± 1.19 0.58 0.988 ± 1.14 1.260 ± 1.86 0.86

MTA1 1.045 ± 1.01 1.012 ± 0.98 0.85 0.947 ± 0.93 1.144 ± 1.06 0.37
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Table 3. Cont.

Gene Symbol
Fold Change of Age Fold Change of Sex

<50 ≥50 p-Value Male Female p-Value

EGFR 2.272 ± 2.60 2.937 ± 4.65 0.75 2.439 ± 3.43 2.986 ± 4.58 0.87

MAP2K1 1.722 ± 2.47 1.235 ± 2.23 0.02 1.495 ± 2.65 1.355 ± 1.78 0.49

FOLH1 0.797 ± 0.70 0.814 ± 0.91 0.65 0.809 ± 0.85 0.804 ± 0.81 0.78

BUB1 0.656 ± 1.65 0.610 ± 1.46 0.18 0.731 ± 1.53 0.476 ± 1.56 0.27

RHOA 0.510 ± 0.621 0.562 ± 1.19 0.11 0.625 ± 1.11 0.414 ± 0.75 0.50

PCSK7 6.590 ± 7.74 3.069 ± 4.48 0.19 4.196 ± 5.12 5.076 ± 6.02 0.42

PITX2 0.976 ± 2.00 0.663 ± 1.13 0.57 0.720 ± 1.13 0.906 ± 2.05 0.58

ANXA3 3.533 ± 4.70 4.399 ± 6.65 0.60 4.298 ± 6.06 3.641 ± 5.71 0.12

Table 4. Relationships between the expression of 20 CRC study genes and clinical and pathological characteristics of patients.

Gene
Symbol

Fold Change of Stage Fold Change of Lymph
Node Metastasis Fold Change of Tumor Site Fold Change of

Differentiation Grade

I, II III, IV p-Value Yes No p-Value Right Left p-Value Well Poor p-Value

VANGL1 3.795 ±
5.63

8.831 ±
11.80 0.05 9.749 ±

12.40
4.136 ±

6.38 0.02 7.144 ±
10.44

5.243 ±
8.23 0.26 6.516 ±

9.22
4.831 ±

10.50 0.07

IL2RA 1.073 ±
1.59

1.188 ±
1.44 0.40 0.982 ±

1.19
1.214 ±

1.68 0.85 1.293 ±
1.84

0.957 ±
1.08 0.63 1.221 ±

1.56
0.707 ±

1.23 0.12

IL2RB 0.728 ±
1.31

0.591 ±
1.02 0.64 0.433 ±

0.43
0.797 ±

1.33 0.19 0.520 ±
0.85

0.811 ±
1.44 0.78 0.618 ±

1.21
0.864 ±

1.00 0.05

TGFβ
0.977 ±

1.50
1.418 ±

2.17 0.71 1.560 ±
2.25

0.971 ±
1.56 0.22 1.086 ±

1.66
1.296 ±

2.06 0.53 1.649 ±
1.84

1.088 ±
1.90 0.26

SMAD2 1.257 ±
2.13

0.821 ±
1.37 0.27 0.702 ±

1.26
1.250 ±

2.05 0.19 1.053 ±
2.17

1.043 ±
1.36 0.24 0.371 ±

1.95
1.196 ±

0.65 0.04

SMAD4 2.483 ±
2.50

2.128 ±
1.99 0.78 2.096 ±

1.99
2.440 ±

2.41 0.82 2.165 ±
2.41

2.467 ±
2.11 0.37 2.068 ±

2.20
2.367 ±

2.60 0.22

CD44 0.480 ±
0.61

0.650 ±
1.03 0.77 0.767 ±

1.14
0.441 ±

0.58 0.65 0.705 ±
1.03

0.413 ±
0.55 0.24 0.570 ±

0.76
0.522 ±

1.15 0.35

CD133 0.842 ±
1.99

1.421 ±
2.85 0.63 1.324 ±

2.43
1.000 ±

2.46 0.50 0.831 ±
1.59

1.421 ±
3.08 0.45 1.204 ±

2.63
0.738 ±

1.21 0.26

HES1 2.111 ±
2.96

2.767 ±
3.80 0.44 2.944 ±

4.06
2.123 ±

2.91 0.33 2.707 ±
3.90

2.134 ±
2.76 0.29 2.637 ±

3.58
1.465 ±

2.11 0.47

NOTCH1 1.147 ±
2.44

0.861 ±
1.90 0.66 0.968 ±

2.10
1.034 ±

2.26 0.87 0.768 ±
1.49

1.261 ±
2.73 0.16 1.170 ±

2.38
0.278 ±

0.49 0.13

LEF1 0.844 ±
0.87

1.371 ±
1.89 0.76 1.424 ±

1.99
0.905 ±

1.02 0.67 0.980 ±
1.49

1.218 ±
1.45 0.21 1.056 ±

1.34
1.283 ±

2.00 0.51

MTA1 0.983 ±
0.98

1.072 ±
1.00 0.72 1.073 ±

1.03
0.998 ±

0.96 0.83 1.178 ±
0.97

0.868 ±
0.99 0.08 1.024 ±

0.98
1.032 ±

1.04 0.89

EGFR 2.693 ±
3.86

2.620 ±
4.02 0.84 2.091 ±

2.65
2.990 ±

4.49 0.56 3.214 ±
4.31

2.078 ±
3.40 0.22 2.595 ±

4.12
2.945 ±

2.91 0.33

MAP2K1 1.442 ±
2.57

1.436 ±
2.07 0.33 1.549 ±

1.25
1.253 ±

2.58 0.98 1.251 ±
2.09

1.636 ±
2.57 0.34 1.377 ±

2.34
1.724 ±

2.34 0.39

FOLH1 0.857 ±
0.90

0.753 ±
0.75 0.55 0.767 ±

0.76
0.831 ±

0.87 0.79 0.848 ±
0.90

0.764 ±
0.75 0.70 0.829 ±

0.86
0.708 ±

0.67 0.83

BUB1 0.607 ±
1.35

0.652 ±
1.73 0.95 0.617 ±

1.67
0.636 ±

1.47 0.96 0.559 ±
1.28

0.702 ±
1.78 0.65 0.695 ±

1.68
0.328 ±

0.48 0.27

RHOA 0.294 ±
0.39

0.807 ±
1.32 0.21 0.916 ±

1.46
0.320 ±

0.43 0.24 0.645 ±
1.13

0.431 ±
0.81 0.36 0.501 ±

0.86
0.720 ±

1.44 0.78

PCSK7 4.290 ±
5.74

4.827 ±
6.81 0.12 4.170 ±

5.51
4.770 ±

6.21 0.19 3.614 ±
4.51

5.520 ±
6.32 0.07 4.364 ±

5.65
5.384 ±

6.96 1.00

PITX2 0.644 ±
1.03

0.957 ±
1.95 0.98 1.079 ±

2.16
0.627 ±

1.03 0.63 0.959 ±
1.98

0.622 ±
0.92 0.84 0.737 ±

1.12
1.056 ±

2.82 0.21

ANXA3 3.320 ±
4.54

4.811 ±
7.06 0.67 5.542 ±

7.75
3.150 ±

4.31 0.21 4.597 ±
7.06

3.450 ±
4.39 0.73 7.065 ±

4.91
3.370 ±

8.71 0.01

In particular, the gene expression levels of VANGL1 varied significantly between
patients with and without LNMs. The tumors of patients with LNMs displayed twofold
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higher levels of VANGL1 mRNA expression compared with those of patients without LNMs
(p = 0.02) (Table 4 and Figure 1). Additionally, the expression levels of this gene varied
between patients with stages I-II and III-IV, showing the highest mean level (i.e., 8.831) for
stages III and IV. This difference reached a good level of significance, although not fully
significant (p = 0.05) (Table 4 and Figure 1).
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Figure 1. VANGL1 mRNA relative quantification (RQ) established by RT-qPCR analysis according 
to lymph node metastasis (LNMs) involvement or stage. Gene expression levels of VANGL1 differed 
significantly between patients with and without LNMs. 

Figure 1. VANGL1 mRNA relative quantification (RQ) established by RT-qPCR analysis according to
lymph node metastasis (LNMs) involvement or stage. Gene expression levels of VANGL1 differed
significantly between patients with and without LNMs.

The mRNA expression levels of three genes (i.e., IL2RB, SMAD, and ANXA3) were
significantly (p < 0.05) different between well-differentiated (i.e., G1 and G2) and poorly
differentiated (i.e., G3 and G4) tumors (Table 4 and Figure 2).
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Figure 2. ANXA3 and SMAD2 mRNA relative quantification (RQ) established by RT-qPCR analysis
according to histological grade. Gene expression levels of these genes differed significantly between
well- and poorly differentiated cancers.

We found significant associations between tumor mRNA expression of IL2RB and
NOTCH1 genes and gender and between tumor mRNA expression of IL2RA and MAP2K1
genes and age. In particular, the IL2RA gene was significantly downregulated in patients
younger than 50 years old compared with patients older than 50 years (Figure 3). Addi-
tionally, an increased expression of the MAP2K1 gene was observed in patients older than
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50 years in comparison with patients younger than 50 years old (p = 0.02). IL2RB exhibited
lower expression in females compared with males (p = 0.02) (Table 3 and Figure 4). Con-
versely, the NOTCH1 gene was significantly upregulated in female patients as compared
with male CRC cases (p = 0.02).
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Figure 3. IL2RA and MAP2K1 mRNA relative quantification established by RT-qPCR analysis
according to age. Gene expression levels of these genes differed significantly between patients
younger than 50 years and patients older than or equal to 50 years.
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Figure 4. IL2RB and NOTCH1 mRNA relative quantification (RQ) established by RT-qPCR analysis
according to gender. Gene expression levels of these genes differed significantly between males
and females.

3.3. Heat Maps of Real-Time PCR Data

Hierarchical clustering of 100 CRC samples is reported in Figure 5. According to the
diagram, the VANGL1, PCSK7, and ANXA3 genes showed the highest expression levels in
most CRC samples.
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Figure 5. Heat maps of real-time RT-qPCR data representing gene expression variations of
the 20 analyzed transcripts in FFPE CRC samples. Green indicates upregulation, and red
indicates downregulation.

3.4. ROC Analysis

The predictive performance of the 20-gene signature was assessed by computing the
AUC value of the ROC curve. A logistic regression model was built based on the compari-
son of tumor samples (n = 100) in relation to the following study patient characteristics:
stage I–II vs. III–IV and presence vs. absence of LNM. We selected two panels including 5
and 10 genes based on the genes that had the highest AUC and showed a more effective
role in CRC progression. One panel included 5 genes (VANGL1, IL2RA, SMAD2, RHOA1,
and HES), and the other 10 genes (previous 5 plus MTA1, CD133, FOLH1, NOTCH1, and
TGF-ß). The total number of genes (i.e., 20-gene panel) was also analyzed.

Figure 6 summarizes the performances of the study gene panels for the prediction of
stage in the patient cohort, with the 20-gene panel achieving the highest performance. The
AUC value for the 5-gene panel was 68.39%, along with 95% CI, 57.81%–78.97%; 67.30%
sensitivity; and 66.66% specificity (Figure 6A); for the 10-gene panel, the AUC was 71.67%
(95% CI, 61.51%–81.84%; sensitivity, 61.53%; and specificity, 72.91%) (Figure 6B). The
analysis of the total 20 genes resulted in AUC = 78.85% (95% CI, 69.94%–87.75%; sensitivity,
75%; and specificity, 77.08%) (Figure 6C). In Figure 6D, the AUCs of 20-, 10-, and 5-gene
panels in relation to stage are reported. When all the three AUCs (5-/10-/total-gene panels)
were compared together, these results showed a trend towards significance (p = 0.055).
When the AUC of the total number of genes was compared with that of the 5 genes, the
difference was highly significant (p = 0.02). A statistical trend was observed between
the AUC of the total panel and that of the 10-gene panel (p = 0.08), while no significant
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difference between the AUC of the 10-gene panel and that of the 5-gene panel was noted
(p = 0.34).
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Figure 6. Comparison of the predictive performance by receiver operating characteristic (ROC) curve analysis for stage.
(A) The AUC assessment of the logit(p) value for the panel of 5 genes. (B) The AUC assessment of the logit(p) value for
the panel of 10 genes. (C) The AUC assessment of the logit(p) value for the panel of total genes. (D) Comparison of the
predictive performance for the panel of 5, 10, and 20 genes.

Figure 7 summarizes the performances of the study gene panels for the prediction
of LNMs in CRC patients, and also in this case, the 20-gene panel achieved the highest
performance. The AUC value was 70.19% (95% CI, 59.18%–81.02%; sensitivity, 84.12%;
specificity, 57.86%) when the gene expression of the 5-gene panel was compared in relation
to LNM and non-LNM CRC patients (Figure 7A). Comparison of the gene expression of the
10-gene panel in relation to LNM and non-LNM CRC patients resulted in AUC = 71.47%
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(95% CI, 60.62%–82.32%; sensitivity, 80.95%; specificity, 59.45%) (Figure 7B). The AUC of the
total genes in LNM vs. non-LNM CRC patients was the highest of the three AUCs obtained
(i.e., 79.84% (95% CI, 70.38%–89.30%; sensitivity, 74.60%; specificity, 75.67%) (Figure 7C).
As far as the association with LNMs was concerned, the comparison between all the AUCs
together (5-/10-/total-gene panels) pointed out a nearly significant difference (p = 0.05). In
particular, the AUC of the total-gene panel was significantly higher compared with that
of the 5-gene panel (p = 0.03) in relation to LNM and non-LNM CRC patients (Figure 7D).
A high statistical trend was observed between the AUC of the total gene panel and that
of the 10-gene panel (p = 0.06), although no statistical difference was observed between
the AUC of the 10-gene panel and that of the 5-gene panel (p = 0.38). We also analyzed the
predictive performance of single genes according to stage and LNM (Tables S1 and S2).
Data showed that the VANGL1 gene was a significant predictor for LNMs with an AUC of
63.99 (95% CI, 52.41%–75.56%; sensitivity, 80.95%; specificity, 45.94).

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 13 of 22 
 

 

  
(C) (D) 

Figure 6. Comparison of the predictive performance by receiver operating characteristic (ROC) curve analysis for stage. 
(A) The AUC assessment of the logit(p) value for the panel of 5 genes. (B) The AUC assessment of the logit(p) value for the 
panel of 10 genes. (C) The AUC assessment of the logit(p) value for the panel of total genes. (D) Comparison of the 
predictive performance for the panel of 5, 10, and 20 genes. 

  
(A) (B) 

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
 

(C) (D) 

Figure 7. Comparison of the predictive performance by receiver operating characteristic (ROC) curve analysis for lymph 
node metastasis (LNMs). (A) The AUC assessment of the logit(p) value for the panel of 5 genes. (B) The AUC assessment 
of the logit(p) value for the panel of 10 genes. (C) The AUC assessment of the logit(p) value for the panel of total genes. 
(D) Comparison of the predictive performance for the panel of 5, 10, and 20 genes. 

3.5. Correlation of Gene Expression with Overall Survival 
All patients completed their follow-up by 20 December 2018 (median, 10.8 years, and 

range, 0.019–21 years). Patients whose tumors expressed higher levels of NOTCH1 mRNA 
or lower levels of IL2RB mRNA showed a statistically significant prolonged OS compared 
with their respective counterparts (p = 0.042 and p = 0.043, respectively) (Figure 8). No 
other statistically significant correlation was found between OS and expression levels of 
the other study genes. 

  

(A) (B) 

Figure 8. Association between NOTCH1 (A) and IL2RB (B) expression and overall survival. The median follow-up was 
10.8 (0.95LCL–0.95UCL; 10–11) years. HR, hazard ratio. 

  

Figure 7. Comparison of the predictive performance by receiver operating characteristic (ROC) curve analysis for lymph
node metastasis (LNMs). (A) The AUC assessment of the logit(p) value for the panel of 5 genes. (B) The AUC assessment of
the logit(p) value for the panel of 10 genes. (C) The AUC assessment of the logit(p) value for the panel of total genes. (D)
Comparison of the predictive performance for the panel of 5, 10, and 20 genes.



J. Pers. Med. 2021, 11, 126 14 of 21

3.5. Correlation of Gene Expression with Overall Survival

All patients completed their follow-up by 20 December 2018 (median, 10.8 years, and
range, 0.019–21 years). Patients whose tumors expressed higher levels of NOTCH1 mRNA
or lower levels of IL2RB mRNA showed a statistically significant prolonged OS compared
with their respective counterparts (p = 0.042 and p = 0.043, respectively) (Figure 8). No
other statistically significant correlation was found between OS and expression levels of
the other study genes.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
 

(C) (D) 

Figure 7. Comparison of the predictive performance by receiver operating characteristic (ROC) curve analysis for lymph 
node metastasis (LNMs). (A) The AUC assessment of the logit(p) value for the panel of 5 genes. (B) The AUC assessment 
of the logit(p) value for the panel of 10 genes. (C) The AUC assessment of the logit(p) value for the panel of total genes. 
(D) Comparison of the predictive performance for the panel of 5, 10, and 20 genes. 

3.5. Correlation of Gene Expression with Overall Survival 
All patients completed their follow-up by 20 December 2018 (median, 10.8 years, and 

range, 0.019–21 years). Patients whose tumors expressed higher levels of NOTCH1 mRNA 
or lower levels of IL2RB mRNA showed a statistically significant prolonged OS compared 
with their respective counterparts (p = 0.042 and p = 0.043, respectively) (Figure 8). No 
other statistically significant correlation was found between OS and expression levels of 
the other study genes. 

  

(A) (B) 

Figure 8. Association between NOTCH1 (A) and IL2RB (B) expression and overall survival. The median follow-up was 
10.8 (0.95LCL–0.95UCL; 10–11) years. HR, hazard ratio. 

  

Figure 8. Association between NOTCH1 (A) and IL2RB (B) expression and overall survival. The median follow-up was 10.8
(0.95LCL–0.95UCL; 10–11) years. HR, hazard ratio.

3.6. Immunohistochemistry Analysis

The protein expression levels of four genes that play a critical role in cancer develop-
ment and progression was evaluated by using IHC. Twenty-five percent of CRC FFPE and
normal matched tissues were used in this regard. In particular, we were interested in the
evaluation of the expression levels of the products of VANGL1, EGFR, and SMAD4 based
on literature data and on the relationships we observed between the expression of their
respective encoding genes and the clinical/pathological characteristics of the study CRC
patients. The fourth protein we selected was LEF1. Although we did not find relationships
between LEF1 gene expression and the clinical/pathological parameters of CRC patients,
we were interested in evaluating the potential role of LEF1 as an early biomarker of colorec-
tal carcinogenesis since its activation by MYC has been associated with the activation of the
WNT pathway signaling. The protein expression of VANGL1, EGFR, LEF1, and SMAD4
via their antibodies were examined. Results showed that VANGL1 and EGFR proteins
were overexpressed (more than 50% of the stained cells in colon adenocarcinoma tissues
compared with the normal tissues) (Figures 9 and 10). Additionally, immunohistochemical
staining revealed a predominantly nuclear localization of SMAD4 and LEF1, and they
showed higher expression in CRC tissues compared with normal colonic mucosa with
more than 50% and 20% of the stained cells, respectively (Figures 10 and 11).
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4. Discussion

The prediction of CRC progression risk and the identification of novel biomarkers
predictive of this risk could represent a relevant advancement [6]. In this study, we
evaluated the expression levels of several genes that are involved in LNM and malignant
transitions in CRC tissues via RT-qPCR and IHC methods.

Previous investigations showed a high tumor expression level of the VANGL-1 gene in
CRC patients compared with normal tissues [21–24]. Additionally, VANGL1 gene expres-
sion levels have been suggested to play a critical role in CRC progression and to be notably
related to tumor stages and LNM [21–24]. These findings are in substantial agreement with
our results. Lee and et al. showed that VANGL1 gene knockdown can decrease the mRNA
expression level of CYKLIND1, COX2, MMP3, and ERK1/2 and reduce tumor growth and
invasion. In addition, they found that a high expression level of the VANGL1 gene was
associated with the overexpression of AP-1 target genes, which have an important role in
MAPK signaling in CRC [22]. Oh et al. indicated that VANGL1 silencing reduced vascular
endothelial growth factor A (VEGF-A) and hypoxia-inducible factor 1-alpha (HIF1A). They
suggested that the VANGL1 gene can increase angiogenesis and CRC malignancy [21].
Additionally, our past investigations showed that angiogenesis and the angiogenic fac-
tors VEGF-A and HIFA play an important role in CRC initiation and progression [25–27].
Thus, it seems that the VANGL1 gene may interact with VEGF-A and HIF1A signaling and
enhance tumor malignancy.

In this study, we showed that the VANGL1 gene was an independent prognostic
biomarker for CRC patients. Taken together, these results indicate that the VANGL1
gene may have a key role in the regulation of several genes, including those involved in
angiogenesis. Thus, VANGL1 could be suggested as a potential biomarker for the prediction
of tumor malignancy and targeted therapy in CRC.

TGF-β has been suggested to be a tumor suppressor gene able to stop the cell cycle
at early stages of tumor, and SMAD proteins, being transcriptional mediators of TGF-β
signaling, play a critical role in it [28]. In particular, SMAD2 is located at 18q21 and plays a
role as a tumor suppressor gene [29–31]. As a result of the loss of heterozygosity (LOH)
in the 18q21 region, SMAD2 gene expression is reduced in several cancers and increases
cancer progression [31]. However, our findings showed a significant downregulation of
SMAD2 in well-differentiated tumors. Although this finding is substantial in contrast with
most of the available data, the complexity of the mutational profile of SMAD2 [32], its
relationships with the other SMAD proteins [33], and the potential role of specific miRNAs
on the regulation of SMAD2 [34] could have contributed to this result.

SMAD4 that forms a heterotrimer with SMAD2 and SMAD3 to exert transcriptional
activity plays a crucial role in carcinogenesis [35], and loss of the SMAD4 gene occurs in
about 30% of CRC [36]. It was reported that loss of SMAD4 was significantly related to
CRC progression and metastasis and occurred in late stages [29,37–40]. Previous studies
revealed that in colon cancer, the activation of TGF-β signaling induced ERK and P38
signaling and stimulated angiogenesis by VEGF upregulation when SMAD4 was knocked
down [36]. Our findings are in agreement with previous investigations [41,42] and indicate
that the expression level of the SMAD4 gene in stage III-IV CRC was lower than that in
stage I-II, although this difference did not reach a statistically significant level.

We observed an upregulation of the TGF-β gene in stage III-IV CRC samples, although
these results were not statistically significant. According to these data, loss of the SMAD4
gene and upregulation of TGF-β may be associated with a more advanced tumor stage and
can promote cancer initiation, progression, and metastasis [35].

The NOTCH signaling pathway activity has been reported in several cancers, such
as CRC and hepatocarcinoma [43–46]. NOTCH signaling consists of several receptors
(NOTCH1–4) and targets genes including the transcription factor HES1 (HES family basic
helix-loop-helix (bHLH) transcription factor 1) [43,47,48]. In addition, HES1 has several
functions, such as intestinal cell stability and apoptosis control [43,49]. Our study showed
a downregulation of NOTCH1 in stage III-IV CRC and a significant correlation between
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a high expression level of NOTCH1 and longer patient survival. This is in contrast with
a previous study that reported an upregulation of NOTCH1 in advanced or metastatic
CRC patients and a significant association between the upregulation of NOTCH1 and poor
survival [43]. Moreover, we observed a significant overexpression of NOTCH1 levels in
female patients.

In agreement with our findings, several studies demonstrated a significant overexpres-
sion of the HES1 gene in CRC samples compared with a normal tissue [50–52]. Additionally,
we found that the overexpression of the HES1 gene in stage III-IV CRC was more marked
than in stage I-II. This result is in agreement with past investigations [43,50,52]. Overall,
our data, together with those of others, confirm that NOTCH signaling, especially NOTCH1
and HES1, play a critical role in metastasis and invasion as well as in the activation of
several other signaling pathways. The activation of NOTCH1 is, in fact, able to induce
HES1 and to start cancer progression [53–56].

IL2RA and IL2RB bind interleukin 2, which is necessary for the stimulation of T-cell
immune response, and act as signal transduction factors. A high level of IL2, IL2RA, and
IL2RB gene expression and their relationships with tumor progression and malignancy
have been previously reported [57]. However, in agreement with our results, Marshall
et al. also found no significant association between IL2RB gene expression and cancer
progression [58].In the present investigation, we observed that a downregulation of IL2RA
was significantly associated with CRC patients younger than 50 years.

ANXA3 plays a relevant role in tumor metastasis, invasion, and drug treatment resis-
tance [59–62]. In a previous investigation, a blood-based biomarker panel, also including
the ANXA3 gene, able to stratify subjects according to their relative CRC risk in comparison
with an average-risk population, was developed [58]. Similar to this study, a significant
upregulation of ANXA3 has been identified in CRC tissues compared with normal mucosa
as well as in several other cancers, such as pancreas, breast, and lung cancers [63,64].

Several findings have shown that the suppression of ANXA3 upregulation could
inhibit cell proliferation and metastasis in CRC [65,66]. Thus, ANXA3 could be considered
a new potential prognostic biomarker and therapeutic target for CRC treatment [66,67].
Upregulation of the ANXA3 gene and its correlation with gastric tumor size, stage, and
LNMs were detected by Wang et al. [67] Moreover, these authors suggested that the
overexpression of ANXA3 has a huge effect on gastric cancer malignancy, and it can be used
as a novel prognostic biomarker and a suitable target for treatment [67]. Zhou et al. reported
that high expression levels of ANXA3 were significantly correlated with breast tumor LNMs
and tumor grade, suggesting ANXA3 as a biomarker for breast cancer prognosis [68]. In
our study, a significant overexpression of the ANXA3 gene in well-differentiated tumors
compared with poorly differentiated tumors was instead observed. However, we also
observed higher levels of ANXA3 in tumors from patients with LNMs compared with
tumors from patients without LNMs, although this difference did not reach statistical
significance. Overall, we were only able to partially confirm the observations of other
authors who suggested that the ANXA3 gene may act as an oncogene and play a role in the
transformation of a normal tissue into tumor, CRC invasion, and malignancy progression.

BUB1 acts as a checkpoint factor during cell mitosis and proliferation, and PCSK7 plays
a role in cellular multiplication, mortality, and adhesion. These two genes are involved
in cancer metastasis and invasion [69–72]. In our study, we observed a downregulation
of the BUB1 gene in CRC samples compared with normal mucosa, but this difference
was not statistically significant. Additionally, previous studies showed a downregulation
of the BUB1 gene in gastric cancer and in CRC [70,73]. Furthermore, in agreement with
previous studies, we found an upregulation of PCSK7 in CRC. On the other hand, Jaaks
et al. realized a significant upregulation of the PCSK7 gene in colon cancer and considered
it a potential biomarker [72]. Taken together, it could be suggested that the low expression
level of BUB1 and the upregulation of PCSK7 have a critical role in malignant transition
through colorectal carcinogenesis.
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EGFR is a transmembrane receptor that binds to EGF and stimulates cell growth in
tissues. Overexpression of the EGFR gene has been observed in several cancers, includ-
ing colorectal, lung, breast, and bladder [74]. It has been reported that the EGFR gene
may play a role in CRC development [75] since its expression increases with malignant
transformation from normal colonic mucosa to metastatic CRC [75,76]. Previous studies,
in fact, showed that EGFR gene overexpression was significantly related to tumor stages,
metastasis, and well-differentiated tumors [75,77]. Although we found a higher expression
of EGFR in tumor tissues compared with normal tissues, as well as in the right colon
compared with the left colon, we did not find correlations between tumor EGFR gene ex-
pression and clinicopathological features. However, our observations substantially confirm
the role of EGFR in CRC progression.

5. Conclusions

In conclusion, the main results of this study highlight that the expression of the tumor
VANGL1 gene is an independent prognostic biomarker and could be considered a potential
predictor for detecting malignancy risk in CRC patients. Additionally, LNMs were highly
predicted by the 20-gene panels. However, validation studies including a higher number
of patients are required.
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